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Privacy and Security 
Constraints

• Individual Privacy
– Nobody should know more about any entity 

after the data mining than they did before
– Approaches:  Data Obfuscation, Value 

swapping

• Organization Privacy
– Protect knowledge about a collection of 

entities
• Individual entity values may be known to all parties
• Which entities are at which site may be secret
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Privacy constraints don’t 
prevent data mining

• Goal of data mining is summary results
– Association rules
– Classifiers
– Clusters

• The results alone need not violate privacy
– Contain no individually identifiable values
– Reflect overall results, not individual organizations

The problem is computing the results without 
access to the data!
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Example:
Association Rules

• Assume data is horizontally partitioned
– Each site has complete information on a set of 

entities
– Same attributes at each site

• If goal is to avoid disclosing entities, problem is 
easy

• Basic idea:  Two-Phase Algorithm
– First phase:  Compute candidate rules

• Frequent globally � frequent at some site

– Second phase:  Compute frequency of candidates
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Privacy-Preserving Data 
Mining: Who?

• Government / public agencies.  Example:
– The Centers for Disease Control want to identify disease 

outbreaks
– Insurance companies have data on disease incidents, 

seriousness, patient background, etc.
– But can/should they release this information?

• Industry Collaborations / Trade Groups.  Example:
– An industry trade group may want to identify best practices to 

help members
– But some practices are trade secrets
– How do we provide “commodity” results to all (Manufacturing 

using chemical supplies from supplier X have high failure rates), 
while still preserving secrets (manufacturing process Y gives low 
failure rates)?

Privacy-Preserving Data 
Mining: Who?

• Multinational Corporations
– A company would like to mine its data for 

globally valid results
– But national laws may prevent transborder 

data sharing

• Public use of private data
– Data mining enables research studies of large 

populations
– But these populations are reluctant to release 

personal information
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Outline

• Privacy and Security Constraints
– Types:  Individual, collection, result limitation
– Sources:  Regulatory, Contractual, Secrecy

• Classes of solutions
– Data obfuscation
– Summarization
– Data separation

• When do we address these issues?
Break

Outline (after the break):
Technical Solutions

• Data Obfuscation based techniques
– Reconstructing distributions for developing classifiers
– Association rules from modified data

• Data Separation based techniques
– Overview of Secure Multiparty Computation
– Secure decision tree construction
– Secure association rules
– Secure clustering

• What if the secrets are in the results?
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Individual Privacy:
Protect the “record”

• Individual item in database must not be 
disclosed

• Not necessarily a person
– Information about a corporation
– Transaction record

• Disclosure of parts of record may be 
allowed
– Individually identifiable information

Individually Identifiable 
Information

• Data that can’t be traced to an individual 
not viewed as private
– Remove “identifiers”

• But can we ensure it can’t be traced?
– Candidate Key in non-identifier information
– Unique values for some individuals

Data Mining enables such tracing!
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Re-identifying “anonymous” 
data (Sweeney ’01)

• 37 US states mandate 
collection of information

• She purchased the voter 
registration list for 
Cambridge 
Massachusetts
– 54,805 people

• 69% unique on postal 
code and birth date

• 87% US-wide with all 
three

• Solution:  k-anonymity
– Any combination of values 

appears at least k times

• Developed systems that 
guarantee k-anonymity
– Minimize distortion of results

Collection Privacy

• Disclosure of individual data may be okay
– Telephone book
– De-identified records

• Releasing the whole collection may cause 
problems
– Trade secrets – corporate plans
– Rules that reveal knowledge about the holder 

of data
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Collection Privacy Example:
Corporate Phone Book

• Telephone Directory discloses 
how to contact an individual
– Intended use

• Data Mining can find more
– Relative sizes of departments
– Use to predict corporate 

plans?

• Possible Solution:  
Obfuscation
– Fake entries in phone book
– Doesn’t prevent intended use

• Key:  Define Intended Use
– Not always easy!

Data
Mining

Unexpectedly High
Number of

Energy Traders

Restrictions on Results

• Use of Call Records for Fraud 
Detection vs. Marketing
– FCC § 222(c)(1) restricted use of 

individually identifiable information
Until overturned by US Appeals Court

– 222(d)(2) allows use for fraud detection
• Mortgage Redlining

– Racial discrimination in home loans 
prohibited in US

– Banks drew lines around high risk 
neighborhoods!!!

– These were often minority neighborhoods
– Result:  Discrimination (redlining outlawed)
What about data mining that “singles out” 

minorities?
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Sources of Constraints

• Regulatory requirements
• Contractual constraints

– Posted privacy policy
– Corporate agreements

• Secrecy concerns
– Secrets whose release could jeopardize plans
– Public Relations – “bad press”

Regulatory Constraints:
Privacy Rules

• Primarily national laws
– European Union
– US HIPAA rules (www.hipaadvisory.com)
– Many others:  (www.privacyexchange.org)

• Often control transborder use of data
• Focus on intent

– Limited guidance on implementation
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European Union Data 
Protection Directives

• Directive 94/46/EC
– Passed European Parliament 24 October 1995
– Goal is to ensure free flow of information

• Must preserve privacy needs of member states
– Effective October 1998

• Effect
– Provides guidelines for member state legislation

• Not directly enforceable
– Forbids sharing data with states that don’t protect privacy

• Non-member state must provide adequate protection,
• Sharing must be for “allowed use”, or
• Contracts ensure adequate protection

– US “Safe Harbor” rules provide means of sharing (July 2000)
• Adequate protection
• But voluntary compliance

• Enforcement is happening
– Microsoft under investigation for Passport (May 2002)
– Already fined by Spanish Authorities (2001)

EU 94/46/EC:
Meeting the Rules

• Personal data is any information that can be traced directly or indirectly to a specific 
person

• Use allowed if:
– Unambiguous consent given
– Required to perform contract with subject
– Legally required
– Necessary to protect vital interests of subject
– In the public interest, or
– Necessary for legitimate interests of processor and doesn’t violate privacy

• Some uses specifically proscribed
– Can’t reveal racial/ethnic origin, political/religious beliefs, trade union membership, health/sex 

life
• Must make data available to subject

– Allowed to object to such use
– Must give advance notice / right to refuse direct marketing use

• Limits use for automated decisions
– Onus on processor to show use is legitimate

europa.eu.int/comm/internal_market/en/dataprot/law
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US Healthcare Information Portability 
and Accountability Act (HIPAA)

• Governs use of patient information
– Goal is to protect the patient
– Basic idea:  Disclosure okay if anonymity preserved

• Regulations focus on outcome
– A covered entity may not use or disclose protected health information, 

except as permitted or required…
• To individual
• For treatment (generally requires consent)
• To public health / legal authorities

– Use permitted where “there is no reasonable basis to believe that the information 
can be used to identify an individual”

• Safe Harbor Rules
– Data presumed not identifiable if 19 identifiers removed (§ 164.514(b)(2)), e.g.:

• Name, location smaller than 3 digit postal code, dates finer than year, identifying 
numbers

– Shown not to be sufficient (Sweeney)
– Also not necessary
Moral:  Get Involved in the Regulatory Process!

Regulatory Constraints:
Use of Results

• Patchwork of Regulations
– US Telecom (Fraud, not marketing)

• Federal Communications Commission rules
• Rooted in antitrust law

– US Mortgage “redlining”
• Financial regulations
• Comes from civil rights legislation

• Evaluate on a per-project basis
– Domain experts should know the rules
– You’ll need the domain experts anyway – ask the 

right questions
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Contractual Limitations
• Web site privacy policies

– “Contract” between browser and web site
– Groups support voluntary enforcement

• TrustE – requires that web site DISCLOSE policy on collection and use of
personal information

• BBBonline
– posting of an online privacy notice meeting rigorous privacy principles
– completion of a comprehensive privacy assessment
– monitoring and review by a trusted organization, and
– participation in the programs consumer dispute resolution system

• Unknown legal “teeth”
– Example of customer information viewed as salable property in court!!!

– P3P:  Supports browser checking of user-specific requirements
• Internet Explorer 6 – disallow cookies if non-matching privacy policy
• PrivacyBird – Internet Explorer plug-in from AT&T Research

• Corporate agreements
– Stronger teeth/enforceability
– But rarely protect the individual

Secrecy
• Governmental sharing

– Clear rules on sharing of classified information
– Often err on the side of caution

• Touching classified data “taints” everything
• Prevents sharing that wouldn’t disclose classified information

• Corporate secrets
– Room for cost/benefit tradeoff
– Authorization often a single office

• Convince the right person that secrets aren’t disclosed and work can proceed

• Bad Press
– Lotus proposed “household marketplace” CD (1990)

• Contained information on US households from public records
• Public outcry forced withdrawal

– Credit agencies maintain public and private information
• Make money from using information for marketing purposes

– Key difference?  Personal information isn’t disclosed
• Credit agencies do the mining
• “Purchasers” of information don’t see public data
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Classes of Solutions

• Data Obfuscation
– Nobody sees the real data

• Summarization
– Only the needed facts are exposed

• Data Separation
– Data remains with trusted parties

Data Obfuscation

• Goal:  Hide the protected information
• Approaches

– Randomly modify data
– Swap values between records
– Controlled modification of data to hide secrets

• Problems
– Does it really protect the data?
– Can we learn from the results?
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Example:  US Census Bureau 
Public Use Microdata

• US Census Bureau summarizes by census block
– Minimum 300 people
– Ranges rather than values

• For research, “complete” data provided for sample populations
– Identifying information removed

• Limitation of detail:  geographic distinction, continuous à interval
• Top/bottom coding (eliminate sparse/sensitive values)

– Swap data values among similar individuals (Moore ’96)
• Eliminates link between potential key and corresponding values
• If individual determined, sensitive values likely incorrect
Preserves the privacy of the individuals, as no entity in the data contains actual 

values for any real individual.
– Careful swapping preserves multivariate statistics

• Rank-based:  swap similar values (randomly chosen within max distance)
Preserves dependencies with (provably) high probability

– Adversary can estimate sensitive values if individual identified
But data mining results enable this anyway! 

Summarization

• Goal:  Make only innocuous summaries of 
data available

• Approaches:
– Overall collection statistics
– Limited query functionality

• Problems:
– Can we deduce data from statistics?
– Is the information sufficient?
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Example:  Statistical Queries

• User is allowed to query protected data
– Queries must use statistical operators that summarize results

• Example:  Summation of total income for a group doesn’t disclose individual income
– Multiple queries can be a problem

• Request total salary for all employees of a company
• Request the total salary for all employees but the president
• Now we know the president’s salary

• Query restriction – Identify when a set of queries is safe (Denning ’80)
– query set overlap control (Dobkin, Jones, and Lipton ‘79)

• Result generated from at least k items
• Items used to generate result have at most r items in common with those used for 

previous queries
• At least 1+(k-1)/r queries needed to compromise data

– Data perturbation:  introducing noise into the original data
– Output perturbation:  leaving the original data intact, but introducing noise into 

the results

Example:  Statistical Queries

• Problem:  Can approximate real values from multiple 
queries (Palley and Simonoff ’87)
– Create histograms for unprotected independent variables (e.g., 

job title) 
– Run statistical queries on the protected value (e.g., average 

salary) 
– Create a synthetic database capturing relationships between the 

unprotected and protected values
– Data mining on the synthetic database approximate real values

• Problem with statistical queries is that the adversary 
creates the queries
– Such manipulation likely to be obvious in a data mining situation
– Problem:  Proving that individual data not released
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Data Separation

• Goal:  Only trusted parties see the data
• Approaches:

– Data held by owner/creator
– Limited release to trusted third party
– Operations/analysis performed by trusted party

• Problems:
– Will the trusted party be willing to do the analysis?
– Do the analysis results disclose private information?

Example:  Patient Records

• My health records split among providers
– Insurance company
– Pharmacy
– Doctor
– Hospital

• Each agrees not to release the data without my consent
• Medical study wants correlations across providers

– Rules relating complaints/procedures to “unrelated” drugs

• Does this need my consent?
– And that of every other patient!

• It shouldn’t!
– Rules don’t disclose my individual data
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When do we address these 
concerns?

• Must articulate that
– A problem exists

• There will be problems if we don’t worry about 
privacy

– We need to know the issues
• Domain-specific constraints

– A technical solution is feasible
• Results valid
• Constraints (provably) met

What we need to know

• Constraints on release of data
– Define in terms of Disclosure, not Privacy
– What can be released, what mustn’t

• Ownership/control of data
– Nobody allowed access to “real” data
– Data distributed across organizations

• Horizontally partitioned:  Each entity at a separate site

• Vertically partitioned:  Some attributes of each entity at each 
site

• Desired results:  Rules?  Classifier?  Clusters?
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When to Address:
CRISP-DM Stages

• Phase 1.2:  Assess Situation
– Capture privacy requirements while determining constraints

You’ve got the domain experts now – use them!
• Phase 1.3:  Determining data mining goals

– Do the expected results violate constraints?
• Phase 2:  Data understanding

– Possible with non-private subset of data – Permission given or locally owned?
• Phase 3:  Data preparation

– 3.3:  Will actual or derived (obfuscated) data be needed?
– 3.4:  Will warehouse-style integration be possible?

• Phase 4.1:  Select modeling technique
– Identify (develop?) technical solution
– Document how solution meets constraints

• Phase 6.1:  Plan deployment
– Does the deployment satisfy constraints on use of results?

CRoss Industry Standard Process for Data Mining:  www.crisp-dm.org

Goal:  Technical Solutions
that

• Preserve privacy and security constraints
– Disclosure Prevention that is
– Provable, or
– Disclosed data can be human-vetted

• Generate correct models:  Results are
– Equivalent to non-privacy preserving approach,
– Bounded approximation to non-private result, or
– Probabilistic approximation

• Efficient
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Data Obfuscation Techniques

• Miner doesn’t see the real data
– Some knowledge of how data obscured
– Can’t reconstruct real values

• Results still valid
– CAN reconstruct enough information to 

identify patterns
– But not entities

Decision Trees
Agrawal and Srikant ‘00

• Assume users are willing to
– Give true values of certain fields
– Give modified values of certain fields

• Practicality
– 17% refuse to provide data at all
– 56% are willing, as long as privacy is maintained
– 27% are willing, with mild concern about privacy

• Perturb Data with Value Distortion
– User provides  xi+r instead of xi

– r is a random value
• Uniform, uniform distribution between [-α, α]
• Gaussian, normal distribution with µ = 0, σ
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Privacy Metric

If, from perturbed data, the original value x can be 
estimated to lie between [x1, x2] with c% confidence, then 
the privacy at c% confidence level is related to x2 - x1

6.8 x σ3.92 x σ1.34 x σGaussian

0.999 x 2α0.95 x 2α0.5 x 2αUniform

0.999 x W0.95 x W0.5 x WDiscretization

99.9%95%50%

Confidence

• Issues
• For very high privacy, discretization will lead to a poor model
• Gaussian provides more privacy at higher confidence levels

Example
Salary 20K - 150K

95% Confidence
50% Privacy in Uniform

2α = 0.5*130K / 0.95
= 68K

Problem:  Reconstructing the 
Original Distribution

• Selecting split points obvious in original distribution
• Hidden in randomized (perturbed) data



22

Original Distribution 
Reconstruction: Formal Definition

• x1, x2, …, xn are the n original data values
– Drawn from n iid random variables X1, X2, …, Xn similar to X

• Using value distortion,
– The given values are w1 = x1 + y1, w2 = x2 + y2, …, wn = xn + yn

– yi’s are from n iid random variables Y1, Y2, …, Yn similar to Y

• Reconstruction Problem:
– Given FY and wi’s, estimate FX

Original Distribution 
Reconstruction:  Method

• The estimated density function:

• Given a sufficiently large number of samples, it is 
expected to be close to the real density function
– However, fX is not known

– Iteratively,

– The initial estimate for fX at j=0 is the uniform distribution
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Original Distribution 
Reconstruction: Empirical Evaluation

Decision-Tree Classification
Overview

• Recursively partition the data until each partition 
contains mostly examples from the same class

• Two phase development
– Growth Phase (building the tree):

• Evaluate each split for each attribute (gini, entropy, …)

• Use the best split to partition the data into two nodes
• Repeat for each node, if points are not of the same class

– Prune Phase
• Generalize the tree
• Remove statistical noise
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Decision-Tree Classification
Using the Perturbed Data

• Split Points
– During reconstruction phase, attribute values are partitioned into 

intervals.
– So, interval boundaries are the candidate split points.

• Data Partitioning
– Reconstruction phase gives an estimate of the number of points 

in each interval.

– Partition data into S1 and S2 where S1 contains the lower valued 
data points.

Decision-Tree Classification
Using the Perturbed Data (cont.)

• When and How are the distributions 
reconstructed?
– Global

• Reconstruct for each attribute once at the beginning
• Build the decision tree using the reconstructed data

– ByClass
• First split the training data
• Reconstruct for each class separately
• Build the decision tree using the reconstructed data

– Local
• First split the training data
• Reconstruct for each class separately
• Reconstruct at each node while building the tree
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Experiments
Methodology

• What to compare?
– Classification accuracy of decision trees induced from

• Global, ByClass, and Local algorithms vs.
• Original and Randomized Distributions

• Synthetic Data
– 100,000 training and 5,000 test records
– All attributes are uniformly distributed ?
– Equally split between two classes
– Five classification functions (five datasets)

• (age < 40 and 50K ≤ salary ≤ 100K) or (40 ≤ age < 60 and 75K ≤ salary ≥ 125K) or 
(age ≥ 60 and 25K ≤ salary ≤ 75K)

• Issues
– 95% confidence level
– Privacy ranges from 25% to 200%
– k (number of intervals) is selected, heuristically, such that

• 10 < k < 100 and average number of points in each is 100

Experiments
Results

• Global performs worse than ByClass and Local
• ByClass and Local have accuracy within 5% to 15% (absolute 

error) of the Original accuracy
• Overall, all are much better than the Randomized accuracy
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Experiments
Results (cont.)

• The effect of both Uniform and Gaussian are quite comparable 
after reconstruction

• The accuracy is fairly close to the Original

Quantification of Privacy
Agrawal and Aggarwal ‘01

• Previous definition:
If the original value can be estimated with c% 
confidence to lie in the interval [α1, α2], then the 
interval width (α2-α1) defines the amount of privacy 
at c% confidence level

• Ex: Interval width 2α
– confidence level 50% gives privacy α
– confidence level 100% gives privacy 2α

• Incomplete in some situations
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Quantification of privacy II
Example: Attribute X with density function fX(x):

• fX(x) = 0.5, 0≤x≤1

• fX(x) = 0.5, 4≤x≤5
• fX(x) = 0, otherwise
Perturbing attribute Y is distributed uniformly between [-1,1]
• Privacy 2 at 100% confidence level
• Reconstruction with enough data, and Y-distribution public:

Z∈[-1,2] gives X∈[0,1] and Z∈[3,6] gives X∈[4,5]
• This means privacy offered by Y at 100% confidence level is at 

most 1. (X can be localized to even shorter intervals, e.g. Z=-0.5 
gives X∈[0,0.5] )

Intuition

• Intuition: A random variable distributed 
uniformly between [0,1] has half as much 
privacy as if it were in [0,2]

• In general: If fB(x)=2fA(2x) then B offers 
half as much privacy as A

• Also: if a sequence of random variable An, 
n=1, 2, … converges to random variable 
B, then privacy inherent in An should 
converge to the privacy inherent in B
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• Based on differential entropy h(A):
where ΩA is the domain of A

• Random variable U distributed between 0 
and a, h(U)=log2(a). For a=1, h(U)=0

• Random variables with less uncertainty then 
uniform distribution on [0,1] have negative 
differential entropy, more uncertainty 
à positive differential entropy

Differential entropy

daafafAh AA A )(log)()( 2�Ω−=

Proposed metric

• Propose Π(A)=2h(A) as measure of privacy for 
attribute A

• Uniform U between 0 and a: Π(U)=2log2(a)=a
• General random variable A, Π(A) denote length of 

interval, over which a uniformly distributed random 
variable has equal uncertainty as A

• Ex: Π(A)=2 means A has as much privacy as a 
random variable distributed uniformly in an interval 
of length 2
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Conditional privacy

• Conditional privacy – takes into account 
the additional information in perturbed 
values:

• Average conditional privacy of A given B:

Π(A|B)=2h(A|B)

dbdaafbafBAh bBABA BA  )(log),()|( | , 2, =Ω�−=

Privacy loss

• Conditional privacy loss of A given B:

P(A|B)=1-Π(A|B)/Π(A)=1-2h(A|B)/2h(A)=1-2-I(A;B)

Where I(A;B)=h(A)-h(A|B)=h(B)-h(B|A)
• I(A;B) is known as mutual information 

between random variables A and B
• P(A|B) is the fraction of privacy of A which 

is lost by revealing B
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Example

• Look at earlier example:

• fX(x) = 0.5, 0≤x≤1

• fX(x) = 0.5, 4≤x≤5

• fX(x) = 0, otherwise

• Intuition from figures: X 
has as much privacy as a 
uniform variable over an 
interval of length 2 –

• Areas are the same:

Distribution Reconstruction:
Agrawal and Aggarwal

• Expectation Maximization-based algorithm for Distribution 
Reconstruction
– Generalizes Agrawal-Srikant algorithm

– Better worst-case performance

500 data points, uniform on [2,4], perturbed from [-1,1]
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Gaussian distribution

• Gaussian distribution, 500 data points, standard 
deviation of 2/πe

• Perturbing distribution – Gaussian, variance 1

Information loss /
privacy loss

• Gaussian – standard deviation of 2/pe
• Uniform distribution [-1,1] – same inherent privacy
• 500 data points

U-G

G-U

U-U

G-G
G-U
U-U
U-G
G-G
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Association  Rules
Rizvi and Haritsa ’02

• “Market Basket” problem
– Presence/absence of 

attributes in transactions
– Few positive examples per 

transaction

• Bits “flipped” with 
probability p
– Goal is low probability of 

knowing true value
– Sparseness helps

• Mining the data
– Get distorted data and p
– CT = M-1CD 

1

0

1
,

1

Cp p
M C

Cp p

− � �� �
= = � �� �−� 	 � 	 25.001.4144

9.5910.962.60733

9.596.893.872392

2.814.025.892491

ExtrasMissingSupport 
Error

RulesLength

Test:  p=0.9, support=.25%

Data Separation

• Data holders trusted with content
– But only their own

• Mustn’t share
– But this doesn’t prevent global models
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Secure Multiparty Computation
It can be done!

• Goal:  Compute function when each party 
has some of the inputs

• Yao’s Millionaire’s problem (Yao ’86)
– Secure computation possible if function can 

be represented as a circuit
– Idea:  Securely compute gate

• Continue to evaluate circuit

• Works for multiple parties as well 
(Goldreich, Micali, and Wigderson ’87)

Secure Multiparty 
Computation:  Definitions

• Secure
– Nobody knows anything but their own input 

and the results

– Formally: ∃ polynomial time S such that 
{S(x,f(x,y))} {View(x,y)}

• Semi-Honest model:  follow protocol, but 
remember intermediate exchanges

• Malicious: “cheat” to find something out
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b1a1 b2a2A=a1+a2 B=b1+b2

How does it work?
• Each side has input, knows 

circuit to compute function
• Add random value to your 

input, give to other side
– Each side has share of all 

inputs
• Compute share of output

– Add results at end
• XOR gate:  just add locally
• AND gate:  send your share 

encoded in truth table
– Oblivious transfer allows other 

side to get only correct value 
out of truth table C=c1+c2

c1 c2

Circuit

c1+(a1+1)(b1+1)c1+(a1+1)b1c1+a1(b1+1)c1+a1b1value of output

4321OT-input

(1,1)(1,0)(0,1)(0,0)value of (a2,b2)

Oblivious Transfer

• What is it?
– A has inputs ai
– B makes choice
– A doesn’t know choice, B only sees chosen value.

• How?
– A sends public key p to B
– B selects 4 random values b

• encrypts (only) bchoice with fp, sends all to A
– A decrypts all with private key, sends to B:

ci = ai ⊕ e(fp-1(bi))
– B outputs cchoice ⊕ e(bchoice) =

achoice ⊕ e(fp-1(fp(bchoice))) ⊕ e(bchoice)
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Decision Tree Construction 
(Lindell & Pinkas ’00)

• Two-party horizontal partitioning
– Each site has same schema
– Attribute set known
– Individual entities private

• Learn a decision tree classifier
– ID3

• Essentially ID3 meeting Secure Multiparty 
Computation Definitions

Key 
Assumptions/Limitations

• Protocol takes place in the semi-honest model
• Only Two-party case considered

– Extension to multiple parties is not trivial

• Computes an ID3 approximation
– Protocol for computation of ID3δ ∈ ID3δ

– δ-approximation of ID3
– δ has implications on efficiency

• Deals only with categorical attributes
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Cryptographic Tools

• Oblivious Transfer
– 1-out-of-2 oblivious transfer. Two parties, sender and receiver. 

Sender has two inputs <X0,X1> and the receiver has an input 
α∈(0,1). At the end of the protocol the receiver should get Xα
and nothing else and the sender should learn nothing.

• Oblivious Evaluation of Polynomials
– Sender has polynomial P of degree k over some finite field F and

a receiver with an element z in F (the degree k is public). The 
receiver obtains P(z) without learning anything about the 
polynomial P and the sender learns nothing about z.

• Oblivious Circuit Evaluation
– Two party Yao’s protocol. A has input x and B has a function f 

and a combinatorial circuit that computes f. At the end of the 
protocol A outputs f(x) and learns no other information about f 
while B learns nothing at all.

ID3

• R – the set of attributes
• C – the class attribute
• T – the set of transactions
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Privacy Preserving ID3

Step 1: If R is empty, return a leaf-node with 
the class value assigned to the most 
transactions in T

• Set of attributes is public
– Both know if R is empty

• Run Yao’s protocol for the following 
functionality:
– Inputs (|T1(c1)|,…,|T1(cL)|), (|T2(c1)|,…,|T2(cL)|)
– Output i where |T1(ci)|+|T2(ci)| is largest

Privacy Preserving ID3

Step 2: If T consists of transactions which have all the same 
value c for the class attribute, return a leaf node with the 
value c

• Represent having more than one class (in the transaction 
set), by a fixed symbol different from ci, 

• Force the parties to input either this fixed symbol or ci

• Check equality to decide if at leaf node for class ci

• Various approaches for equality checking
– Yao’86

– Fagin, Naor ’96

– Naor, Pinkas ‘01
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Privacy Preserving ID3

• Step 3:(a) Determine the attribute that best 
classifies the transactions in T, let it be A
– Essentially done by securely computing x*(ln x)

• (b,c) Recursively call ID3δ for the remaining 
attributes on the transaction sets T(a1),…,T(am) 
where a1,…, am are the values of the attribute A
– Since the results of 3(a) and the attribute values are 

public, both parties can individually partition the 
database and prepare their inputs for the recursive 
calls

Determining the best 
attribute

• Let A have m possible values a1,…,am,
C have l possible values c1,…,cl

• T(aj) is transactions with attribute A set to aj
T(aj, ci) is transactions with A set to aj and class ci

• Conditional entropy is the weighted sum of entropies, 
which is simplified as follows:
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X ln X

• Taylor Series of natural logarithm:

• Error for partial evaluation:

• Error shrinks exponentially as k grows

Comparison

• Fully Generic solution |R|*|T|*logm 
oblivious transfers (for every bit)

• Semi generic protocol (uses circuit 
evaluation for x ln x)
– Computes Taylor series (k multiplications)
– O(k3log2|T||S|) since multiplication is quadratic 

in terms of input size

• Their solution - O(klog|T|*|S|) bits
– Order O(k2log|T|) more efficient
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Association Rule Mining:
Horizontal Partitioning

• Distributed Association Rule Mining:  Easy 
without sharing the individual data [Cheung+’96]
(Exchanging support counts is enough)

• What if we do not want to reveal which rule is 
supported at which site, the support count of 
each rule, or database sizes?
• Hospitals want to participate in a medical study
• But rules only occurring at one hospital may be a 

result of bad practices
• Is the  potential public relations / liability cost worth it?

Overview of the Method
(Kantarcioglu and Clifton ’02)

• Find the union of the locally large 
candidate itemsets securely

• After the local pruning, compute the 
globally supported large itemsets securely

• At the end check the  confidence of the 
potential rules securely
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Securely Computing 
Candidates

• Key:  Commutative Encryption (Ea(Eb(x)) = Eb(Ea(x)))
• Compute local candidate set
• Encrypt and send to next site

• Continue until all sites have encrypted all rules
• Eliminate duplicates

• Commutative encryption ensures if rules the same, encrypted rules 
the same, regardless of order

• Each site decrypts
• After all sites have decrypted, rules left

• Care needed to avoid giving away information through 
ordering/etc.

Redundancy maybe added in order to increase the 
security.

Not fully secure according to definitions of secure 
multi-party

E1(ABC)

E3(E1(ABC))E2(E3(E1(ABC)))

Computing Candidate Sets

2
ABD

1
ABC

3
ABC

E2(E3(ABC))
E2(E3(ABD))

E3(ABC)
E3(ABD)

ABC
ABD
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Compute Which Candidates 
Are Globally Supported?

• Goal:  To check whether
X.sup (1)

(2)

(3)                           

Note that checking inequality (1) is equivalent to
checking inequality (3)

�
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i
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DBsX

DBsX

Which Candidates Are Globally 
Supported? (Continued)

• Now securely compute Sum 
�

0:
• Site0 generates random R

Sends R+count0 – frequency*dbsize0 to site1

• Sitek adds countk – frequency*dbsizek, sends 
to sitek+1

• Final result:  Is sum at siten - R
�

0?
• Use Secure Two-Party Computation

• This protocol is secure in the semi-honest 
model
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Computing Frequent:
Is ABC 5%?

2
ABC=9

DBSize=200

1
ABC=18

DBSize=300

3
ABC=5

DBSize=100

ABC: R+count-freq.*DBSize

R=17

ABC: 17+9-.05*200

ABC: 12+18-.05*300

ABC: 19 � R?

ABC: YES!

Computing Confidence

• Checking confidence can be done by the 
previous protocol. Note that checking 
confidence for X � Y

0)sup.sup.(                          

sup.

sup.

sup.

sup} .{

1

1
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≥�≥∪

�

�

�

=

=

=

i

n
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n
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c

X
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Association Rules in
Vertically Partitioned Data

• Two parties – Alice (A) and Bob (B)
• Same set of entities (data cleansing, join 

assumed done)
• A has p attributes, A1 … Ap

• B has q attributes, B1 … Bq

• Total number of transactions, n
• Support Threshold, k

PiezoLi/Ion5210JSVDiabeticBrain TumorJSV

Vertically Partitioned Data
(Vaidya and Clifton ’02)

• Learn globally valid association rules
• Prevent disclosure of individual 

relationships
– Join key revealed
– Universe of attribute values revealed

• Many real-world examples
– Ford / Firestone
– FBI / IRS
– Medical records
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Basic idea

• Find out if itemset {A1, B1} is frequent (i.e., If support of 
{A1, B1} 

�
 k)

A B

• Support of itemset is defined as number of transactions 
in which all attributes of the itemset are present

• For binary data, support =|Ai

�
 Bi|

• Boolean AND can be replaced by normal (arithmetic) 
multiplication.

1k5

1k4

0k3

0k2

1k1

A1Key

1k5

1k4

0k3

1k2

0k1

B1Key

Basic idea

• Thus,

• This is the scalar (dot) product of two vectors
• To find out if an arbitrary (shared) itemset is 

frequent, create a vector on each side consisting 
of the component multiplication of all attribute 
vectors on that side (contained in the itemset)

• E.g., to find out if {A1, A3, A5, B2, B3} is frequent
– A forms the vector X = �  A1 A3 A5
– B forms the vector Y = �  B2 B3
– Securely compute the dot product of X and Y

BA i

n

i
i

Support �
=

×=
1
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The algorithm

Protocol

• A generates n/2 randoms, R1 … Rn/2

• A sends the following n values to B

• The (n2/2) ai,j values are known to both A and B

RaRaRax

RaRaRax

RaRaRax

nnn,n,n,n

nn,,,

nn,,,

***

***

***

222211

2222221122

2212211111

++++

++++

++++

�

�

�

�
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Protocol (cont.)

• B multiplies each value he gets with the corresponding y 
value he has and adds all of them up to get a sum S, 
which he sends to A.

• Group the xi*yi terms, and expand the equations
�
�
�
�
�
�
�

	

�

�
�
�
�
�
�
�

�

�

+++++

+++++

++++

=

)}***({*

)}***({*

)}***({*

22,22,11,

22,222,211,222

22,122,111,111

RaRaRaxy

RaRaRaxy
RaRaRaxy

nnnnnnn

nn

nn

S

�

�

�

�

Protocol (cont)
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Grouping 
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vertically 
and 

factoring out
Ri
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Protocol (complete)

( )
( )
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�
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1

�

�

�

�

• A already knows R1…Rn/2
• Now, if B sends these n/2 values to A,
• A can remove the baggage and get the scalar product

Security Analysis

• A sends to B
– n values (which are linear equations in 3n/2 

unknowns – the n x-values and n/2 R-values)
– The final result (which reveals another linear equation 

in the n/2 R-values) (Note – this can be avoided by 
allowing A to only report if scalar product exceeds 
threshold)

• B sends to A
– The sum, S (which is one linear equation in the n y-

values)
– n/2 values (which are linear equations in n unknowns 

– the n y-values)
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Security Analysis

• Security based on the premise of revealing 
less equations than the number of 
unknowns – possible solutions infinite!

• Security of both is symmetrical
• Just from the protocol, nothing can be 

found out
• Everything is revealed only when about 

half the values are revealed

The Trouble with {0,1}

• Input values are restricted only to 0 or 1
• Parties reveal linear equation in values

– Adversary could try all combinations of {0,1} 
and see which fits

• Solution:  Eliminate unique solution
– Create ai,j values so 0’s and 1’s paired
– No way of knowing which is 0 or 1
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EM Clustering
(Lin & Clifton ’02)

• Goal:  EM Clustering in Horizontally 
Partitioned Data
– Avoid sharing individual values
– Nothing should be attributable to individual 

site

• Solution:  Partition estimation update
– Each site computes portion based on it’s 

values
– Securely combine these to complete iteration

Expectation Maximization

• log Lc( ) = log fc(x; ):
• E-Step: On the (t+1)st step, calculate the 

expected complete data log likelihood 
given observed data values.
– G( ; (t)) = E � (t){log Lc( )||y}

• M-Step: Find (t+1) to maximize G( ; (t))
• For finite normal mixtures:

2

2 1/ 2
2

1

( )
( , ) ( ; ) where ( ; ) (2 ) exp{ }

2

k
i

i i i i i i i
i i

y
f y f y f y k

µπ θ θ π σ
σ

−

=

−Ψ = = −�
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EM Clustering:
Process

• Estimate , , and 2 at each iteration
–

–

–

• Each Sum can be partitioned across sites
– Compute global sum securely

(Kantarcioglu and Clifton ’02)
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What if the Secrets are in the 
Results?

• Assume we want to make data available
– Example:  Telephone directory

• But the data contains rules we don’t want 
people to learn
– Areas of corporate expertise

• How do we hide the rules?
– While minimizing effect on the data!
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Disclosure Limitation of Sensitive 
Rules (Atallah et. al. ’99)

• Given a database and a set of “secret” 
rules, modify database to hide rules
Change 1’s to 0’s and vice-versa to
– Lower support
– Lower confidence

• Goal:  Minimize effect on non-sensitive 
rules
– Problem shown to be NP-Hard!

Heuristic Solution:
Minimize effect on small itemsets

• Build graph of all 
supported itemsets

• To hide large itemset:
– Go up tree to find item 

with lowest support
– Select transaction 

affecting fewest 2-
itemsets

– Remove item from that 
transaction
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Ln

L*Lc

Approximation 
Error

Estimation 
Error

Space of 
possible 
classifiers

What if we don’t know what we 
want to hide? (Clifton ’00)

Total (mean-
squared) error

����    ( ( ( ( c −  −  −  − L((((a) )) )) )) )2 2 2 2 P((((a,,,,
c) ) ) ) da dc

• L* :  “best possible” classifier
• Ln :  classifier learned from the sample
• Lc :  best classifier from those that can be described by the given

classification model (e.g decision tree, neural network)
Goal:  determine sample size so expected error is sufficiently large 

regardless of technique used to learn classifier.

• Let C be a class of discrimination functions with 
VC dimension V ≥ 2.  Let X be the set of all 
random variables (X,Y) for which LC = 0.
For δ ≤ 1/10 and ε < 1/2

Intuition:  This is difficult, because we must have a 
lot of possible classifiers for one to be perfect.

Sample size needed to classify 
when zero approximation error

ε
δε

12

1
),(

−≥ V
N
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Sample size needed to classify 
when no perfect classifier exists

• Let C be a class of discrimination functions with VC dimension V ≥ 2.  
Let X be the set of all random variables (X,Y) for which for fixed L ∈
(0, ½)

Then for every discrimination rule gn based on X1 , Y1 , ... , Xn , Yn,

and also, for ε ≤ L ε ¼,

Intuition:  If the space of classifiers is small, getting the best one is easy 
(but it isn’t likely to be very good).

δε
δε

4
1

log
4

),(
2

L
N ≥

)
1

,
1

min(
32

e)1(
),(

22

10

εδ
δε ×−≥

−VL
N

}.)(P{inf YXgL
g

≠=
∈C

Summary

• Privacy and Security Constraints can be 
impediments to data mining
– Problems with access to data
– Restrictions on sharing
– Limitations on use of results

• Technical solutions possible
– Randomizing / swapping data doesn’t prevent 

learning good models
– We don’t need to share data to learn global results
– When the secrets are in the results and we want to 

share the data
• Still lots of work to do!

ECML/PKDD-2002
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