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Formal Concept Analysis

arose around 1980 in Darmstadt as a 
mathematical theory, which formalizes the 
concept of ‚concept‘.

Since then, FCA has found many uses in 
Informatics, e.g. for 

• Data Analysis, 

• Knowledge Discovery, 

• Software Engineering.

Based on datasets, FCA derives concept
hierarchies.

FCA allows to generate and visualize the 
concept hierarchies.



Slide 5©  Gerd Stumme 2002

Tutorial Formal Concept Analysis

• FCA models concepts as units of thought, consisting of two parts:

• The extension consists of all objects belonging to the concept.

• The intension consists of all attributes common to all those objects.

• FCA is used for data analysis, information retrieval, and knowledge 
discovery.

• FCA can be understood as conceptual clustering method, which clusters 
simultanously objects and their descriptions.

• FCA can also be used for efficiently computing association rules.
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FCA focusses on 
the concept level, 
the representation
level plays only a 
minor role. 

ISO 704: Terminology Work: Principles and Methods  

Name

Concept
attribute a
attribute b
attribute c

DefinitionRepresentation level

Object level

Concept level

object 1

property A
property B
property C
property D

object 3

property A
property B
property C
property F

object 2

property A
property B
property C
property E
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Some typical applications:

• analysis of children suffering from diabetes

• IT security management system

• database marketing in a Suiss department store

• email management system

• developing qualitative theories in music estethics

• analysis of flight movements at Frankfurt airport
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Links

• The Karlsruhe FCA page:
km.aifb.uni-karlsruhe.de/fca  

•FCA Mailing List: 
http://www.aifb.uni-karlsruhe.de/mailman/listinfo/fca-list

•The Darmstadt Research Group on FCA: 
www.mathematik.tu-darmstadt.de/ags/ag1/

•Research Center Conceptual Knowledge Processing, Darmstadt: 
http://www.fzbw.de/

•Ernst Schröder Center, Darmstadt: 
http://www.mathematik.tu-darmstadt.de/ags/esz/Welcome-en.html

• NaviCon GmbH:
www.navicon.de

•The Dresden FCA page: 
http://www.math.tu-dresden.de/~ganter/fba.html

•Uta Priss‘ FCA page: 
http://php.indiana.edu/~upriss/fca/fca.html (will be moving)

•Michel Liquiere‘s FCA page: 
http://www.lattices.org/
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KDD/FCA specific 
bibliography
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These references are taken from 

G. Stumme: Efficient Data Mining Based
on Formal Concept Analysis. Proc. 13th
Intl. Conf. on Database and Expert
Systems Applications (DEXA 2002). 
LNCS, Springer, Heidelberg 2002 (Invited
Talk, in press)
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National Parks 
in California

Formal Concept 
Analysis

Def.:  A formal context
is a  tripel (G,M,I), where

• G is a set of objects, 

• M is a set of attributes

• and I is a relation
between G and M.

• (g,m)�I is read as 
„object g has attribute m“.
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National Parks 
in California

For A � G, we define 

A´:=  { m�M | �g�A: (g,m)�I }.

For B � M, we define dually

B´:=  { g�G | �m�B: (g,m)�I }.

A

A´
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National Parks 
in CaliforniaFor A, A1, A2 � G holds:

• A1 � A2 � A‘2 � A‘1
• A � A‘‘

• A‘ = A‘‘‘

For B, B1, B2 � M holds:

• B1 � B2   � B‘2 � B‘1
• B � B‘‘

• B‘ = B‘‘‘

A

A´
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Intent B

National Parks 
in California

Ex
te

nt
 A

Def.:  A formal concept 

is a pair (A,B) where 

• A is a set of objects 
(the extent of the concept), 

• B is a set of attributes
(the intent of the concept),

• A‘ = B and B‘ = A. 

The last condition is
equivalent to A�B 
being a 
maximal rectangle 
in the binary relation 
(i.e., A and B are 
maximal with 
A�B � I ).
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National Parks 
in California

The blue concept is 
a subconcept of
the yellow one, 
since its extent is 
contained in the 
yellow one.

( � the yellow intent
is contained in the
blue one.)
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National Parks 
in California

The concept lattice of 
the National Parks in 
California
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• Def.: The concept lattice [Begriffsverband] of a formal context (G,M,I) is 
the set of all formal concepts of (G,M,I), together with the partial order 

(A1,B1 ) � (A2,B2 ) : � A1 � A2 (� B1 � B2 )  .

The concept lattice is denoted by (G,M,I) .

• Theorem:  The concept lattice is a lattice, i.e. for two concepts (A1,B1 ) and 
(A2,B2 ), there is always 

•a greatest common subconcept: (A1	A2 , (B1 
 B2 )´´)

•and a least common superconcept: ((A1 
 A2 )´´, B1	B2 ) .

More general, it is even a complete lattice, i.e. the greatest common 
subconcept and the least common superconcept exist for all (finite and 
infinite) sets of concepts.

Corollary: The set of all concept intents of a formal context is a closure 
system. The corresponding closure operator is h(X) := X‘‘.
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In the power set of M, the concept
intents are always the largest sets
among those with the same
closure.

Example: h( {a,b} ) = h( {a,b,c} ) = 
h( {a,b,c,e} ) =  {a,b,c,e} 

1
2
3

a b c e

a

bc

e

1

2

3 intent
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Def.: An implication
X � Y holds in a context, if
every object having all 
attributes in X also has all 
attributes in Y.

• Examples:

Swimming   � Hiking 

Implications

Boating   � Swimming, Hiking, NPS Guided Tours, Fishing   

Bicycle Trail, NPS Guided Tours   � Swimming, Hiking 
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Def.: Let X � M. The 
attributes in X are
independent, if there
are no trivial 
dependencies
between them. 

Example:
• Fishing
• Bicycle Trail
• Swimming

are independent 
attributes.

Independency



Slide 24©  Gerd Stumme 2002

Tutorial Formal Concept Analysis

Lemma: Attributes 
are independent if 
they span a hyper-
cube.

Example:

• Fishing
• Bicycle Trail
• Swimming

are independent 
attributes.

Independency
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Def.: A subset T � M respects an implication A � B, if A � T or B � T. 

T respects a set of implications, if T respects every single implication in 

Lemma: An implication A � B holds in a context iff B � A‘‘ . It is then respected by all 
concept intents.

Concept Intents and Implications

/
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Lemma: Is a set of implications in M, then 

( ) := { X � M | X respects }

is a closure system.

The related closure operator is constructed as follows: 
For a set X � M let

X := X 
� { B | A � B � , A � X }.

Compute X , X , X ,..., until a set               

(X) := X ...

with (X) = (X)  (i.e., a fix point) is reached. (for infinite contexts this may be an 

infinite process). (X) ist then the closure of X with respect to the closure system  ( ).
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Def.: An implication A � B is (semantically) entailed from a set of implications, if 

every subset of M respecting also respects A � B. 

A family of implications ist called closed if every implication entailed from is already 

contained in .

Lemma: A set of implications on M is closed iff the following conditions (Amstrong 

rules) are fulfilled for all  W, X, Y, Z � M :

1. X � X � ,

2. If X � Y � , then X 
 Z � Y � ,

3. If X � Y � and Y 
 Z � W � , then X 
 Z � W � .
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Def.: A set of implications of a context (G, M, I) is called complete, if every 
implication of (G, M, I) is entailed from .
A set of implications is called non-redundant, if no implication is entailed from the 
others.

Def.: P ���� M is called pseudo intent of (G, M, I) if P � P “ and for every pseudo 
intent Q ���� P with Q � P holds Q“���� P.

Theorem: The set of implications

:= { P ���� P“ | P Pseudoinhalt }

is non-redundant and complete. We call stem basis.
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Example: Membership of developing countries in supranational groups  
(Source: Lexikon Dritte Welt. Rowohlt-Verlag, Reinbek 1993)

Taken from: B. Ganter, R. Wille: Formal Concept Analysis -
Mathematical Foundations. Springer, Heidelberg 1999
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Stem basis of the 3rd World context:

OPEC �
MSAC  �

Non-Alligned  �
Group of 77, Non-Alligned, MSAC, OPEC  �
Group of 77, Non-Alligned, LLDC, OPEC  �

Group of 77, Non-Alligned
Group of 77
Group of 77
LLDC, AKP
MSAC, AKP
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IT-Security Management

���� Supports the analysis of security risks in IT units
� status quo test for establishing guidelines and checklists
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More examples ...

... on the overhead projector.
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There exist a number of algorithms 
for computing concept lattices:

• Naive approach

• Intersection method

• Titanic [Stumme et al 2001]

• Next-Closure [Ganter 1984]

• and some incremental 
algorithms
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Naive Approach

Theorem: Every concept of the context (G,M,I) is of the form    (X‘‘, X‘) for 
some X � G (and of the form  (Y‘, Y‘‘)   for at least one Y � M ).  

On the other hand, each such pair is a concept.

„Algorithm“:  Determine for each subset Y of M  the pair (Y‘, Y‘‘).

But: Too many concepts are created too often.
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Intersection Method

This method is also suitable for manual computation. [Wille 1982]

It provides the best worst-case time complexity. [Nourine, Raynoud 1999]

It uses the following theorem:

Theorem: Each intent is intersection of attribute intents. I.e., the closure system 
of all intents is generated by the attribute intents.

The question is which intersections of attribute intents to take.

� Example „Faces“ on the Blackboard
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How to compute/draw a concept lattice (manually):

• From left to right, consider all intersections of each column extent with every 
column extent to the left of it. If the resulting extent is not already a column, 
add it as column at the right end of the context. Repeat this until the last 
(added) column is reached. 

• Add a full column, unless there is already one. (Now each column stands for 
one concept.)

•Draw a circle for the full column. 

•Draw for each column, starting for the ones with a maximal number of
crosses, a circle, and link it with a line to the circles where the column 
comprises the current column.

•Attach every attribute label to the circle of the corresponding column.

•Attach every object label to the circle laying exactly below the circles of the
attributes in its intent.
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How to check the drawing of a concept lattice:

• Is it really a lattice? (This test is usually skipped.) 

• Is every concept with exactly one upper neighbor labeled by at least one 
attribute?

• Is every concept with exactly one lower neighbor labeled by at least one 
object?

• Is, for all g � G and all m � M, the label of object g below the label of
attribute m iff (g,m)�I ?
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TITANIC

computes the closure system of all (frequent) concept intents using the support 
function:

Def.: The support of an attribute set (itemset) X � M is given by

G
X

(X)
´

supp �

Only concepts with a support 
above a threshold minsupp 
� [0,1].
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TITANIC makes use of some simple 
facts about the support function:
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TITANIC

tries to optimize the following three questions:

1. How can the closure of an itemset be determined based on supports only?

2. How can the closure system be computed with determining as few closures as
possible?

3. How can as many supports as possible be derived from already known supports?



Slide 45©  Gerd Stumme 2002

Tutorial Formal Concept Analysis

TITANIC

1. How can the closure of an itemset be determined based on supports only?

X‘‘ = X � { x� M \ X | supp(X) = supp(X � x )  }

Example: { b,c }‘‘ = { b, c, e },  since 

supp( { b, c } ) = 1/3

supp( { a, b, c } ) = 0/3

supp( { b, c, e }  ) = 1/3, 

1
2
3

a b c e
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TITANIC

2. How can the closure system
be computed with determining 
as few closures as possible?

• We determine only the closures
of the minimal generators.

1
2
3

a b c e

a

bc

e

1

2

3
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TITANIC

2. How can the closure system
be computed with determining 
as few closures as possible?

We determine only the closures of
the minimal generators.

• A set is minimal generator iff its
support is different of the supports
of all its lower covers. 

• The minimal generators are an 
order ideal (i.e., if a set is not
minimal generator, then none of its
supersets is either.)
� Apriori like approach

In the example, TITANIC needs two runs (and Apriori four).
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TITANIC
Apriori like
approach

End

i  � 1
i  � singletons

Determine support for all C � i

Determine closures for all C � i - 1

Prune non-minimal generators from i

i � i + 1
i  � Generate_Candidates( i - 1 )

i  
empty?

no

yes
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TITANIC

We only generate 
candidates for
minimal generators.

If the support is too 
low or equal to the
support of a lower
cover, the
candidate is pruned.

compared 
with Apriori

End

i  � 1
i  � singletons

Determine support for all C � i

Determine closures for all C � i - 1

Prune non-minimal generators from i

i � i + 1
i  � Generate_Candidates( i - 1 )

i  
empty?

no

yes

Determine support for all C � i - 1
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TITANIC

1. How can the closure of an itemset be determined based on supports only?

X‘‘ = X � x� M \ X | supp(X) = supp(X � x )  

2. How can the closure system be computed with determining as few closures as 
possible?

Approach à la Apriori

3. How can as many supports as possible be derived from already known 
supports?
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3. How can as many supports as possible 
be derived from already known supports?

Theorem: If X is no minimal generator, then 

supp(X) = min { supp(K) | K is minimal 
generator, K � X } .

1
2
3

a b c e

Example: supp( { a, b, c } ) = min { 0/3, 1/3, 
1/3, 2/3, 2/3 }  = 0, since the set is no 
minimal generator, and since

supp( { a, b } ) = 0/3, supp( { b, c } ) = 1/3
supp( { a } ) = 1/3, supp( { b } ) = 2/3
supp( { c } ) = 2/3

Remark: It is sufficient to check the largest 
generators K with K � X, i.e. here { a, b } and  
{ b, c} .
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TITANIC

1. How can the closure of an itemset be determined based on supports only?

X‘‘ = X � x� M \ X | supp(X) = supp(X � x )  

2. How can the closure system be computed with determining as few closures 
as possible?

Approach à la Apriori

3. How can as many supports as possible be derived from already known 
supports?

If X is no minimal generator, then 

supp(X) = min  { supp(K) | K is minimal generator, K � X } .
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For pot. min. generators: count in database. 
Else  supp(X) = min { supp(K) | K � X , K m.g.}.

X‘‘ = X � { x� M \ X | supp(X) = supp(X � {x}) }

A la Apriori

iff supp(X) � supp(X \ {x})  f.a. x �X 

A la Apriori

End

i  � 1
i  � singletons

Determine support for all C � i

Determine closures for all C � i - 1

Prune non-minimal generators from i

i � i + 1
i  � Generate_Candidates( i - 1 )

i  
empty?

no

yes
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TITANIC
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TITANIC
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TITANIC
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Example of TITANIC
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Next-Closure

It determines the concept intents in lectical order.

was developed by B. Ganter (1984).

It can be used

• to determine the concept lattice or

• to determine the concept lattice together with the stem basis or 

• for interactive knowledge acquisition.
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Let M = {1, ..., n}. A � M is lectically smaller than B � M, if B � A if the smallest 
element where A and B differ belongs to B :

A < B :� � i � B\A: A 	 {1, 2, ..., i-1} = B 	 {1, 2, ..., i-1} 

12345

1
2

12

3
4

5

45

345

13

24
14

123

23

124

34

234
134

1234

25
15

125
235

135

35

1235 1245

1245
145

2345
1345
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We need the following:

A <i   B :� i � B \A 
 A 	 {1, 2, ..., i-1} = B 	 {1, 2, ..., i-1} 

A � i  := ( A 	 {1, 2, ..., i-1} ) � {i}

Theorem: The smallest concept intent, which according to the lectical order is larger as 
a given set A � M, is

(A � i )‘‘, 

where i is the largest element of  M with A <i (A � i )‘‘.
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Algorithm Next-Closure for determining all concept intents:

1) The lectically smallest concept intent is 
‘‘.

2) Is A a concept intent, then we find the lectically next intent, by checking all attributes 
i � M \ A , starting with the largest, und then in decreasing order, until A <i (A � i )‘‘
holds. Then  (A � i )‘‘ is the lectically next concept intent.

3) If (A � i )‘‘ = M, then stop, else A � (A � i )‘‘ and goto 2).
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Example: on blackboard

A   i              A � i (A � i )‘‘ A <i (A � i )‘‘ ?         new concept intent

X
X X

X X
X

Sinus 44
Nokia 6110
T-Fax 301
T-Fax 360 PC

H
an

dy
 (1

)
Te

le
fo

n 
(2

)
Fa

x 
(3

)
Fa

x 
w

. n
.p

ap
er

(4
)
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TITANIC vs. Next-Closure

• Next-Closure needs almost no memory.

• Next-Closure can exploit known symmetries between attributes.

• Next-Closure can be used for knowledge acquisition. 

• TITANIC has far better performance, especially on large data sets.
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Exercise: Compute the concept lattices of the following formal contexts

Star Alliance
Partners
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Example: Civil Engineering 
regulations in Nordrhein-
Westfalen

Problem: Concept lattices
can grow exponential in the
size of the context.

Answer: 

• One method for reducing the 
complexity of the diagram is 
conceptual scaling. 

• The idea is to consider only 
few attributes at a time.

•If combinations are of 
interest, they can be put 
together again.
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Example: Civil Engineering 
regulations in Nordrhein-
Westfalen

Problem: Concept lattices
can grow exponential in the
size of the context.

Answer: 

• One method for reducing the 
complexity of the diagram is 
conceptual scaling. 

• The idea is to consider only 
few attributes at a time.

•If combinations are of 
interest, they can be put 
together again.



Slide 74©  Gerd Stumme 2002

Tutorial Formal Concept Analysis



Slide 75©  Gerd Stumme 2002

Tutorial Formal Concept Analysis



Slide 76©  Gerd Stumme 2002

Tutorial Formal Concept Analysis

In general, attributes may not only be properties which are or are not related to an 
object, but they may allow for different values. We call such attributes, as e.g. „color“, 
„sexe“, „weight“, many-valued attributes.

Def.: A many-valued context (G, M, W, I) consists of sets G, M, and W and ternary 
relation I between G, M and W (i.e. I� G x M x W), where the following holds:

(g, m, w) � I and (g, m, v) � I imply w = v.

Many-valued Contexts and Conceptual Scaling

The elements of G are called objects, the elements of M  (many-valued) attributes
and the elements of W attribute values. 

(g, m, w) � I is read as „attribute m has value w for object g“. 

Many-valued attributes can be considered as partial mappings from G to W, hence 
we note m(g) = w instead of (g, m, w) � I. 
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Example.: This many-valued context lists different drive concepts for cars:.

Conventional Front-Wheel All-WheelMid-EngineRear-Wheel

In: Antriebskonzept für Personenkraftwagen. Quelle: Schlag nach! 100 000 Tatsachen aus
allen Wissenschaftsgebieten. BI-Verlag Mannheim, 1982
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• The many-valued context is transformed by conceptual scaling (as described
below) to a one-valued context, for which one then can compute formal concepts.

How to derive concepts from many-valued contexts? 

• Conceptual Scaling involves the human expert, as s/he has several choices 
how to interpret the data:

• For scaling, each attribute of the many-valued context is represented by a 
formal context, called conceptual scale. 

Def.: A (conceptual) scale for attribute m of the many-valued context is a (one-
valued) context Sm := (Gm, Mm, Im) with m(G) � Gm. The attributes of a scale are 
called scale values, the attributes scale attributes.
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Using the following conceptual scales, we obtain the derived context on the
following slide:

Plain Scaling
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From the many-valued context at the top, we obtain the following 
derived context:
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very poor
poor

good
excellent
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Concept lattice for the derived 
context of drive concepts
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As in the example above one obtains from a many-valued context (G, M, W, I) and the 
conceptual scales Sm, m�� M, the derived context as follows: 

The object set G remains unchanged. Every many-valued attribute m is replaced by the 
scale attributes of the scale Sm. Every attribute value m(g) is replaced by the 
corresponding row of the scale context Sm. 

The formal definition is on the next slide.

Plain Scaling
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Def.: For a many-valued context (G, M, W, I) and scale contexts Sm, m � M, the 
derived context is (G, N, J) with

N :=  U Mm,
m � M

and
gJ(m, n) : � ( m(g) = w and wImn) .

( Mm stands for { m } x Mm  in order to distinguish attribute values of different many-
valued attributes.)
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Def.: Elementary Scales

We use the abbreviation n := { 1, ..., n }

Nominal scales Nn := (n, n, =)
are used for scaling attributes whose values exclude each other. (E.g., an attribute 
having the values masculine, feminine, neuter will be scaled nominally.) Then the 
concept extents are a partition of the object set.

1 2 3 4
1 x
2 x
3 x
4 x

Die nominal scale N4

Any context can be a scale, there is no formal difference. However, we will call only
those contexts ‚scales‘ which have a clear conceptual structure. Some very simple 
contexts are often used as scales:
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Ordinal scales On := (n, n, ���� )
are used for attributes with ordered values, where each value implies the smaller 
values. (E.g., loud, very loud, extremely loud.) The result is a chain of concept
extents which can be interpreted as ranking.

1 2 3 4
1 x x x x
2 x x x
3 x x
4 x

The ordinal scale O4
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Interordinal scales In := (n, n, � ) | (n, n, � )
are e.g. used in questionaries where one can select values on a scale like activ-
passiv or agree-disagree. The concept intents are exactly the intervals of scale 
values  - this reflects conceptually the between relation.
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Often these attributes can also be scaled bi-ordinally:

Biordinal scales Mn,m := (n, n, �) � (m, m,�)
are used when the objects are assigned to one of two poles, and this with a different 
degree. (E.g., very silent, silent, loud, very loud: loud and silent exlude each other, 
very loud implies loud, and very silent implies silent.) The result is a partition with 
ranking.

The bi-ordinal scale O4,2 (e.g. for German school grades) 
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The dichotomic scale D := ( 0, 1 ,  0,1 , =)
is a special case, since it is isomorphic to the scales N2 und M1,1 and closely related
to I2 . It is used most often for scaling yes-no.

0 1
0 x
1 x
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Example: This context will be scaled ordinally.
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The concept lattice of 
the derived context



Slide 93©  Gerd Stumme 2002

Tutorial Formal Concept Analysis

Additive Line 
Diagrams
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Additive Line Diagrams

Def.: An attribute m � M is irreducible, if there are no other attributes m1, m2 � M 
with m1 � m � m2 and  m1‘ 	 m2‘ = m‘. The set of all irreducible attributes is 
denoted by Mirr

We define the mapping   irr : B(G,M,I) � P(Mir)  by  

irr(A,B) := { m � B | m irreducible }

Let vec : Mirr � R � R<0. 

Then  pos : B(G,M,I) � R2 with pos(A,B) := �x� irr(A,B) vec(m) is an additive line 
diagram of the concept lattice  B(G,M,I).
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Nested line diagrams are used for

• for visualizing larger concept lattices

• for emphasizing sub-structures and regularities.

• for combining conceptual scales on-line.

The basic idea is to „summarize“ parallel lines and display it as just one line.

Nested Line Diagrams
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These line diagrams all show the same concept lattice. 

Nested Line Diagrams
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A nested line diagram consists thus of an outer line diagram, which contains in each
node inner diagrams. 

In the simplest case the inner diagrams of two connected nodes of the outer
diagram are congruent. The connecting line of the outer diagram indicates then that 
each node in an inner diagram is connected with the corresponding node in the 
other inner diagram.

A double line between two nodes indicates that each element within the upper node
is larger than each element in the lower node. 

Nested Line Diagrams
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We also allow that the inner diagrams are not congruent, but only substructures of 
congruent diagrams. 

The congruent diagrams are then drawn as „background structure“, having some 
unrealized concepts.  

Unrealized concepts indicate implications as we will see below.

Nested Line Diagrams
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Example for a nested 
line diagram with 
non-congruent 
components.
(Details below)
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Reading Implications in Nested Line Diagrams

• Implications within the inner scale are read from the inner diagram at the upmost 
concept:

{Treppen}   � {Treppenraum} {stairs}  � {staircase}

• Implications within the outer scale are read directly from it:

{Wand}  � {Brandwand}     {wall}  � {firewall}

{Decke, Brandwand}  � {Wand, Brandwand}      {ceiling, firewall}  � {wall, firewall}

{Decke, Fundament}  � ?        {ceiling, foundation}  � ?

• Implications between inner and outer scale are indicated by non-realized concepts. 
The premise is the intent of the non-realized concept, and the conclusion is the
intent of the largest realized subconcept:

{Decke, Kellerfußboden}   � {Treppenraum} {ceiling, cave floor}  � {staircase}
{Treppenraum, Schornstein}   � {Decke, Wand, Brandwand, Dach} 

{staircase, chimney}  � {ceiling, wall, firewall, roof}
{Wand, Dach, Schornstein}   � ?     {wall, roof, chimney}  � ?
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Def.: The least common superconcept of two concepts c1 und c2 is called Supremum of c1
and c2 (denoted c1 ���� c2). The greatest common subconcept of c1 and c2 is the Infimum
von c1 und c2 (denoted c1 ���� c2). 
A mapping f : V � W between two lattices V and W is called supremum-preserving, if
f (x � y) = f (x) � f (y).

Remark.: If a mapping preserves suprema, it also preserves the partial order, since 
x � y � x � y = y � f (x) � f (y )  =  f (x � y) = f (y)  � f (x) � f (y) 

Theorem: Let (G, M, I) be a context and M = M1 � M2. The mapping

(A, B) � ((( B 	 M1)‘, B 	 M1), (( B 	 M2)‘, B 	 M2)) 

is an supremum-preserving embedding of B(G, M, I) in the direct product 
B(G, M1, I 	 G x M1)   B(G, M2, I 	 G x M2).

Construction of Nested Line Diagrams
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• For constructing nested line diagrams, one first splits the attribute set: M = M1 U M2.

• The sets need not be disjoint, it is more important that they are grouped meaningfully.

• For many-valued contexts, the sets M1 and M2 the attribute sets of the conceptual 
scales.

Construction of Nested Line Diagrams

• Then the direct product of B(K1) and B(K2) is drawn. Draw a large diagram for B(K1), 
where the nodes are large ellipses, in which diagrams of B(K2) are drawn.

• One draws the concept lattices of the smaller contexts 

Ki := (G, Mi, I 	 G x Mi), i � 1, 2 , 

and labels them with the objects and attributes as usual.
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The concept lattice B(G, M, I) is embedded in this direct product as a 
V-semi-lattice (according to the previous theorem). 

Mark it as follows:

• Put all object labels to the right positions.

• Compute all suprema, and mark them as realized concepts.
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Example on 

Blackboard
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1. Introduction

2. Formal Contexts & Concept Lattices

3. Application Examples I

4. Computing Concept Lattices

5. Exercises

6. Conceptual Scaling

7. Application Examples II

8. Conceptual Clustering

9. FCA-Based Mining of Association Rules

10. FCA Tools

11. Exercises
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Application Examples

• Database Marketing at Jelmoli AG, Zürich

• Analysis of flight movements at Frankfurt Airport 

• Information Retrieval at the library of the Center for Interdisciplinary
Technology Research (ZIT), TU Darmstadt

• Analysis of children suffering from diabetes, McGill Hospital Montréal

• Conceptual Email Management
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Database Marketing at Jelmoli AG, Zürich

� Analysis of the user behavior of customers using the Shopping Bonus Card

� Supporting of  Cross-Selling via Direct Mailing
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Analysis of flight movements at Frankfurt Airport 

�Ermöglichen von Ad-hoc-Anfragen an die Datenbank

� Visualisierung von Zusammenhängen

more on the overhead slides
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Information Retrieval at the ZIT library, TU Darmstadt

Example: Search for older literature about automation in the most important industrial countries

Scale Change of Production
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Scale Important Industrial Countries 

(restricted to books with the catchwords Automation and Rationalisierung
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Scale Publishing Year 

restricted to books with the catchwords Deutschland, Automation and Rationalisierung)
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Scales Coma and pH-level of the blood

Analysis of children suffering from diabetes, McGill Hospital Montréal



Slide 116©  Gerd Stumme 2002

Tutorial Formal Concept Analysis

Scales Coma, pH-Wert of the blood and Symptom Duration

Analysis of children suffering from diabetes, McGill Hospital Montréal
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Conceptual Email Manager

In CEM an email can be
assigned to several „folders“.
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Conceptual Email Manager

This allows for multiple search
paths:

• Darmstadt/KVO/KVO_Members

• KVO/Darmstadt/KVO_Members

• KVO/KVO_Members/Darmstadt

Conceptual Email Manager
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Mails from subfolders can als be 
found in the more general 
folders.

Conceptual Email Manager

This allows for multiple search
paths:

• Darmstadt/KVO/KVO_Members

• KVO/Darmstadt/KVO_Members

• KVO/KVO_Members/Darmstadt
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Conceptual Email Manager

Nested line diagrams allow the 
combination of views.
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1. Introduction

2. Formal Contexts & Concept Lattices

3. Application Examples I

4. Computing Concept Lattices

5. Exercises

6. Conceptual Scaling

7. Application Examples II

8. Conceptual Clustering

9. FCA-Based Mining of Association Rules

10. FCA Tools

11. Exercises
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Conceptual Clustering

Conceptual Clustering methods are clustering methods which generate 
simultaneously descriptions of the clusters.

• Examples: Michalski & Stepp 1983; Lebowitz 1987; Fisher 1987; Gennari et al 
1989
• Advantages of conceptual clustering against non-conceptual clustering:

• A cluster is not only a set of objects, but there also exists an intensional 
description.

• Disadvantages:  
• The language used to describe the clusters restricts the type of clusters 
which can be built.
• The computation has usually higher complexity.
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Iceberg concept lattices only allow conjunctions of attributes as descriptions.

• Recall: the support of an itemset  X � M is given by  

• Def.: The iceberg concept lattice of a formal context (G,M,I) for a given
minimal support minsupp is the set

{ (A,B) � B(G,M,I) | supp(B) � minsupp }

• It can be computed with TITANIC. [Stumme et al 2001]

G
X

(X)
´

supp �
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Iceberg Concept Lattices

For minsupp = 85% the seven most general 
of the 32.086 concepts of the Mushrooms 
database http:\\kdd.ics.uci.edu are shown.

minsupp = 85%
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Iceberg Concept Lattices

minsupp = 85%

minsupp = 70%
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minsupp = 55%

With decreasing 
minimum support the 
information gets richer.
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The visualization as a 
nested line diagram
indicates implications.
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TITANIC
modified for 
computing iceberg 
concept lattices

The only modification is the
additional condition that 

a candidate is also 
removed if its support is 
too low.

End

i  � 1
i  � singletons

Determine support for all C � i

Determine closures for all C � i - 1

Prune non-minimal generators from i

i � i + 1
i  � Generate_Candidates( i - 1 )

i  
empty?

no

yes
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Iceberg Concept Lattices and Frequent Itemsets

Iceberg concept lattices are a condensed representation of frequent itemsets:

supp(X) = supp(X‘‘)

Differences between frequent concepts and frequent itemsets 
in the mushrooms database.
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1. Introduction

2. Formal Contexts & Concept Lattices

3. Application Examples I

4. Computing Concept Lattices

5. Exercises

6. Conceptual Scaling

7. Application Examples II

8. Conceptual Clustering

9. FCA-Based Mining of Association Rules

10. FCA Tools

11. Exercises
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Association Rules

{ veil color: white,  gill spacing: close }  � { gill attachment: free } 

Support: 78,52 % Confidence: 99,6 %

The input data of association rules algorithms can be written as a formal 
context (G,M,I): 

• M is a set of items, 

• G consists of the transaction IDs, 

• and the relation I is the list of transactions.
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Association Rules

The support is the percentage of all objects having all attributes in premise and conclusion:

Def.: The support of an attribute set X � M is given by 

The support of an association rule X � Y is given by supp (X � Y) := supp (X � Y).

The confidence is the percentage of all objects fulfilling the premise
among all objects fulfilling both premise and conclusion. 

Def.: The confidence of a rule X � Y is given by

G
X

(X)
´

supp �

)(supp
)(supp)conf(

X
YXYX �

��

{ veil color: white,  gill spacing: close }  � { gill attachment: free } 

Support: 78,52 % Confidence: 99,6 %
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Our task: Find a basis of rules, i.e., a minimal set of rules out of which all 
other rules can be derived.

Classical Data Mining Task: Find, for given minsupp, minconf � [0,1], all 
rules with support and confidence above these thresholds

Bases of Association Rules

{ veil color: white,  gill spacing: close }  � { gill attachment: free } 

Support: 78,52 % Confidence: 99,6 %
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• From B‘ = B‘‘‘ follows

)´´supp(
´´´´

)supp( B
G
B

G
B

B ���

Theorem: X � Y and   X‘‘� Y‘‘ have the same support and the same confidence.

Hence for computing association rules, it is sufficient to compute the supports of all
frequent sets with B = B´´ (i.e., the intents of the iceberg concept lattice).
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� more efficient computation (e.g. TITANIC)

� fewer rules (without information loss!)

32 frequent itemsets are 
represented by 12 
frequent concept intents

minsupp = 70%

Advantage of the use of iceberg concept lattices 
(compared to frequent itemsets)
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Association rules can be visualized 
in the iceberg concept lattice:

• exact rules

• approximate rules

conf = 100 %

conf < 100 %

Advantage of the use of iceberg concept lattices 
(compared to frequent itemsets)
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can be derived from the stem basis (Sect. 2).

In concept lattices, they can be directly read from the diagram:

• Lemma: An implication X � Y holds iff the largest concept which is below
all concepts generated by the attributes in X is below all concepts generated 
by attributes in Y.

• Examples:
• Swimming   � Hiking   

(supp=10/19 � 52.6%, conf = 100%)

• Boating   � Swimming, Hiking, NPS Guided Tours, Fishing   
(supp=4/19 � 21.0%, conf = 100%)

• Bicycle Trail, NPS Guided Tours   � Swimming, Hiking   
(supp=4/19 � 21.0%, conf = 100%)

Exact Association Rules
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The concept lattice
of the 
National Parks in 
California

Exact Association Rules
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Each arrow indicates a rule of the basis, e.g. the rightmost arrow stands for
{ veil type: partial, gill spacing: close, veil color: white } � { gill attachment: free }
(conf = 99.6 %, supp = 78.52 %)

Def.: The Luxenburger basis consists of all valid association 
rules X � Y such that there are concepts (A1, B1) and (A2, B2) where 
(A1, B1) is a direct upper neighbor of (A2, B2),  X = B1,  and X � Y = B2.

supp = 78.52 %

Approximate Association Rules
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Satz: From the  Luxenburger-Basis all approximate rules (incl. support und 
confidence) can be derived with the following rules:

• �(X � Y) = (X � Y\ Z), für � � { conf, supp }, Z � X 

• �(X‘‘� Y‘‘) = �(X � Y)

• conf(X � X) = 1

• conf(X � Y) = p,  conf(Y � Z) = q � conf(X � Z) = p·q
for all frequent concept intents X � Y � Z.

• supp(X � Z) = supp(Y � Z), for all X, Y � Z.

The basis is minimal with this property.
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Example: 

{ ring number: one } � { veil color: white }
• has support 89.92 % (the support of the largest concept having both 

attributes in its intent) 
• and confidence 97.5 % × 99.9 % � 97.4 %.

supp = 89.92 %
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Some experimental results
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FCA Tools
• TOSCANA 2

• Anaconda

• Toscana 3

• ToscanaJ

• Cernato

• ConImp

• ConExp

For an overview see at

http://www.mathematik.tu-darmstadt.de/~plueschke/fcatools/programs.html
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FCA Tools
• TOSCANA 2

• Anaconda

• Toscana 3

• ToscanaJ

• Cernato

• ConImp

• ConExp

• visualizes nested line diagrams

• accesses all ODBC databases (where the context is 
stored)

• the conceptual scales are stored in a proprietary 
format .csc

• the scales have to be prepared in advance, using 
Anaconda

• is part of the Navicon Decision Tool Suite (together 
with Anaconda and Cernato)

• available from Navicon (research licence): 
www.navicon.de



Slide 146©  Gerd Stumme 2002

Tutorial Formal Concept Analysis



Slide 147©  Gerd Stumme 2002

Tutorial Formal Concept Analysis



Slide 148©  Gerd Stumme 2002

Tutorial Formal Concept Analysis

FCA Tools
• TOSCANA 2

• Anaconda

• Toscana 3

• ToscanaJ

• Cernato

• ConImp

• ConExp

• is the preparation tool for TOSCANA applications

• allows easy editing of formal contexts and concept 
lattices

• computes a concept lattice out of a context and 
provides an initial layout

• stores its data in the format .csc

• is part of the Navicon Decision Tool Suite (together 
with TOSCANA 2 and Cernato)

• available from Navicon (research licence): 
www.navicon.de
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FCA Tools
• TOSCANA 2

• Anaconda

• Toscana 3

• ToscanaJ

• Cernato

• ConImp

• ConExp

• is a C++ re-implementation of TOSCANA

• accesses all ODBC databases (where the context is 
stored)

• stores its data in the format .csc 

• the preparation software AnacondaJ is under 
development

• is available from the author: B. Groh
http://www.itee.uq.edu.au/people/staffView.jsp?id=bernd
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FCA Tools
• TOSCANA 2

• Anaconda

• Toscana 3

• ToscanaJ

• Cernato

• ConImp

• ConExp

• is an open source re-implementation of TOSCANA

• accesses all ODBC databases (where the context is 
stored)

• the conceptual scales are stored in an XML-based file 
format .csx

• the preparation software AnacondaJ is under 
development

• is downloadable from http://toscanaj.sourceforge.net/

• Join the effort !!!
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FCA Tools
• TOSCANA 2

• Anaconda

• Toscana 3

• ToscanaJ

• Cernato

• ConImp

• ConExp

• allows ad-hoc visualization

• reads data from csv files (eg export of MS Excel)

• animates line diagrams during drawing

• is part of the Navicon Decision Tool Suite (together 
with Anaconda and TOSCANA 2)

• available from Navicon (research licence): 
www.navicon.de
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FCA Tools
• TOSCANA 2

• Anaconda

• Toscana 3

• ToscanaJ

• Cernato

• ConImp

• ConExp

• computes implications for given contexts

• implements the knowledge acquisition technique 
Attribute Exploration

• is a DOS based tool

• downloadable from http://www.mathematik.tu-
darmstadt.de/ags/ag1/Software/software_en.html
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FCA Tools
• TOSCANA 2

• Anaconda

• Toscana 3

• ToscanaJ

• Cernato

• ConImp

• ConExp

• Concept Explorer is a mixture of ConImp and Cernato.

• written by Sergey Yevtushenko in Java

• comes with its own diagram editor and also supports 
implications. 

• is still under heavy development .

• It is planned to extend the program, so that it can be 
used as in exchange for Anaconda within the ToscanaJ 
project. 

• for more information, contact the author: 
sergey@intellektik.informatik.tu-darmstadt.de 
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1. Introduction

2. Formal Contexts & Concept Lattices

3. Application Examples I

4. Computing Concept Lattices

5. Exercises

6. Conceptual Scaling

7. Application Examples II

8. Conceptual Clustering

9. FCA-Based Mining of Association Rules

10. FCA Tools

11. Exercises see extra exercises sheet
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1. Introduction

2. Formal Contexts & Concept Lattices

3. Application Examples I

4. Computing Concept Lattices

5. Exercises

6. Conceptual Scaling

7. Application Examples II

8. Conceptual Clustering

9. FCA-Based Mining of Association Rules

10. FCA Tools

11. Exercises

The End
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Solutions to Sect. 5
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A non-nested diagram of the context „Planets“


