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Itemset lattice 

  Itemsets that can be constructed 
from a set of items have a partial 
order with respect to the subset 
operator 

  i.e. a set is larger than its proper 

subsets 

 This induces a lattice where nodes 
correspond to itemsets and arcs 
correspond to the subset relation 

 The lattice is called the itemset 
lattice 

 For d items, the size of the lattice 
is 2d 
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Frequent itemsets on the itemset lattice 

  The Apriori principle is 
illustrated on the Itemset 
lattice 
 The subsets of a frequent 

itemset are frequent 
 They span a sublattice of the 

original lattice (the grey area) 
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Frequent itemsets on the itemset lattice 

  Conversely 
 The supersets of an infrequent 

itemset are infrequent 
 They also span a sublattice of 

the original lattice (the crossed 
out nodes) 

 If we know that {a,b} is 
infrequent, we never need to 
check any of the supersets 
 This fact is used in support-

based pruning  
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Compact Representation of Frequent Itemsets 

 In practise, the number of frequent itemsets produced 
from transaction data can be very large 
 when the database is dense i.e. many items per transaction on 

average 
 when the number of transactions is high 
 when the minimum support level is set too low 

 We will look at methods that  
 use the properties of the itemset lattice and the support 

function... 
 to compress the collection of frequent itemsets in a more 

manageable size... 
 so that all frequent itemsets can be derived from the compressed 

representation 
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Maximal Frequent Itemsets 

 The minimum support threshold 
induces a partition of the itemset 
lattice into frequent and infrequent 
itemsets (grey nodes) 

 Frequent itemsets that cannot be 
extended with any item without 
making them infrequent are called 
maximal frequent itemsets 

 We can derive all frequent 
itemsets from the set of maximal 
itemsets 

 Use of the Apriori principle 

“backwards” 
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Maximal Frequent Itemsets 

  {A,C} is not maximal as it can be 
extended to frequent itemset 
{A,C,E} although its supersets 
{A,B,C}, {A,C,D} are infrequent 

  {A,D} is maximal as all its 
immediate supersets {A,B,D}, 
{A,C,D} and {A,D,E} are 
infrequent 

  {B,D} is not maximal as it can be 
extended to frequent itemsets 
{B,C,D} and {B,D,E} 
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Maximal frequent itemsets 

 The number of maximal 
frequent itemsets is typically 
considerably smaller than the 
number of all frequent itemsets 

  In worst case, the number can 
still be exponential in the 
number of items:  

 e.g. consider the case where 

all itemsets of size d/2 are 

frequent and no itemset of size 

d/2+1 is frequent. 

 Still need efficient algorithms  
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Maximal frequent itemsets 

 Exact support counts of the 
subsets cannot be directly 
derived from support of the 
maximal frequent itemset 

 From Apriori principle we only 
know that the subsets must be 
frequent, but not how frequent 

 Need to do support counting for 
the subsets of the maximal 
frequent itemset to create 
association rules  
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Closed itemsets 

 An alternative approach is to try 
to retain some of the support 
information in the compacted 
representation 

 A closed itemset is an itemset 
whose all immediate supersets 
have different support count 

 A closed frequent itemset is a 
closed itemset that satisfies the 
minimum support threshold 

 Maximal frequent itemsets are 
closed by definition 
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Example: Closed frequent itemsets 

 Assume minimum support 
threshold 40% 

  {b} is frequent: σ({b})=3, but not 
closed: σ({b}) = σ({b,c}) = 3 

  {b,c} is frequent: σ({b,c})= 3, and 
closed: σ({a,b,c}) = 2, 
σ({b,c,d})=1,σ({b,c,e})=1 

  {b,c,d} is not frequent: σ({b,c,d}) = 
1, and not closed : σ({a,b,c,d}) = 1 
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Maximal vs Closed Itemsets 
Transaction 
Ids 

Not supported 
by any 
transactions 
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Maximal vs Closed Frequent Itemsets 

Minimum support = 2 

# Closed = 9 

# Maximal = 4 

Closed and 
maximal 

Closed but 
not maximal 
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Maximal vs Closed Itemsets 
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Determining the support of non-closed 
frequent itemsets 

 Consider a non-closed 
frequent itemset {a,d}  
 assume we have not stored 

its support count 
 By definition, there must be 

at least one immediate 
superset that has the same 
support count 

 It must be that σ({a,d}) = 
σ(X) for some immediate 
superset X of {a,d} 
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Determining the support of non-closed 
frequent itemsets 

 From the Apriori principle 
we know that no superset 
can have higher support 
than {a,d} 

 It must be that the 
support equals the 
support of the most 
frequent superset 

σ({a,d}) = 
max(σ(abd),σ(acd),σ(ade)) 
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Determining the support of non-closed 
frequent itemsets 

 Algorithm sketch: 
1.  kmax = size of largest closed frequent itemset 

2.  Fkmax = closed frequent itemsets of size kmax 

3.  for k = kmax-1 downto 1 do 

4.     Fk =  {f | f immediate subset of f’ in Fk+1 or f is closed, |f|=k } 

5.     for every f in Fk do 

6.        if f is not closed 

7.           f.support = max(f’.support | f’ in Fk+1, f’ is a superset of f ) 

8.        endif 

9.     endfor 

10.  endfor 
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Characteristics of Apriori algorithm 

 Breadth-first search algorithm:  
 all frequent itemsets of given 

size are kept in the algorithms 

processing queue 

 General-to-specific search: 
  start with itemsets with large 

support, work towards lower-

support region 

 Generate-and-test strategy: 
 generate candidates, test by 

support counting 
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Weaknesses of Apriori 

 Apriori is one of the first algorithms that succesfully 
tackled the exponential size of the frequent itemset space 

 Nevertheless the Apriori suffers from two main 
weaknesses: 

 High I/O overhead from the generate-and-test strategy: 

several passes are required over the database to find the 

frequent itemsets 

 The performance can degrade significantly on dense 

databases, as large portion of the itemset lattice becomes 

frequent 
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Alternative methods for generating frequent 
itemsets: Traversal of itemset lattice 

 Apriori uses general-to-specific search: start from most highly 
supported itemsets, work towards lower support region 

 Works well if the frequent itemset border is close to the top of the lattice 
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Alternative methods for generating frequent 
itemsets: Traversal of itemset lattice 

 Specific-to-general search: look first for the most specific frequent 
itemsets, work towards higher support region  

 Works well if the border is close to the bottom of the lattice 
 Dense databases 
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Alternative Methods for Frequent Itemset 
Generation: Breadth-first vs Depth-first 

 Apriori traverses the itemset lattice in breadth-first manner 
 Alternatively, the lattice can be searched in depth-first manner: 

extend single itemset until it cannot be extended 
 often used to find maximal frequent itemsets 

 hits the border of frequent itemsets quickly 
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Alternative Methods for Frequent Itemset 
Generation: Breadth-first vs Depth-first 

 Depth-first search allows 
different kind of pruning of the 
search space 

 Example: if  {b,c,d,e} is found 
maximal frequent by the search 
algorithm, the region of the 
lattice consisting of subsets of 
{b,c,d,e} does not need to be 
traversed 

  known to be frequent non-maximal 
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Alternative methods for generating frequent 
itemsets: Equivalence classes 

 Many search algorithms can be seen to conceptually 
partition the itemset lattice into equivalence classes 

 The itemsets in one equivalence class are processed before 

moving into the next 

 Several ways of defining equivalence classes 
 Levels defined by itemset size (used by Apriori) 

 Prefix labels: two itemsets that share a prefix of length k 

belong to the same class e.g. {a,c,d}, {a,c,e} if k <= 2 

 Suffix labels: two itemsets that share a suffix of length k 
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Prefix and suffix trees 

  Left: prefix tree and equivalence classes defined by for prefixes of length k=1 

  Right: suffix tree and equivalence classes defined by for prefixes of length k=1 

Data mining, Spring 2010 (Slides adapted from Tan, Steinbach Kumar) 



FP-growth algorithm 

 FP-growth avoids the repeated scans of the database of Apriori by 
using a compressed representation of the transaction database 
using a data structure called FP-tree 

 Once an FP-tree has been constructed, it uses a recursive divide-
and-conquer approach to mine the frequent itemsets 
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FP-tree 

 FP-tree is a compressed representation of the transaction database 
 Each transaction is mapped onto a path in the tree 
 Each node contains an item and the support count corresponding to 

the number of transactions with the prefix corresponding to the path 
from root 

 Nodes having the same item label are cross-linked: this helps 
finding the frequent itemsets ending with a particular item   
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FP-tree construction 
null 

A:1 

B:1 

null 

A:1 

B:1 

B:1 

C:1 

D:1 

After reading TID=1: 

After reading TID=2: 
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FP-Tree Construction 

D:1 

E:1 

Pointers are used to assist 
frequent itemset generation 

Transaction 
Database 

null 

A:7 

B:5 

B:3 

C:3 

D:1 

C:1 

D:1 C:3 

D:1 

E:1 
D:1 

E:1 

Header table 
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FP-Tree vs. original database 

  If the transactions share a significant  number of items, FP-tree 
can be considerably smaller as the common subset of the items 
is likely to share paths 

 There is a storage overhead from the links as well from the 
support counts, so in worst case may even be larger than original  
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Frequent itemset generation in FP-growth 

 FP-growth uses a divide-
and-conquer approach to 
find frequent itemsets 

 It searches frequent 
itemsets ending with item 
E first, then itemsets 
ending with D,C,B,A 
 i.e. uses equivalence classes 

based on length-1 suffixes 
 Paths corresponding to 

different suffixes are 
extracted from the FP-tree 
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B:5 

B:3 

C:3 

D:1 

C:1 

D:1 
C:3 

D:1 
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Frequent itemset generation in FP-growth 
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Frequent itemset generation in FP-growth 

 To find all frequent itemsets ending with given last item 
(e.g. E), we first need to compute the support of the 
item 

 This is given by the sum of support counts of all nodes 
labeled with the item (σ(E)=3) 
 found by following the cross-links connecting the nodes with 

the same item  
 If last item is found frequent, FP-growth next iteratively 

looks for all frequent itemsets ending with given 
length-2 suffix (DE,CE,BE, and AE),  
 and recursively with length-3 suffix, length-4 suffix 

until no more frequent itemsets are found 
 Conditional FP-tree is constructed for each different 

suffix to speed up the computation 
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Frequent itemset generation in FP-growth 
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