Introduction to Bioinformatics (autumn 2005)

Excercise 7

Group	time	$_{ m place}$
Riikka Kaven	Tuesday 29.11 at 12.15–14.00	BK106

1. Consider the following 6×3 intensity matrix M produced by a DNA array experiment:

	Time X	Time Y	Time Z
Gene 1	2.0	11.0	0.5
Gene 2	12.0	0.1	10.0
Gene 3	5.0	5.0	10.0
Gene 4	8.0	4.0	2.0
Gene 5	2.0	1.0	0.5
Gene 6	0.5	1.0	2.0

The values in the intensity matrix M represent the amount of mRNA in the experiment data divided by the amount of mRNA in the control. Before data analysis, the following two preprocessing steps are executed:

- i) The matrix M is converted into matrix M_{log} where logarithm is taken from the numbers: $M_{log}[i,j] = \log M[i,j]$.
- ii) The matrix M_{log} is converted into a matrix $M_{logdif}[1 \dots 6, 2 \dots 3]$ where only the differences between values in consecutive columns is stored: $M_{logdif}[i,j] = M_{log}[i,j] M_{log}[i,j-1]$.

Why step (i) is necessary? How do you think step (ii) would help in data analysis?

- 2. Reveal at least 3 possible regulation dependencies from the intensity matrix M of previous assignment. Which of those you think clustering would find?
- 3. How would you cluster the point set below?

Do you find a clustering criteria that would automatically produce your solution? What is the home-take message of this example?

4. The one-dimensional point set below has obviously 4 clusters.

Give a starting configuration for Lloyd's algorithm (for 4-means clustering) such that

- a) the algorithm converges to the correct solution.
- b) the algorithm fails to find the correct solution.
- 5. Visualize the hierarchical clustering for the example in the previous assignment.