
Requirements document

Group Canvas

Helsinki, 13th June 2005
Software Engineering Project
UNIVERSITY OF HELSINKI
Department of Computer Science

Course
581260 Software Engineering Project (6 cu)

Project Group
Duku-Kaakyire Michael
Karppinen Tony
Lamsal Pragya
Välimäki Niko

Instructor
Kauppinen Raine

Customer
Verkamo Inkeri

Supervisor
Taina Juha

Homepage
h t t p : / / w w w . c s . h e l s i n k i . f i / g r o u p / c a n v a s

Change Log

Version Date Modifications
0.1 19.05.2005 Document skeleton
0.2 30.05.2005 Publized for internal usage
0.3 01.06.2005 Deliver for customer review
0.4 27.07.2005 Converted from PDF to OpenOffice, fixed grammar
0.5 27.07.2005 Updated priorities, definitions and cross references
0.6 05.08.2005 Updated based on customer's comments

Contents

1 Introduction 1

2 System overview 1
2.1 Definitions . 1
2.2 Use cases . 4

2.2.1 Basic functions . 4

2.2.2 Diagram drawing . 4
2.2.3 Element editing . 5
2.2.4 Extendibility of the application 6

3 User requirements 6
3.1 Functional requirements . 6

3.1.1 Drawings . 6
3.1.2 Editing . 8
3.1.3 Execution . 9

3.2 Non-functional requirements . 9

4 System requirements 10
4.1 Diagrams . 10
4.2 Drawings . 12

References 17

1 Introduction

Canvas is a project at department of computer science at University of Helsinki. The aim of this
project is to design and develop an extendable generic drawing tool. This drwaing tool will
allow the users to draw different kinds of diagram based on the built-in elements (circle,
rectangle, etc). In addition, this tool will also allow the users to create new elements, save them
and reuse them in later. The tool will be extendable, meaning that it will be possible for other
developers to further develop it in future.

Section 2 provides definitions of terms used by this document. This section also outlines an
overview of the system. User requirements are presented in section 3. System requirements in
section 4 have been extracted from these user requirements[Pra05].

2 System overview

The drawing tool is mainly a workpiece problem. In addition, the system is also required to
control the execution/behavior of elements and to export files to other formats. The problem
frame is a combined workpiece, control and transformation frame[Bra02]. The figure 1 on the
next page presents the data model of the drawing tool.

2.1 Definitions

Diagram: A unit that can be saved by the application.

Active diagram: The diagram that is open and currently selected.There can be multiple diagrams
open at the same time but there can be only one active diagram, which has been selected by the
user.

Element: A basic unit for drawing a diagram. For example, a circle, a line, etc. Elements can be
composed of several elements. For example, the users can create new elements by combining two
or more existing elements.

Complex element: An element that includes other elements or diagrams. Complex elements are
not built-in with the application. The users can compose the complex elements.

Element repository: User defined elements that are stored with the program and shown on the
tool bar.

Drawing area: An area where the user is able to place elements.There can be multiple drawing
areas open at the same time and the user can switch to any of the drawing area to work on at any
time.

Diagram properties: The attributes of a diagram that is saved with the diagram. For example,
file name, author name, etc.

Element properties: The attributes of the elements. For example, name, color, etc.

Point: A position on a two-dimensional space, marked by the x and y coordinates.

1

Shape: A shape is an element. For example, line, rectangle, etc.

Line: An element marked by two (start and end) points, and a straight connection between them.

Rectangle: An element marked by four points, connected by four straight lines and creating an
enclosed area.

Circle: An element marked by a point as a center and a circular line. The circular line is always at
equal distance from the center.

Text: An element that is a collection of letters/strings.

View (viewport): An area of a diagram that is visible to the user.

Treeview: The open diagrams and their elements are presented as a tree and its branches. The
root of the tree is 'Open Diagrams', which is specified by the application. The root contains the
diagram names of the open diagrams as its children and the elements of each open diagram as its
grandchildren, and so on.

Figure 1: Data model

2

Figure 2: User interface

Figure 2 presents an example of the user interface of Canvas.

2.2 Use cases

2.2.1 Basic functions

Opening a diagram from a file: The user selects the correct diagram file from a file listing or
types in the correct path and filename. The program checks if the file is in the valid diagram
format and loads the diagram to the program memory for viewing and processing. The
program also checks if there is any syntactic rules defined for the diagram. Example: A user
opens a diagram from the file MyDiagram.cnv for editing.

Saving and exporting to a file: The user chooses to save a diagram and export it to another
format. When saving a file, the user must give a filename for storing the diagram data. If the
diagram is opened from an existing file, it can be stored over the old file. Otherwise the user
need to provide tha application with a filename for saving the diagram. The user can export
the diagram to encapsulated postscript format. When exporting a diagram, the user must give
a filename. The user must be notified before writing over existing files if another file with the
same name already exists. Example: The user saves the current open diagram to the file

3

MyDiagram.cnv.

Closing a diagram: The user chooses to close a diagram. A diagram is closed by closing all
the views of the diagram. When closing the last view of the diagram, the user must be
notified of any unsaved changes. All open diagrams are closed when the application is closed.
Example: The user closes the active diagram.

2.2.2 Diagram drawing

Inserting a new element into a diagram: The user has to select the correct element to be
inserted and then draw the element into the diagram. Drawing technique depends on the
element. For example, a rectangle is drawn by clicking at the left upper corner of the rectangle
and then at the right bottom corner. The program checks if the inserted element meets the
syntactic requirements. If the element is not syntactically valid, it is highlighted and the user is
notified. Example: The user selects a circle element and draws it by first selecting the center
point and then specifying the radius.

Connecting elements together: The user selects a connection line element and makes the
connection between two desired elements by selecting them. The program makes syntactic
checks for the connection line and the connected elements. Example: The user selects a
connection line element and then selects a rectangle and a circle. Then the rectangle and the
circle are connected by a line.

Editing an element: The user selects an element from the diagram to be edited. The selected
element can be modified by resizing, moving or changing properties of the element. The
program retains connections between elements. Example: The user selects a rectangle element
and writes a few lines of text into it.

Copying, cutting and pasting elements: The user can select one or more elements, and copy or
cut them to the clipboard. Elements in clipboard can be pasted to another location on the
diagram. The program checks if the operation is valid from syntactic properties of the affected
elements. Example: The user copies a rectangle to the clipboard and pastes several copies of it
to the diagram.

Undoing an operation: The user can undo one or more previous operations that were
committed. The program keeps track of the operations. The number of the previous operations
that are saved for undo operation is limited to some number (for example, 10). Example: The
user removes an element by accident and undoes the last command and the program restores the
removed element and its connections.

Including elements/diagrams inside other elements: The user picks an element to be inserted.
Then he draws the new element inside an existing element. The inclusion can be either physical
or logical. The physical inclusion is appropriate when the included element is a simple element
like a rectangle. But if the included element is a complex element and if it makes the diagram

4

look messy when physically included in the diagram, then the logical inclusion is appropriate. A
reference to the included element/diagram is saved with the host element. A host element is the
element inside which another element/diagram is included. The program checks if the operation
is valid from syntactic properties of the affected elements. Example: The user draws a diagram
of two circles inside a rectangle element.

Including a text into the diagram: The user can include text independent of any element into
the diagram. Again, this inclusion can either be physical or logical. The user can either write the
text on the diagram outside any element, or inside an element or add a reference to an external
file. Text can be later modified or deleted by the user and the text will be saved with the diagram
Example: The user writes the title of the diagram at the bottom of the diagram.

2.2.3 Element editing

Defining a new element by composition: A user defines a new element by combining existing
elements. Syntactic rules can be given to determine the behavior of the new element, which can
be implemented with Java. Example: A user creates a new element by combining a rectangle
and a circle. The user can save this new element to the desired tool-type in the toolbar and reuse
the element later.

Editing existing elements: The users can edit the existing elements of the program by
modifying the element’s shape or by changing element’s properties. Syntactic rules can be
modified with Java. The program updates the diagram according to the rules associated with
affected elements. Example: The user modifies an old element by adding a new circle shape to
it.

2.2.4 Extendibility of the application

Defining a new basic element: The user can extend the application by defining new elements
using Java. The application provides an API for creating new elements Example: The user
creates a bezierline element for the application.

Defining a new syntactic rule: The user can create new syntactic rules for the application using
Java. The application provides an API for creating new rules Example: The user creates a must
include rule for the application.

Creating new features: The user can extend the application by creating new features. The
modular application structure makes it easy to create new features. Example: The user creates a
semantic rule module for the application.

3 User requirements

3.1 Functional requirements

5

Functional requirements are described using the following structure[Som01]:

Identifier Number of requirement
Name Name of requirement
Description Description of requirement
Priority Priority from P1 to P3
Function(s) Cross-reference to system requirements

P1, P2 and P3 are used to define the priorities of each requirement. Priority P1 means the
requirement is implemented, P2 means the requirement is implemented if there is time after
finishing P1 requirements, and P3 means the requirement that can be implemented by other
developers in the future.

3.1.1 Drawings

Identifier R1
Name Create
Description The tool is able to create a new diagram
Priority P1
Function(s) F1

Identifier R2
Name Edit
Description The tool is able to edit diagram properties
Priority P1
Function(s) F9

Identifier R3
Name Save
Description The tool is able to save a diagram
Priority P1
Function(s) F3

Identifier R4
Name Open
Description The tool is able to open a diagram
Priority P1
Function(s) F2

Identifier R5
Name Export
Description The tool is able to export a diagram as Encapsulated

PostScript

6

Priority P3
Function(s) F6

Identifier R6
Name Scroll
Description The tool is able to position a diagram at different

viewports, i.e.scroll large diagrams
Priority P1
Function(s) F11

Identifier R7
Name Print
Description The tool is able to print a diagram
Priority P3
Function(s) F5

Identifier R8
Name Multiple diagrams
Description The tool can have multiple open diagrams at the same

time
Priority P1
Function(s)

Identifier R9
Name Include
Description The tool can include one or more element/diagram

inside another element/diagram
Priority P2
Function(s)

Identifier R10
Name Save As
Description The tool is able to save a diagram with a user specified

name
Priority P1
Function(s) F4

3.1.2 Editing

Identifier R11
Name Draw
Description Diagrams are created interactively on the screen using

7

the menu of the tool, the mouse and the keyboard
Priority P1
Function(s) F17

Identifier R12
Name Line element
Description The tool contains a line element
Priority P1
Function(s) F17

Identifier R13
Name Rectangle element
Description The tool contains a rectangle element
Priority P1
Function(s) F17

Identifier R14
Name Circle element
Description The tool contains a circle element
Priority P1
Function(s) F17

Identifier R15
Name Creating a new element
Description The user is able to compose new elements using the

existing elements and add the composed element to a
element repository

Priority P1
Function(s) F18

Identifier R16
Name Creating a complex element
Description The user can create complex elements by phsical

inclusion or by reference.
Priority P1
Function(s) F19

Identifier R17
Name Define syntactic rules for an element
Description The user is able to define syntactic rules
Priority P3

8

Function(s) F19

Identifier R18
Name Define behaviour of an element
Description The user is able to define semantic rules
Priority P3
Function(s) F19

Identifier R19
Name Undo and redo actions
Description The user is able to undo previously made actions, and redo

undone actions
Priority P2
Function(s) F12

Identifier R20
Name Cut, copy and paste elements
Description The user is able to cut and copy selected elements to the

clipboard, and paste elements from the clipboard.
Priority P2
Function(s) F13, F14, F15

3.1.3 Execution

Identifier R21
Name Run and analyze
Description The tool is able to execute and analyze diagrams
Priority P3
Function(s) F23

3.2 Non-functional requirements

Identifier R22
Name Drawing utilities
Description The file handling and drawing operations should,

where reasonable, follow the conventions adopted by
established drawing utilities.

Priority P1
Function(s)

Identifier R23

9

Name OO-design
Description Implementation is done using object oriented design

and programming techniques
Priority P1
Function(s)

Identifier R24
Name Used language
Description The implementation is done using Java and by

following the Java coding conventions [Mic99].
Priority P1
Function(s)

Identifier R25
Name Environment
Description The primary operating environment is Linux.
Priority P1
Function(s)

4 System requirements

4.1 Diagrams

Following standard form is been used[Som01].

Identifier Number of function
Name Name of function
Description What the function does
Pre-conditions Condition to hold on entry to function
Inputs Inputs for function
Outputs Outputs from function
Post-conditions Conditions to hold after function
Priority Priorities from P1 to P3
User requirements Cross-reference to user requirements

Identifier F1
Name New
Description Create a blank diagram.
Pre-conditions
Inputs Diagram descriptor
Outputs
Post-conditions
Priority P1

10

User requirements R1

Identifier F2
Name Open
Description Open an existing diagram specified by the user.
Pre-conditions Diagram has to exist.
Inputs File name
Outputs Diagram descriptor
Post-conditions Diagram is displayed to the user and diagram is active
Priority P1
User requirements R4

Identifier F3
Name Save
Description Save the active diagram, which is already named

by the user, to a file
Pre-conditions Diagram has to be active
Inputs Diagram descriptor
Outputs
Post-conditions The diagram is marked as unchanged
Priority P1
User requirements R3

Identifier F4
Name Save As
Description Save the active diagram, which has not been named

already, with the name given by the user.
Pre-conditions
Inputs Name to save as, diagram descriptor
Outputs
Post-conditions Diagram is saved with the nam given by the user.
Priority P1
User requirements R10

Identifier F5
Name Print
Description Print the diagram
Pre-conditions Diagram has to be active
Inputs Diagram descriptor
Outputs
Post-conditions
Priority P2
User requirements R7

11

Identifier F6
Name Export
Description Exports diagram to Encapsulated PostScript format
Pre-conditions Diagram has to be active
Inputs Diagram descriptor
Outputs
Post-conditions
Priority P2
User requirements R5

Identifier F7
Name Close
Description Close the selected diagram
Pre-conditions The diagram has to be active
Inputs Diagram descriptor
Outputs
Post-conditions
Priority P1
User requirements R22

Identifier F8
Name Exit
Description Terminate the software
Pre-conditions
Inputs
Outputs
Post-conditions
Priority P1
User requirements R22

Identifier F9
Name Edit properties
Description Edit the properties of the diagram
Pre-conditions Diagram has to be active
Inputs Diagram descriptor
Outputs
Post-conditions Properties are changed
Priority P1
User requirements R2

Identifier F10

12

Name Help
Description Show help, i.e. readme to user
Pre-conditions
Inputs
Outputs
Post-conditions Help is shown to the user
Priority P1
User requirements R22

4.2 Drawings

Identifier F11
Name Scroll view
Description Change the viewport of the diagram
Pre-conditions Diagram has to be active
Inputs Diagram descriptor, new viewport location
Outputs
Post-conditions The diagram's viewport is changed
Priority P1
User requirements R6

Identifier F12
Name Undo
Description Undo the last change made to a diagram.
Pre-conditions Changes must have been made on active diagram, or some

changes must have been undone.
Inputs Diagram descriptor
Outputs
Post-conditions The state before the previous change, or the state before

undone change.
Priority P2
User requirements R19

Identifier F13
Name Cut
Description Remove the selected elements from the diagram
Pre-conditions Diagram is active
Inputs Array of selected element descriptors
Outputs
Post-conditions The selected elements are removed from diagram
Priority P2
User requirements R20

Identifier F14

13

Name Copy
Description Copy elements to clipboard
Pre-conditions Diagram is active
Inputs Array of element descriptors
Outputs
Post-conditions The clipboard contains the selected elements

and connections between them
Priority P2
User requirements R20

Identifier F15
Name Paste
Description Paste elements from the clipboard
Pre-conditions Diagram is active
Inputs Diagram descriptor
Outputs
Post-conditions The copied diagram to the clipboard is inserted into the

active diagram from the clipboard at the user specified
position in the diagram.

Priority P2
User requirements R20

Identifier F16
Name Delete
Description Removes selected elements from the diagram
Pre-conditions Diagram is active
Inputs Array of descriptors
Outputs
Post-conditions The selected elements are removed from the diagram
Priority P1
User requirements R22

Identifier F17
Name Drawing an element
Description Draw the element selected from the tool bar in the

diagram
Pre-conditions Diagram is active, element is selected from the tool bar
Inputs Element descriptor, Element position, Diagram

descriptor
Outputs
Post-conditions
Priority P1
User requirements R11

14

Identifier F18
Name Create a new element
Description Create a new element by composing
Pre-conditions Array of element descriptors
Inputs Diagram descriptor
Outputs Element descriptor
Post-conditions A new element is created
Priority P1
User requirements R15

Identifier F19
Name Edit element's properties
Description Change properties of the element
Pre-conditions The element is selected
Inputs Element descriptor
Outputs
Post-conditions The element is updated with given properties, diagram

is now unsaved
Priority P1
User requirements R22

Identifier F20
Name Selecting elements
Description Select element or elements for editing or moving
Pre-conditions
Inputs Element descriptor
Outputs
Post-conditions The selected elements are now marked as selected.
Priority P1
User requirements R22

Identifier F21
Name View toolbar
Description Display the shape toolbar
Pre-conditions Shape toolbar has to be closed
Inputs
Outputs
Post-conditions Toolbar is displayed to user on screen
Priority P1
User requirements R22

Identifier F22

15

Name View treeview
Description Display the treeview
Pre-conditions Treeview has to be closed
Inputs
Outputs
Post-conditions Treeview is displayed to user on screen
Priority P1
User requirements R22

Identifier F23
Name Execute/Analyze
Description Support for execution of user defined rules to execute

and analyze diagram
Pre-conditions Rules for diagram has to exist
Inputs Diagram descriptor
Outputs Text
Post-conditions
Priority P3
User requirements R21

16

References

Bra02 Bray, I. K., An Introduction to Requirements Engineering. Addison-Wesley,
2002.

Mic99 Microsystems, S., Code Conventions for the Java Programming Language, 1999.
URL h t t p : / / j a v a . s u n . c o m / d o c s / c o d e c o n v / h t m l / C o d e C o n v T O C . d o c . h t m l .

Pra05 Pragya, L., Project plan., Univercity of Helsinki department of computer
science, 2005.

Som01 Sommerville, I., Software Engineering. Addison-Wesley, 2001.

17

