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Abstract
We aim to detect and diagnose energy anomalies, abnor-

mally heavy battery use. This paper describes a collaborative
black-box method, and an implementation called Carat, for
diagnosing anomalies on mobile devices. A client app sends
intermittent, coarse-grained measurements to a server, which
correlates higher expected energy use with client properties
like the running apps, device model, and operating system.
The analysis quantifies the error and confidence associated
with a diagnosis, suggests actions the user could take to im-
prove battery life, and projects the amount of improvement.
During a deployment to a community of more than 500,000
devices, Carat diagnosed thousands of energy anomalies in
the wild. Carat detected all synthetically injected anomalies,
produced no known instances of false positives, projected the
battery impact of anomalies with 95% accuracy, and, on av-
erage, increased a user’s battery life by 11% after 10 days
(compared with 1.9% for the control group).

1 Introduction
Mobile computing, especially smartphones and tablets, is

becoming ubiquitous. Recent work [31] acknowledged the
rise of a class of mobile software misbehavior: energy bugs.
These bugs add to the list of causes of poor battery life that
already includes system configurations, user behavior, and
power-hungry apps. Significantly increased battery drain,
called an energy anomaly, frustrates users, creates poor press
for vendors, and can render devices unusable. For such a
user, the goal is to understand what is using up the battery,
whether or not that is normal, and what can be done.

For some devices, there are third-party apps and OS ser-
vices for quantifying energy use and in some cases attribut-
ing it to specific processes [21]. Unfortunately, a single de-
vice has limited diagnostic power because there is no a pri-
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ori specification of normal energy use (c.f. many correctness
bugs; crashing is almost always bad). Local instrumentation
alone is insufficient to determine whether observed energy
use is normal or merely a consequence of local configuration
parameters, system or device properties, or user behaviors.
Without seeing the app running under different conditions,
we cannot say whether changing some aspect of the system
would improve battery life or by how much. No amount of
local instrumentation can enable these capabilities; the infor-
mation is simply not present on any single device.

We overcome this limitation by using a community of de-
vices; ours is the first collaborative approach to energy di-
agnosis. Measurements aggregated from multiple clients al-
low us to collect more data more quickly, account (statisti-
cally) for individual variation in configurations and usage,
say whether energy use is normal, and project the impact of
certain actions. Each client occasionally records the battery
level and other local data. We aggregate these measurements
and compare average discharge rates under different condi-
tions, such as which third-party apps (a common source of
battery problems) are running.

If the average discharge rate while running some app A is
higher than when A is not running (but any other apps may
be), that app is an energy hog. A hog may be caused by
a coding error (e.g., it prevents the screen from dimming)
or because such energy use is intrinsic to the app’s function
(e.g., it frequently requires the GPS). If an app B is not a hog,
it may be an energy bug on client X if the average rate on X
is higher than the average on all the other clients running
B. Energy bugs may be caused by a code error that only
triggers under certain conditions (which our analysis tries to
discover), configurations, or user behaviors. Distinguishing
between hogs and bugs requires a collaborative method.

Our method for diagnosing energy anomalies uses the
community to infer a specification (expected energy use),
and we call deviation from that inferred specification an
anomaly [9]. Unlike previous work, we are looking for reg-
ularity and deviation in the use of energy and leveraging this
insight to characterize the abnormal use of that resource (the
battery). Deviant energy use is an anomaly, regardless of
the cause (e.g., coding error or user behavior). Our method
further computes diagnosis trees called MCADs, which en-
able us to advise users what actions they can take to improve
battery life and to estimate the amount of improvement (ac-
companied by error and confidence bounds).



Some prior work has aimed to understand energy use by
employing a combination of hardware, OS, and app source
code or binary instrumentation [11, 23, 32, 44]. In this paper,
we present a non-invasive inference method for diagnosing
energy anomalies that uses all the information available to a
user app on both the Android and iOS platforms. In addition
to being a pragmatic point in the design space, our solution
naturally possesses several desirable qualities:
• Software-only. Hardware solutions are expensive, re-

quire technical skill, and void warranties.
• No kernel modifications. Hacking an OS requires skill;

even “jailbreaking” may result in the user bricking their
device or introducing bugs or security vulnerabilities.

• Black-box apps. The user does not have access to the
source code for most of the apps they run or, usually, the
ability to instrument binaries.

Extensions to our method could take advantage of platform-
specific information (our implementation does so), but the
aim of this paper is to evaluate how far we can take diagnosis
without relying on such data. Distribution mechanisms like
the app stores make it easy to get instrumentation onto off-
the-shelf devices if that instrumentation is a standard app.

We take a black-box approach with process-level granu-
larity; when we observe anomalously high energy use, we
implicate one or more processes. Although this restriction
may seem severe, for a method that can still be distributed
via the App Store, our method is maximally invasive. Despite
the limitations, these data are sufficient to diagnose anoma-
lies with enough accuracy to provide actionable recommen-
dations that improve battery life in practice.

In this paper, we do the following:
• Present a collaborative inference method for detecting

and diagnosing energy anomalies by looking for devia-
tion from typical battery use (see Section 2) and an im-
plementation as an app called Carat for iOS and Android
(see Section 3), and

• Evaluate our method with a 500,000-device deployment,
showing a 100% detection rate of injected energy anoma-
lies and partial corroboration for the thousands of anoma-
lies we diagnosed in the wild (see Section 5).

The battery life of a device for which Carat generated action
recommendations improves by an average of 41% during the
first three months (compared with 7.9% for devices without
Carat recommendations), 95.2% of the projected battery im-
provements (e.g., “Killing app A will increase battery life by
45m ± 5m”) match the actual improvements within the 95%
confidence bounds, and the battery overhead of running Ca-
rat is negligible (indistinguishable from running nothing, ac-
cording to hardware power metering experiments). We con-
clude with a discussion of the limitations of our approach
(see Section 6), an explanation of our place among the re-
lated work and how we distinguish ourselves (see Section 7),
and a summary of the conclusions (see Section 8).

2 Method
Our method builds and compares conditional probabil-

ity distributions of rates of energy use to look for energy
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Figure 1. We compare the expected values of conditional
distributions of energy drain rates to classify apps as
hogs, bugs, or neither. The distance d shown is used to
estimate the severity of the anomaly.

anomalies; e.g., the rates when an app is running on a client
with one OS version (the subject distribution) may be sig-
nificantly higher than when running on clients with another
OS version (the reference distribution). We focus on two
kinds of anomalies: hogs and bugs (see Section 2.1). In Sec-
tions 2.2–2.4, we compute the magnitude of an anomaly, cor-
responding to the expected improvement in battery life that
an average user experiencing the anomaly would see if they
became like the average user not experiencing it. We quan-
tify the error and uncertainty of these projected improve-
ments and decrease that uncertainty by classifying measure-
ments according to various conditions (e.g., rates taken when
WiFi was, or was not, available). We generate the classi-
fiers for an anomaly as a diagnosis tree (see Section 2.5–
2.6), which we then reduce to a minimal, complete set of
actionable recommendations (MCAD). An MCAD translates
to anomaly diagnoses, such as “With C% confidence, killing
app A would increase battery life by d1±e1 minutes; upgrad-
ing to OS version V would increase battery life by d2± e2
minutes; disabling WiFi. . . ” and so on.

2.1 Hogs and Bugs
We define two categories of anomalies, hogs and bugs, by

the types of subject and reference distributions we compare.
Informally, an app is an energy hog when using that app
drains the battery significantly faster, in a statistical sense
defined in Section 2.4, than the average app. In contrast, an
app has an energy bug when some running instances of the
app (the ones in which the bug manifests) drain the battery
significantly faster than other instances of the same app (the
ones in which the bug does not manifest). Anomalies do not
imply incorrect behavior; they may have innocuous causes.
Hogs and bugs are computed as follows.

First, we build a (reference) distribution of battery dis-
charge rates for devices used normally: playing games,
browsing the web, making phone calls, leaving it idle, etc.
Introduce an app A into the community, which some subset
of clients will install and use, possibly in place of certain
other apps. Build another (subject) distribution consisting
only of rates observed while A is running. If the expected
battery life while A is running is significantly lower than the
expected lifetime without A, we call A an energy hog.

Intuitively, a hog lowers the community’s average battery
life. Note that an app may make use of energy-demanding
device resources (e.g., WiFi or GPS) without being consid-
ered a hog; anomalous apps tend to overuse these resources.
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Figure 2. The process of converting battery level samples to rate distributions using the a priori distribution. Samples
marked with green Xs are discarded because the device was charging. iOS may report a battery level up to 5% above
the actual level. The slope bounds (x and y) determine the a priori slice.

An app could be a hog because of a coding error that affects
many clients or because an app legitimately needs to use
large amounts of energy to serve its function. Regardless,
a user seeking to improve their battery life would do well
to not have a hog running. Although per-device instrumen-
tation, such as Android provides, can quantify energy use
relative to other apps on one device, it cannot say whether
that use is abnormal relative to other devices or to apps not
running on the device, and so cannot detect or diagnose hogs.

An app B that is not a hog may still use much more energy
on some client X . If the expected discharge rate of B running
on client X (subject distribution) is significantly higher than
that of B running on other clients (reference distribution), we
call B an energy bug on client X . No amount of instrumenta-
tion on a single device can detect or diagnose bugs.

An energy bug is therefore a pair: an app and a client it
afflicts. An energy bug may be caused by a coding error that
affects a small group of clients, a rare configuration that uses
more energy (“correct” or otherwise), or unusual user behav-
ior (which requires a community to detect). If the buggy app
is getting caught in a bad state, restarting the app may return
the app to normal; otherwise, the remedy is the same as for a
hog. Other actions may be suggested by our diagnosis trees
(Section 2.6), but the current app UI does not reflect this.

We added a caveat that a hog cannot also be a bug to dis-
tinguish anomalies that affect all or most clients (hogs) from
those that affect only a subset. Hogs are unlikely to be fixed
by a restart, so we recommend killing them. This difference
in appropriate response motivated the naming, and we found
the distinction useful.

The subject and reference distributions are built using bat-
tery level samples from the community, as we explain in the
following sections. The expected values of these distribu-
tions converge rapidly to the true expected value as the num-
ber of clients increases (see Section 5.7).

Note that even perfect knowledge of app behavior on a
single client could not distinguish hogs from bugs; heavy
energy use on one device could be a matter of configura-
tion, user behavior, or some other bug trigger that stays static
across runs. In order to say whether an app or app instance
is anomalous, a community is required.

2.2 Conditional Distribution Model
As discussed in Section 2.1, to detect energy anomalies

we compare two distributions of the battery drain (see Fig-
ure 1). This section explains how such a conditional distribu-
tion is modeled, and how we quantify the associated uncer-

tainty. The input is a set of n rates, tuples consisting of a fea-
ture vector c and a rate probability distribution u, computed
from some pair of samples (see Section 2.3). We model these
as being randomly sampled from a true distribution Uc, with
mean µ and variance σ2, composed of measurements satisfy-
ing predicate c (e.g., iPhone 4 with WiFi access).

We first take the expected value of each u to yield a rate
r. Consider the conditional distribution Rc of rates r satisfy-
ing c. To compute the error and confidence bounds on the
expected value of Rc, we model it as n independent samples
from Uc. These rates—means computed from a large num-
ber of random i.i.d. variables—are therefore approximately
normally distributed as N (µ, σ2

n ), according to the Central
Limit Theorem (CLT).

This result can also be obtained by starting with the as-
sumption that Rc is distributed as N (µ,σ2). Although we
do not know the parameters µ and σ2, we can estimate them
using the rates (r1, . . . ,rn). The well-known maximum like-
lihood estimators for these parameters—obtained by maxi-
mizing the log-likelihood function—are as follows:

µ̂ = r̄ =
1
n

n

∑
i=1

ri

σ̂
2 =

1
n

n

∑
i=1

(ri− r̄)2.

By the Lehmann-Scheffé theorem, µ̂ is the uniformly mini-
mum variance unbiased estimator for µ: µ̂∼N (µ, σ2

n ).
This agrees with the CLT method. The estimator σ̂2, how-

ever, is biased, so we apply Bessel’s correction to obtain
the uniformly minimum variance unbiased estimator for the
sample variance:

s2 =
n

n−1
σ̂

2 =
1

n−1

n

∑
i=1

(ri− r̄)2.

By our normality assumption, we can construct the t-statistic
t = (µ̂− µ)/(s/

√
n), which has the Student’s t-distribution

with n−1 degrees of freedom. We can approximate the error
bounds on this estimate of µ using a standard formula, where
h is chosen according to the desired confidence level:

µ≈∈
[

µ̂− hs√
n
, µ̂+

hs√
n

]
= µ̂± ε

For 95% confidence error bounds, h = 1.96; we use this
value for all experiments in this paper. Crucially, to esti-



mate the mean µ and to assign error and confidence bounds
to that estimate, we require only the rates r, not the original
distributions u.

As we gather more data, the uncertainty associated with
these expected values decreases. We gauge empirically how
convergence occurs in practice in Section 5.7.

2.3 Computing Rate Distributions
To compute rate distributions, our method must first con-

vert a set of samples from a single client into a set of rates. A
sample is a measurement taken at a particular point in time
that consists of the battery level (%) and a list of features:
device model, OS version, names of running processes, bat-
tery state (e.g., unplugged), etc. Let st = (b, p,q, ĉ) denote
a sample taken at time t, triggered by reason q (e.g., the de-
vice was unplugged), where the battery level was observed
to be at fraction 0 ≤ b ≤ 1 and the battery state was p (e.g.,
unplugged). The remaining features are denoted collectively
as a set ĉ of key-value pairs (e.g., “OSVersion=5.0” or “Ap-
pXRunning=YES”).

First, we sort the samples by t and filter them using the
p values to retain only those adjacent samples that span a
period during which the device was not plugged in, restarted,
or otherwise increasing in battery level: that is, only periods
when the battery was discharging. This reduces the initial
set of all samples to a set of consecutive pairs. We compute
discharge rates from these pairs.

Our method allows for imprecision in both the battery
level and time measurements by converting a consecutive
pair st1 = (b1, p1,
q1, ĉ1) and st2 = (b2, p2,q2, ĉ2) not to a single rate number
but to a rate distribution u. We associate this distribution
with a set of features, yielding the pair R = (u,c), computed
from the features of the constituent pair of samples, as ex-
plained below.

If both endpoints, (b1, t1) and (b2, t2), are exact, then the
rate distribution is u = b1−b2

t2−t1
with probability 1. Discharging

yields a positive rate.
On iOS, we only get such exact measurements when the

UIDeviceBatteryLevelDidChangeNotification is triggered.
Otherwise, we estimate a probability distribution for the rate.
There are a variety of techniques one might employ, depend-
ing on the nature of the uncertainty. In this paper, we address
the case of iOS measurements, which present unique chal-
lenges. Specifically, the API provides battery level measure-
ments at a granularity of 0.05. In other words, if we request
the battery level at an arbitrary time during execution and get
0.95, the true level may be in the range (0.90,0.95].

The true rate, therefore, lies between b′1−b2
t2−t1

and b1−b′2
t2−t1

,
where b′1 = b1−0.05 and b′2 = b2−0.05, and subject to the
constraint that the rate is nonnegative. Not all values in this
range are equally likely, however, so we use this range to
take a “slice” of an a priori rate probability distribution (see
Figure 2), computed using the rates that clients were able to
compute exactly, as described above. There was sufficient
data in this distribution to bootstrap our method. We convert
the slice to a probability distribution by dividing by the slice
mass and use it as the rate distribution u.
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Figure 3. We compare distributions of the expected val-
ues of battery drain to identify anomalies (d′ > 0) and
quantify the error and confidence ranges for expected
battery drain under different conditions.

We compute c from ĉ1 and ĉ2 by taking the union: c =
ĉ1 ∪ ĉ2. Features like device model do not change between
consecutive samples. We conservatively say that an app was
running during the period [t1, t2] if it was seen in either sam-
ple. It would be straightforward to use a different function if
the semantics of the features demanded it.

2.4 Comparing Rate Distributions
Let c1 be the conditions of the subject distribution (e.g.,

app A is running) and c2 be the conditions of the reference
distribution (e.g., app A is not running). We aim to ascertain
whether c1 corresponds to significantly greater energy use
than c2. For this to be answered in the affirmative, we require
the following:

µ̂1−
hs1√

n1
− µ̂2−

hs2√
n2

= µ̂1− µ̂2− (ε1 + ε2) > 0.

Otherwise, the data does not support the assertion with the
desired confidence. Graphically, this corresponds to a posi-
tive value of d′ in Figure 3.

Carat suggests actions that would improve battery life
along with the expected value of that improvement for an av-
erage client (starting from full charge and fully draining the
battery). The improvement if the client were to change from
c1 (experiencing the anomaly) to c2 (not experiencing it) fol-
lows directly from the distance metric d = µ̂1− µ̂2. Within
our confidence bounds, however, the value of d could be as
much as

e = h
(

s1√
n1

+
s2√
n2

)
.

This is symmetric about the expectation. The estimated im-
provement is therefore d± e.

2.5 Splitting Distributions
In order to more confidently diagnose anomalies, we build

a tree that separates conditional distributions by features that
significantly affect energy use. Let each conditional distribu-
tion be a node in this tree, uniquely identified by its condition
c. Starting with some distribution c (e.g., app A is running),
iterate through each feature f /∈ c and attempt a split by cre-
ating new child nodes c∧ f and c∧¬ f . For instance, if f is
whether the client is running a Galaxy S II, then one child
would get the rates from node c taken from Galaxy S IIs and
the other would get all other rates satisfying c.
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c2¬V
Figure 4. The minimal complete actionable diagnosis
(MCAD) for the example anomaly c1 described in Sec-
tion 2.6, consisting of c2 and c3. The dashed lines indicate
nodes and subtrees that, while produced via splits when
the tree was constructed, did not meet the criteria for an
MCAD.

Splitting has two competing effects on the error bounds.
First, it reduces n, thereby increasing the error (increasing
uncertainty). Second, if feature f divides rates from distribu-
tions having significantly different means, then it will likely
reduce the sample variance of at least one child and thereby
decrease the error (decreasing uncertainty).

A split is performed if the child nodes c1 and c2 yield
a positive gap, d′ > 0, as in Figure 3. Splitting generates
two leaves, children of c, with edges f and ¬ f . Otherwise,
we make no changes to the tree and proceed to test the next
feature. When no more features remain, we can recursively
repeat the process on any new leaves.

2.6 Diagnosis
This section describes how to generate a diagnosis for an

anomaly, which involves building a tree structure similar to
a classification or decision tree [24, 39], and conclude with
an example. Consider a node c1 corresponding to a subject
distribution for an anomaly (see Section 2.1). A diagnosis
is a set of nodes with significantly lower energy use than c1.
Intuitively, a node in this diagnosis is some condition under
which the anomaly does not occur. The diagnosis is complete
if it includes all such nodes.

Let node c2 be said to be reachable from node c1 if, in
the problem domain, it is possible to initially be in a state
satisfying c1 and, by performing some actions, then satisfy
c2. We define an actionable diagnosis to be one consisting
only of reachable nodes.

A diagnosis is minimal if every subtree entirely contained
in a complete diagnosis is replaced by its root. The minimal
complete actionable diagnosis (MCAD) is unique, but note
that it may include paths from c1 to multiple different states.

For example, consider the node for running app A, c1 =A,
with significantly more energy use compared with ¬A; it is
a hog. Say, for simplicity, that there are only two other fea-
tures of the device—model M and OS version V —and only
one other possible OS version. Every node in the subtree
rooted at ¬A has significantly lower energy use than c1, as
does every node with ¬M or with ¬V . In our domain, a
user cannot change their device model, so all nodes with ¬M
are excluded from the actionable diagnosis despite showing
less energy use. To make the diagnosis minimal, replace
with their respective roots the nodes in the subtrees rooted
at A∧¬V and ¬A. Thus, the MCAD (illustrated in Figure 4)
is exactly these two nodes (c2 and c3); the interpretation is
that the client can improve their battery life either by chang-
ing OS versions or killing the hog.

These trees helped diagnose problems in the wild, such
as the Kindle bug in Section 5.4.3 where WhisperSync was

instrumentation
data
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reports

Spark on
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statistical analysis
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and S3

Figure 5. The Carat architecture, consisting of the
crowd-based front end, the central server with the anal-
ysis running in the cloud, and the stored samples and re-
sults.

using far more energy when syncing over GSM. Our analysis
discovered the bug was correlated with the iPhone 4 and only
occurred on iPads when they did not have WiFi. There are
dozens of such diagnoses that we have investigated, and in
some cases reported to the developers, and thousands more
produced by Carat.

Although the client UI only displays recommendations to
kill or restart an app or to upgrade the operating system, our
analysis computes diagnoses—and can make recommenda-
tions based on—features like internet connectivity status (ra-
dio or WiFi), mobility, device model, app versions, GPS ac-
tivity, the user ID (usually indicating a bad battery or strange
user behavior), and so on. Thus, our MCADs can recom-
mend actions like turning on/off the WiFi/GPS/radio, up-
grading the app/OS to a newer version, or avoiding an app
under certain conditions (e.g., while moving around or when
not connected to the internet).

3 Implementation
The Carat architecture consists of a mobile app for device

users (see Section 3.1), a central server that collects the data
(see Section 3.2), and an analysis running in the cloud (see
Section 3.3). Figure 5 shows an overview.

3.1 Carat App
We implemented Carat as an app on both the iOS and

Android platforms. It is available as a free download on Ap-
ple’s App Store, Google’s Play Store, and as source code on
GitHub, all of which are linked from the project homepage1.
The clients are lightweight; e.g., the iOS app is ∼6000 lines
of Objective-C, excluding third-party libraries like Flurry
(for collecting usage statistics), ShareKit (for enabling shar-
ing over social networks), Thrift (for handling messaging
protocols), CorePlot (for plotting), and several others. This
number also excludes auto-generated code related to the UI.

Carat runs as a user-level app on stock devices. This
places platform-specific restrictions on what information is
accessible and when our app is allowed CPU time to mea-
sure it. Our implementation records the following informa-
tion using the public APIs:
• battery level fraction,
• battery state (e.g., plugged in or unplugged),
• names of running processes (each non-OS process rou-

ghly equates to a single user app),
• state of memory (e.g., number of active pages),
• OS and version,
• device model, and



• a unique, anonymous, Carat-specific client ID.
This information resides in persistent storage until the app is
brought to the foreground, at which point it communicates
with the Carat server over TCP. Our communication model
is client-initiated (since they are situated behind NATs) and
utilizes Apache Thrift to define the service interface.

The app intermittently transfers stored samples to the ser-
ver over 3G or WiFi. Since we optimized Carat with respect
to energy use, the client invokes a data transmission to the
server only when it is running in the foreground and when
the user is interacting with the UI. At this time, the app also
requests results from the server to update the UI.

To comply with legal restrictions and to alleviate user
concerns, our implementation neither records nor transmits
personally-identifying information. What it does record is
visible within the app (see Section 3.1.1), so the user knows
exactly what Carat is measuring. Furthermore, our EULA
(required by the App Store and also available on the project
webpage1) includes an additional clause making it clear ex-
actly what our app will do. Finally, the app is open source
under a BSD license and is available on GitHub1.

Although jailbroken iOS devices allow us to collect more
data (e.g., app versions), requiring jailbreaking also would
have restricted the size of our userbase, biased our data to-
ward a certain class of users, and prevented us from distribut-
ing Carat on the App Store. We opted for less data from more
users, and our results demonstrate that energy anomalies di-
agnosing does not require intrusive instrumentation.

On Android, Carat samples when the ACTION BATTERY CHAN-

GED Intent fires, at 1% battery level granularity. As we discuss
for the remainder of this section, not only is Carat more re-
stricted on iOS than Android with respect to what it can mea-
sure, but also when. Carat does not fall into the class of apps
that are allowed to run as proper background tasks, which are
given intermittent CPU time to perform tasks such as buffer-
ing audio, maintaining VoIP server connections, or continu-
ously tracking the GPS coordinates of the device using lo-
cation services. This means that, in order to take samples
while Carat is suspended, our app subscribes to several no-
tifications. When one of these notifications is triggered, iOS
allows Carat a small amount of time to take measurements
and save these to persistent storage; there is not enough time
to communicate with the server.

Carat subscribes to battery-related events (UIDeviceBat-
teryLevelDidChangeNotification and UIDeviceBatteryStateDid-

ChangeNotification) and significant location changes (start-
MonitoringSignificantLocationChanges). The location change
feature is especially valuable for us. It not only uses far
less energy than using the full-fledged location service, but
it means that the OS will automatically relaunch Carat if it
is terminated while the service is active. (In our deployment,
while Carat was in the background, roughly half of samples
were triggered by location services and a third were triggered
by the battery level event.)

3.1.1 User Interface
When the Carat app is launched, it sends locally stored

samples to the server. When Carat is in the foreground,
the temporal resolution of sampling increases several-fold.

Figure 6. The top of the main screen of Carat on Android,
showing recommended actions and projected battery life
improvements.

These observations—that increased user engagement leads
directly to data being recorded more often and reported
sooner—motivated us to spend time honing the user inter-
face, which we now present.

The main screen of Carat is the Actions list, shown in Fig-
ure 6, which presents actions the user can take to improve
battery life, based on what Carat has learned about their de-
vice (e.g., what apps they run), sorted by the expected im-
provement if that action is taken. For example, the figure
shows an action “Kill OruxMaps” that would result in an ex-
pected increase of 44m. This means our analysis observed
that a typical device running this game will run a full battery
down to zero almost 44 minutes sooner than a typical device
running typical apps but not OruxMaps. Carat will suggest
restarting bugs, admitting the possibility that the instance is
caught in a bad state; if restarting does not help, it may be a
configuration problem or specific to user behavior. Finally,
our current implementation suggests upgrading the operat-
ing system if it observes that a newer version is correlated,
across the community, with better battery life. The current
UI does not reflect all information present in the diagnosis
trees; that is planned for a future release.

The Device tab displays information about the client’s de-
vice, including most of the information that is being recor-
ded and transmitted to our server: the process list, the de-
vice model and OS, the state of memory, etc. This tab also
prominently displays a number called a J-Score, which is the
percentile into which the client’s battery life falls within the
community; a J-Score of 65 means a better active battery life
than 65% of similar devices. Active battery life is computed
based on Carat sampling and omits idle periods. This client’s
average battery drain when using the device would fully de-
plete the battery in about 16 hours.

We created the J-Score (see Figure 7) to increase user in-
terest and sharing, hoping that it would introduce an element
of social competitiveness to energy efficiency. It appears,
anecdotally, to have worked. For instance, upon observing
that her score had dropped precipitously due to an influx of



Figure 7. The Device tab on the iOS client. The J-Score
indicates the percent of the community with worse bat-
tery life than this device.

new users, one user remarked (tongue-in-cheek) that she was
“no longer confident in our analysis results.” She continues
to check her score regularly, incidentally sending us samples
each time.

The Actions list only suggests killing or restarting an app
that is currently active (i.e., in the process list). The Hogs tab
shows the top hogs ever reported to have run on the device.
The same is true for bugs under the Bugs tab. Clicking on
one of the hogs or bugs brings up a detail page where the
user can explore the data further.

3.2 Carat Server

The Carat server collects samples from instances of the
Carat app running on clients’ mobile devices and stores them
for use by the backend analysis (see Section 3.3), and it
serves actions and other analysis results to clients.

The server is a <1300-line Java application (excluding
code auto-generated by Thrift) that listens on TCP port 8080
for incoming client connections. We host with Amazon
EC2 because it provides a mechanism to scale the server by
spawning new instances and to run a load-balancer to dis-
tribute incoming connections.

Received samples undergo lightweight processing to re-
move junk or malformed data and are then sent to persistent
storage. This preprocessing removes OS daemons from the
list of processes. We manually maintain a blacklist of such
daemons, as it does not appear that the iOS API provides
enough information to determine this automatically.

3.3 Backend Analysis

The Carat analysis consists of approximately 5000 lines
of Scala, written in the Spark framework [45]. Spark is
a cluster computing framework designed for iterative and
interactive jobs, distinguished by its use of Resilient Dis-
tributed Datasets (RDDs). RDDs are read-only collections
of objects partitioned across a set of machines that can be re-
built if a partition is lost. Parallelism in Spark is provided
through operations on the RDDs (e.g., map, reduce, and
filter).

Existing data-flow based frameworks such as Hadoop or
Dryad depend on intermediate data being written and read

from disk, incurring a huge performance hit for iterative
jobs. In contrast, Spark provides an efficient environment
for multi-stage jobs by reusing the same worker nodes across
iterations. In addition, it provides a robust programming
model for interactive queries where it is desirable to load data
into memory and query it repeatedly (with different filters).
These features, along with fault tolerance and its memory
management model, made Spark a good fit for implement-
ing Carat’s analysis.

The production version of Carat runs in a 20-node clus-
ter composed of high-memory Amazon EC2 instances. This
section provides an overview of Spark, the challenges related
to parallelizing our analysis, and our solutions.

After converting samples to rates, the computation pro-
ceeds in two main stages: identifying hogs and bugs and
then generating MCAD trees (see Section 2). The first stage
is summarized in Algorithm 3.1

Algorithm 3.1: ANALYZERATES(allRates,aDist)

comment: Hog detection

for each app ∈ allApps

do


f ilt← ALLRATES.FILTER(app in .allApps)
f iltNeq← ALLRATES.FILTER(app not in .allApps)
d′← COMPAREDISTRIBUTIONS( f ilt, f iltNeq,aDist)
if d′ > 0

then
{

comment: store hog and distributions

comment: Bug detection

for each id ∈ allIds

do



f id← ALLRATES.FILTER( .id = id)
notFid← ALLRATES.FILTER( .id!=id)
comment: Consider apps reported by id, omit hogs

f idNonHogs← FID.MAP( .allApps)\Hogs
for each app ∈ f idNonHogs

do


appFid← FID.FILTER(app in .allApps)
appNotFid← NOTFID.FILTER(app in .allApps)
d′← COMPAREDISTRIBUTIONS( f ilt, f iltNeq,aDist)
if d′ > 0

then
{

comment: store bug and distributions

scoreDist← GETDIST( f id,notFid,aDist)
comment: Save scoreDist for J-Score calculation

comment: Write J-Scores based on the processed distributions

In Section 2.3, we discussed how Carat converts consec-
utive samples into rates. This computation involves a depen-
dency between samples that complicates the parallelization
process.

To remove this inter-sample dependency, we create RDDs
of consecutive sample pairs. This new RDD is free of depen-
dencies, so the Spark runtime can independently assign data
and conversion tasks to workers. This is done by applying
a map operation to every item in the RDD. The result of this
operation is another RDD consisting of rates. We add meta-
data for backtracking.

3.3.1 Parallelizing Distribution Building
The bulk of Carat’s analysis is the process of building and

comparing rate distributions. We load the rates into an RDD,
which Spark automatically distributes to all compute nodes.
The parallelization strategy must compute distributions on
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Figure 9. The Carat server sees minimal traffic from in-
dividual clients, and the growth of this traffic is linear in
the number of users.

features in parallel. That is, when building distributions on
feature c, the technique must compute distributions for all
values of feature c. We devise such a strategy using Spark’s
RDD operations as follows.

We begin with items in the rate RDD, composed of rates r
and their associated features (c1, ...,cn), split among worker
nodes. We compute distributions of rates conditioned on
c and compare them with distributions satisfying ¬c. (We
compute the distribution for ¬c by subtracting the distribu-
tion for c from the full distribution.)

The first step maps items to the format ((c,r),{0,1}),
keyed on c and r and with a value of 0 or 1, indicating the
presence of the rate, computed from the apriori (see Sec-
tion 2.2). A reduce operation computes the frequency of
each (c,r) pair. We remap the reduced RDD and make c the
key and (r,count) the value. When we apply a groupBy on
the key, we obtain the frequency of every rate for every value
of c, or a sequence of (c,(r,count)) (see Figure 8).

We now have two RDDs, one with the frequency of rates
satisfying c and its complement. The RDDs are joined using
a groupWith operation. A final map operation passes them
through our distribution building and comparison module in
a parallel fashion, thus obtaining the expected improvements
and the correlations. The same parallelization strategy is ap-
plied to compute hogs (features are apps), bugs (features are
(UserID, App) pairs), J-scores (features are UserIDs). We
observe that most other feature-grouping required in Carat’s
analysis can be reduced to this parallel model.

3.4 Performance and Scaling

The success of our approach depends on an active com-
munity and generates better results as that community grows,
so the implementation must be scalable.

Our frontend experienced linear traffic scaling with the
size of our deployment, at a rate far below 1 byte per second
per client (see Figure 9). Sample reporting is presumed to
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Figure 10. The Carat analysis scales almost linearly when
parallelized, while a serial implementation shows expo-
nential complexity.

be unreliable; a client with no disk space or network access
is allowed to throw away samples and an overloaded server
may drop packets. Five medium Amazon EC2 instances be-
hind an Elastic Load Balancer (ELB) has been handling our
userbase of half a million devices.

Our current implementation of the analysis backend (see
Section 3.3) uses the Spark cluster computing framework.
The computation is massively parallel, as every distribution
and comparison can be computed independently. Figure 10
compares the runtime for an optimized serial implementation
of the analysis algorithm compared to a parallel implemen-
tation in Spark for increasing number of samples. The re-
sults underline the need for parallelization. As our userbase
grew, we made numerous optimizations. The analysis pro-
gram now computes all reports for all our users (24 million
samples) from scratch in approximately 45 minutes.

4 Ground Truth and Overhead
For Carat to accurately account for when energy is be-

ing used, it must convert intermittent (low precision) battery
level samples into energy drain rates in a way that is faith-
ful to the ground truth. Furthermore, the practicality of our
method relies on sampling that is sufficiently low-overhead
that it does not have a significant impact on the energy use,
itself. In this section, we attach mobile devices to power me-
tering hardware: an iPhone 4S to a Monsoon Power Moni-
tor2 (see Figure 11) and a Galaxy Tab 2 10.1 to Leyden En-
ergy’s3 battery-testing equipment. Our results confirm that
Carat generates accurate energy distributions while consum-
ing few resources (i.e., almost no battery).

To test the fidelity and cost of our sampling, we ran the
devices through a script of varied activities. The script is not
intended to be a representative workload, but to repeatably
exercise the device features and drain the battery at different



Figure 11. Close-up of the wiring rig that connects our
iPhone 4S test phone with the Monsoon Power Monitor.

Figure 12. The battery levels during our iOS power me-
tering experiments, either taken directly from the on-
screen battery indicator, the Carat samples, or computed
from the meter’s readings.

rates. It includes such behaviors as downloading and running
an app, browsing the web, playing a game, and idle periods.
The WiFi was turned on for some periods and off for others.

On each device, we ran through the script under three dif-
ferent arrangements: (1) hooked up to the power meter with
and (2) without Carat running and (3) not hooked up to the
power meter with Carat running. We compare the data from
(1) and (2) to quantify the overhead of running Carat; we
compare the data from (1) and (3) to ensure the meter was
not influencing Carat’s measurements and to assess the fi-
delity of our sampling and rate estimation. For the runs per-
formed without Carat, where our app appears in the script,
we substituted the standard Weather app.

The battery levels reported by the OS, both through the
API (Carat samples) and the on-screen indicator, track the
actual use of power by the device. Figure 12 shows the iOS
data. Between 00:30 and 1:30, Carat took no samples and
conflated a higher-rate period with a lower-rate period. High-
er frequency sampling would have avoided this error.

The expected energy discharge rates computed from
the Carat samples approximate the values computed using
power metering hardware. During the 9-hour iOS experi-
ment, Carat took 9 samples at 5% granularity; the power
meter took 13,549 samples at effectively 0.0001% resolu-
tion. Carat overestimates the average discharge rate by only
0.00088%/sec (see Figure 13). On the Galaxy Tab, where
Carat took twice as many samples as on iOS (19), the error
is an order of magnitude less (0.00015%/sec). This accuracy
is possible thanks to the a priori distribution, which uses
knowledge of community behavior to refine noisy and in-
complete measurements; imprecision in per-client measure-
ments is further mitigated by the statistical backend analysis.

Carat imposes negligible energy overhead. Our power
metering hardware indicates that running through our iOS
script with Carat running used less energy (53.691 mAh or
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Figure 13. The energy rate distributions from our iOS
power metering experiments, smoothed with a Gaussian
kernel estimator for visibility. Using the a priori, Carat
is able to faithfully estimate the distribution with sparse
sampling, overestimating the mean energy drain rate by
only 0.00088% from 9 samples.

∼3.5% of the battery less) than executing that same script
with the Weather app running in its place (i.e., 54 minutes
less battery life running Weather instead of Carat). We also
ran the script without substituting another app but found bat-
tery life with Carat running was slightly higher than without;
Carat’s energy use is less than the experimental precision.
Similar results held on Android. We can afford to perform
sparse, low-overhead sampling on individual clients because
we aggregate such data from many clients.

5 Deployment Evaluation
Carat became available as a free download on Apple’s

App Store and on Google’s Play Store in mid-June of 2012.
Days later, it was featured on the popular TechCrunch blog4;
the story was soon picked up by dozens of other news
sources. Within 24 hours of the article’s publication, we
went from a few hundred users to more than 100,000. This
doubled in the subsequent 24 hours. Carat has been installed
more than 560,000 times; of those, 475,041 clients reported
data (some never ran the app or never when connected to the
internet); 409,867 reported enough data to yield diagnoses.

Our salient results (see Sections 5.4–5.7) are that we
found no instances of false positives among the reported
anomalies; after two weeks, users who received Carat recom-
mendations improved battery life by 13% (c.f. 3% for those
who did not); and 95.2% of the predicted battery life im-
provements fell within the predicted 95% confidence bounds.

5.1 Data
Our users ran iOS (55%) and Android (45%). Tables 1

and 2 show breakdowns of the most common device models
and operating systems. In aggregate, the devices recorded
16.5 million rates, launching our app 7.4 million times (a
median of 1.9 sessions per day).

The community ran 102,421 different apps, with a dispro-
portionate number (56%) coming from Android users. Of
these apps, 10,110 (9.9%) were classified as hogs, of which
83% were Android apps. Carat detected energy bugs in thou-
sands of apps; of the 21,529,249 total possible bugs (user-
app instance pairs), 1.1% were classified as such.

Clients reported samples at a wide variety of rates, clus-
tering into casual users recording a few samples daily and
heavier users sampling sometimes a hundred times as often.
The average number of samples per day was nearly the same
on both platforms (36.8 samples per user per day on iOS and
37.7 on Android), but the variance of this rate on Android



Device Model Number % Total % Platform
iOS

iPhone 4S 85,267 20.8 37.6
iPhone 4 54,853 13.4 24.2
iPhone 5,2 12,590 3.07 5.56
iPhone 3GS 12,364 3.02 5.46
iPhone 5,1 12,239 2.99 5.40
Other 49,258 12.0 21.7

Android
unknown 22,057 5.38 12.0
GT-I9100 15,770 3.85 8.60
Galaxy Nexus 10,333 2.52 5.64
GT-I9300 7238 1.77 3.95
GT-N7000 5009 1.22 2.73
Other 122,889 30.0 67.0

Table 1. The most common device models in our deploy-
ment, showing the percent of users from whom we had
sufficient data to generate diagnoses.

OS Version Number % Total % Platform
iOS

5.1.1 136,485 33.3 60.2
6.0 35,708 8.71 15.8
6.0.1 21,068 5.14 9.30
6.1 10,009 2.44 4.42
Other 23,301 5.69 10.3

Android
4.0.4 40,512 9.88 22.1
4.0.3 24,439 5.96 13.3
2.3.6 19,782 4.83 10.8
unknown 18,075 4.41 9.86
Other 80,488 19.6 43.9

Table 2. The most common operating system versions in
our deployment, showing the percent of users from whom
we had sufficient data to generate diagnoses.
was 32% higher than on iOS. This is, in part, because some
Motorola devices only triggered the battery level intent at
10% levels while most other Android devices triggered every
1%; iOS devices triggered consistently at 5% increments.

5.2 User Behavior
The frequency and duration of user engagement matters.

The more often users launch Carat, the fresher our data will
be (that is when it is sent to our server). On both iOS and
Android, the longer users keep Carat in the foreground, the
more samples it can record. The session length data (see
Table 3) and click-path data show that many stay in the app
to explore the reports or check their J-Score. Almost half of
the sessions last more than 30 seconds.

Figure 14 shows the period of time over which users open
Carat. After a month, we retain roughly 25% of our users;
only 6% use the app for more than 90 days. The median user
opens Carat 1.9 times per day and 3.0 times per week.

5.3 Injected Anomalies
We added energy anomalies to an existing app—initially

with no apparent misbehavior—to confirm that Carat is able
to detect the new bugs. We chose the Wikipedia Mobile
app made by Wikimedia Foundation for iOS because it is
an open-source app used by many of our clients but was
not reported as an anomaly. We added several behaviors
to the Wikipedia app that consume large amounts of energy
when activated, with each one repeatedly using a different
resource: radio, CPU, and GPS.

Session Length Sessions % of Sessions
0–3 secs 257,632 4.15
3–10 secs 893,793 14.4
10–30 secs 2,100,538 33.9
30–60 secs 1,397,873 22.5
1–3 mins 1,109,035 17.9
3–10 mins 163,478 2.63
10+ mins 282,645 4.56

Table 3. The length of Carat sessions. The app only re-
ports data when it is opened and can sample more ag-
gressively in the foreground. So, incentivizing the user to
open the app and explore results from within the UI helps
us collect more data.
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Figure 14. The number of days over which Carat users
open the app. Some users check Carat only over a period
of several days (to see their initial reports) and then never
again; the majority, however, check back with the app
occasionally over the following weeks or months.

We installed the buggy Wikipedia instance on one of our
test devices, an iPhone 3GS. Wikipedia Mobile was already
in use by several clients at this point, so a baseline distribu-
tion had been established and Carat did not consider the app
to be anomalous. We ran the app for one day for each in-
jected bug (i.e., radio, CPU, and GPS), activating the app a
handful of times during the day but only leaving it open for
a couple of minutes (casual use). At the end of the third day,
we ran the analysis with the real, non-buggy data as the ref-
erence distribution and once each with the data from exactly
one of the buggy days as the subject distribution. Thus, we
could declare success if the analysis reported three bugs, one
for each injected behavior.

Indeed, after performing the injection, Carat correctly
detected each of the three bugs (no false negatives). Fig-
ure 15 shows the reference distribution and each of the three
subject distributions for the iPhone 3GS running our buggy
Wikipedia build. The expected improvement reported for
fixing each bug (i.e., returning the app to typical Wikipedia
Mobile behavior) was 27m 26s for the CPU bug, 9m 22s for
the GPS bug, and 55m 28s for the Radio bug, which agreed
with what the experimenter observed on the device.

5.4 Wild Anomalies
Carat detected 10,110 hogs and 233,258 buggy app in-

stances among the 102,421 apps run by the 409,867 users for
whom we had sufficient data to generate reports. We ranked
the hogs and bugs by a function of severity (predicted battery
impact) and popularity (number of users than ran the hog or
had a buggy instance), resulting in one list for each kind of
anomaly. Although our manual validation process prevented
us from checking the entire list, we did check the first two
dozen from each list using a combination of user complaints,
news coverage, analysis tools (see Section 5.4.1), or experi-
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Figure 15. The reference (anomaly-free) and anomalous
rate distributions for the modified Wikipedia Mobile, us-
ing only the a priori from the private deployment. Carat
successfully detects all of the injected bugs.

mental results in the literature (e.g., [32, 33]). Among these
anomalies, there were no false positives. Later in this sec-
tion, we describe a subset of these manually-checked anoma-
lies that we feel highlight interesting circumstances or salient
aspects of our analysis (see Sections 5.4.2–5.4.3). Note that
the number of apps for which we performed manual valida-
tion (∼50) already makes this paper a high-water mark for
evaluating energy diagnosis on mobile devices, even without
considering the other 100,00+ apps that Carat analyzed or
the many thousands of diagnoses it generated.

Our attempts to acquire the tools used in prior work to
validate our results were unsuccessful; the authors either did
not respond, told us the tools were not in a state to be used
by people other than themselves and they didn’t have time to
help us, or they simply refused to furnish the tool. Regard-
less, no existing tool that we know of would have allowed us
to validate all tens of thousands of anomalous apps and app
instances that Carat discovered.

5.4.1 External Validation with ARO

AT&T provides a tool called the Application Resource
Optimizer (ARO) that uses network traces to identify
communication-related misbehavior. We selected the four
most severe hogs (GO SMS Pro, Advanced Task Killer, Line:
free calls and messages, and Chant for Twitter) and four non-
anomalies (Lookout Antivirus, Facebook, Gachinko Tennis,
and Dropbox) on Android that showed a strong correlation
between increased energy use and network connectivity.

The tool indicated that all four hogs had bursts of network
communication that could be more tightly grouped. Three
were missing cache headers that might have reduced retrans-
mission; the fourth, Advanced Task Killer, was implicated
for wasting energy by not closing network connections. Al-
though half the non-anomalies also lacked cache headers,
they did not perform redundant downloads like some of the
hogs. ARO corroborated these hogs, but also gave some in-
dications of misbehavior by the non-anomalies; only the ac-
companying energy measurements separated the misbehav-
ior that hurts battery life from that which doesn’t. Further-
more, without a collaborative method like Carat that collects
data from multiple devices, it is hard to say whether any of
this behavior is intrinsic to the app or a function of device-
or user-specific factors.

5.4.2 Hogs

Of the 102,421 apps seen during our deployment, 10,110
(9.9%) were categorized as hogs. (Before checking for sta-
tistical significance, there were 15,038 (14.7%).) Recall that
an app is a hog if the community-wide average discharge
rate while running the app is significantly greater than the
average rate while not running it (see Section 2.1) and that
we can compute the expected improvement in battery life by
killing a hog (see Section 2.4). Hogs may be caused by an
oft-triggered code bug or may be simply intrinsic to the app.
Users concerned about battery life are advised by the Action
list to kill hogs; the user is not concerned about the intention,
or lack thereof, behind the energy use.

While some hogs were unsurprising to us (e.g., Pandora
and Skype), others were (e.g., some Android themes and
wallpapers). For instance, while most apps for searching air-
line fares and booking flights are not among the hogs—they
use the network but not heavily and do not use many other
resources—there were a handful of such apps that appeared
among the top hogs. We discovered that all those airline apps
were written by the same developer and were suffering from
a systematic programming inefficiency.

The top ten hogs (by severity) on iOS all fall into the cate-
gory of utilities, including iDesp Money (for budget manage-
ment), Ushahidi (for sharing stories within a community),
and the Citi Mobile banking app. There were no games; de-
spite being typically resource-intensive, they did not use en-
ergy as anomalously as other kinds of apps. Similarly, the top
hogs on Android were primarily utilities, but there were also
several wallpaper apps (e.g., Beach at Night and Heart and
Love) and one game (which has since been removed from
the app store).

We now describe a couple of hogs from among those we
manually checked (again, there were no false positives) and
cite corroborating evidence that the app does, indeed, con-
sume an anomalously large amount of energy.

Pandora Radio: Carat classifies Pandora Radio, which
7116 iOS users ran, as a hog and says killing it will increase
an client’s average battery life by 50m 43s. This is corrobo-
rated by user reports, one of which claimed Pandora drained
the battery to 30% in a few hours even with the screen off5.
To improve battery life while using Pandora, the MCAD sug-
gests using WiFi for connectivity (an additional 25–35m).
Pandora is an example of an intuitive hog, as it uses several
energy-hungry resources, but Carat quantifies the cost.

Skype: 27,741 iOS clients were running the Skype VoIP
app, which was also reported as a hog. This is also confirmed
by the forums; one user even used the term “power hog” to
describe Skype6. Skype’s energy use is driven by network
connectivity; when no network connection is available, ex-
pected battery life is about 6.5h above average.

Go launcher exe new theme. . . : (sic) Is an unlikely hog
on the Android platform that costs most users between 2h 1m
and 2h 53m of battery life. Experiences with Go Launcher
and its variants, which change the UI of the device, vary
among users7, but generally “fancier” themes and widgets
cause higher battery drain8.

Live wallpapers: Carat identifies several Android Live
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Figure 16. MCAD for the Kindle app on iOS, showing
the expected battery life when using exclusively this app
under various conditions. The diagnosis points to net-
work connectivity as the primary determinant of energy
use. Note that, as with all bugs, Kindle uses less energy
than a typical app (“Without Kindle”) when the bug is
not triggered.

Wallpapers as energy hogs. Two that rank among the top
10 most severe hogs on the Android platform are Beach
at Night9 and Heart and Love10. They cost most users 2h
33m–2h 49m and 2h 37m–2h 51m battery life, respectively.
Both are ad-supported; the detrimental effects of adware are
known [32]. Both live11 wallpapers12 and adware13 have
been blamed for abnormally fast battery drain.

5.4.3 Bugs

Recall that a bug is an app that is not a hog (it usually con-
sumes below-average energy) but consumes far more energy
on some clients than others (see Section 2.1). Although the
current Carat client-side UI only suggests restarting a bug (in
case it is simply caught in a bad state), the MCAD diagnosis
computed on the backend enables more specific recommen-
dations, such as disabling WiFi or turning on GPS; we plan
to add this in later versions of the app. Note that, without a
community of clients, distinguishing bugs from hogs would
be impossible and identifying the triggers would be difficult.

The maximum number of bugs that Carat could report is
the sum over clients of the number of non-hog apps they ran,
which was 9.1 million in our dataset. Our method reported
233,258 buggy app instances (1.1%); we describe some ex-
amples below.

Many popular apps, including Facebook and Youtube (on
iOS) and Twitter and Chrome (on Android), exhibit anoma-
lously high energy use among small subsets of users. This
suggests that those apps have configurations or usage modes
that consume significantly more energy. By severity, how-
ever, most of the bugs are again less popular utilities: e.g.,
Koder and Raved on iOS and Police Scanner and Are You
Watching This?! on Android. There were two games among
the top ten most severe bugs: Tower of Fortune (iOS) and
Papaya Diamond (Android). Unlike the Android hogs, no
wallpapers were among the top bugs.

Kindle: This electronic book app was reported as a bug
for 254 out of 2617 iOS clients (9.7%). Figure 16 shows a di-
agnosis tree for Kindle, in which 3G connectivity appears es-
pecially detrimental. The support forums blame the problem
on WhisperSync14, which synchronizes notes, bookmarks,
previous location, and Popular Highlights. When syncing
over GSM, in particular, the device uses much more energy
than syncing over WiFi. Our data support this hypothesis,
which had previously been only anecdotal.

Facebook Messenger: Was anomalous on 792 of 7350
Android clients (10.8%). The MCAD indicates that upgrad-
ing the OS improves battery life (71–83m), and that WiFi is
more energy efficient than other connectivity options. Using
the app while stationary gives a 63–97m boost to battery life.
(Note that Carat does not advise users to stand still.)

YouTube: Was a bug on 3118 of 37475 iOS clients
(8.3%). The MCAD shows that while moving, users of mo-
bile Internet have a battery life advantage over WiFi users
(25–34m). When compared to immobile WiFi users, mobile
network users still have a 20–28m advantage. This is con-
trary to many apps, where WiFi is less energy-consuming.

Twitter: Was reported as a bug on 2744 of 18651 An-
droid clients (14.9%). The MCAD for Twitter indicates that
the most critical cause of battery drain is an old OS version.
Users of Ice Cream Sandwich (4.0.4) got 94m to 100m more
battery life than other Android Twitter users. Use of WiFi
with 4.0.4 yielded another 85m to 105m; this was not ob-
served on other OS versions.

SwiftKey: A popular keyboard application for Android,
SwiftKey is one of the top 15 bugs by severity, affecting 2402
users. The developer website indicates that the latest release
of the app exhibits high energy drain, especially in newer
versions of Android OS15.

5.5 Diagnosis on Other Features
Carat analyzes the battery life implications of many other

combinations of features on the backend as part of the
MCAD generation, including the OS version, device model,
internet connectivity, and so on. For various reasons, the Ca-
rat UI does not recommend that a user take actions like pur-
chasing a different device model or downgrading to an earlier
operating system version (those features are not actionable,
as discussed in Section 2.6). Other than killing or restarting
apps, the only action our current Carat implementation might
suggest to users is to upgrade the operating system.

iOS 5.0.1: Shortly after Apple released iOS 5.0, many
users complained of issues with poor battery life. The subse-
quent point release—iOS 5.0.1—was touted, in part, as a fix
for these problems. The public reaction was mixed16. One
user said, “After updating I am seeing my power drain at
a much quicker rate”; another claimed his phone was “Still
draining at the exact same rate”; and a third, meanwhile, re-
ported that his battery life was “doing much better.” In sum-
mary, users had a wide variety of anecdotes but no data.

Using the data from our deployment, Carat discovered
that, in fact, the average discharge rate for devices running
5.0 was higher than for devices running 5.0.1. Clients run-
ning 5.0.1 should expect to see, on average, a 1h 11m 30s
increase in battery life, supporting Apple’s claims that the
update addressed some of the battery problems in the initial
release. Users running iOS 5.0 at the time 5.0.1 was released
(and this diagnosis was computed) were advised by our app
to upgrade.

5.6 Battery Life Improvement
One key metric metric is whether battery life tends to in-

crease over time for our users, a coarse measure of whether
using Carat reduces energy use. The metric is coarse be-
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Figure 17. Average relative battery life of Carat users
following the generation of their first report (hog and bug
lists), using the battery life of the first day as the baseline.
A typical user (black line) sees an 7.0% increase after a
week, surpassing 23% after two months.

cause it includes several confounding factors: some of these
users may not have followed Carat’s recommendations, the
population is biased toward users who originally had battery
problems (and thus installed Carat), and users may have also
employed alternative means to decrease energy use. Some
users did not run any apps that Carat considers anomalies
and therefore did not receive any reports; that is our con-
trol group. Figure 17 shows average relative battery life over
time for Carat users who did (“With Anomalies”) and did
not (“Without Anomalies”) receive reports. (The increased
variance at higher “Days Since First Report” is due to user
attrition; see Figure 14.)

After 2 weeks, the average user sees an 11.7% improve-
ment in battery life, however, users who received reports saw
a 13% increase while those who did not gained only 3%.
This is more pronounced for long-term users (90+ days);
when Carat recommended battery-saving actions, users im-
proved battery life by 41%, compared with 7.9% when Carat
did not.

Although users who received recommendations from Ca-
rat had a marked improvement in battery life, we considered
the possibility that the improvement may have arisen through
actions other than those specifically suggested by our app.
For example, upon being told to kill App X, the user might
instead simply restart their phone, kill all the running apps,
or coincidentally stop using App X as part of normal app
turnover. This may be partly true, but the data also clearly
show that users are performing the actions Carat presents to
them; after receiving their first report, anomalous app usage
(hogs and bugs) decreased by 60%. This is almost double the
decrease for non-anomalous apps (33%). (A number which
is probably higher than turnover in the general population
due to the more prevalent device restarting and app killing
among our users.)

These data suggest that not only do users who receive re-
ports manage to significantly improve their battery life, but
that they are following the recommendations contained in
those reports. Performing the Carat actions yields increased
battery life.
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Figure 18. As the number of samples increases, the rela-
tive error in our estimate of the expected discharge rate
shrinks rapidly. Above is the average expected value for
several of the largest anomalies seen in our deployment
and the 95% confidence error envelope.

5.7 Improvement Prediction Accuracy
A second key metric is how closely the Carat Actions—

and the projected benefits—match the observed benefits.
Specifically, when Carat predicts that killing/restarting an
app a will improve battery life by b± e seconds with 95%
confidence, how often is it correct? We found that Carat
tended to underestimate the improvement that clients would
experience, but 95.2% of these predictions fell within our
95% confidence bounds.

We reached this number using the following analysis. Let
xu,a be the fraction of the time that user u reports running
app a, within some window of time. The estimated battery
life improvement b (in seconds) that Carat quotes assumes a
transition from xu,a = 1 0. We assume that the achieved
benefit is linear in ∆x, so moving from xu,a = 1 0.5 (us-
ing the app half half the time instead of all the time) yields
an improvement of 0.5b seconds; transitioning from xu,a =
0.5 0.3 yields an improvement of 0.2b seconds. (Other
actions that Carat suggests, such as upgrading the operating
system, cannot be done fractionally.) The predicted benefit b
is therefore a slope; we compare the predicted improvement
curve y= bx (and error margins) with the empirical curve—a
least-squares best-fit line through the actual battery life and
usage numbers collected by the app—with slope b′.

As stated above, the data show that if Carat advises killing
an app and that doing so will increase battery life by b± e,
then across all recommendations made by Carat there is a
greater than 95% chance that decreasing the frequency of
app use will result in the projected improvements (subject to
the scaling described above).

As the number of clients and samples increases, so does
the accuracy of our predictions. In particular, Carat’s esti-
mate of the expected value—the crucial number used to iden-
tify anomalies and compute expected benefits—tends to con-
verge to the true value. Figure 18 shows the shrinking rela-
tive error envelope of this estimate for some of the anomalies
Carat detected in the wild.

There is no guarantee of convergence in practice because
the true rate distribution may be neither stationary nor iden-
tically distributed. Indeed, this paper has discussed at length
one situation where a rate distribution may not be identi-
cally distributed across clients: the presence of an energy
bug. As long as a bug affects a constant fraction of the pop-
ulation, however, this convergence happens almost surely, in
the mathematical sense (as the number of samples goes to
infinity, the estimated expected value converges to the true



value with probability 1).

6 Limitations and Future Work
Carat takes a black-box approach to diagnosing anoma-

lies, which carries inherent limitations. Without visibility
into the mechanisms (e.g., code, messages, or kernel state)
and without the ability to perturb the system (i.e., it is pas-
sive and cannot modify other apps), the best possible result
is to say what aspects of the system are likely to be involved
with the abnormal battery discharge. This is what Carat
provides, and it does so by correlating real-valued signals
from features without initial assumptions about their rela-
tionships. This kind of approach has proven fruitful in prior
work [26, 28].

Compared to iOS, Android provides greater visibility into
the behavior of apps and the operating system, as would fa-
cilitating app instrumentation through a developer API. We
opted for feature parity with iOS for this paper in order to
evaluate a method that works for both platforms, but plan to
leverage such additional data in later versions of the app (and
already do so on the backend).

As with any passive approach, which a regulation iOS app
must be, our results are limited by the data. If none of the
clients ever runs a particular buggy app, Carat will never de-
tect a problem; if two apps are always run together and one
is anomalous, they will both be categorized as anomalies and
there is nothing that correlation can do to disambiguate. The
likelihood of spurious correlations increases with the num-
ber of features (apps and configurations). The way to combat
this problem is with more data. For example, as we gather
more samples involving highly correlated apps that show one
but not the other, we can begin to discern which (or possibly
both) are responsible for the anomaly. The results show that
our data are sufficient for actionable diagnosis.

Carat is targeted at users, but additional in-app instru-
mentation (such as via a developer API) would enable finer-
grained diagnoses for developers, e.g., identifying what user
behaviors, app settings, or other environmental conditions
trigger abnormal energy use.

7 Related Work
There is a rich body of work in diagnosis for correctness

and performance. Recent work identified an emerging class
of software misbehavior that afflicts battery life [31] and pro-
posed a method for detecting a specific class of such bugs
[33]. We believe our work is the first collaborative method
to automatically detect and diagnose abnormal energy use
on mobile devices. Unlike previous work, Carat is able to
disambiguate between hogs and bugs—anomalies that are
intrinsic to an app versus those that may be triggered by
device- or user-specific conditions, respectively—a capabil-
ity that requires measurements from multiple devices. An
early prototype and small deployment of the method on a
single platform was summarized in our workshop paper [27].

Our approach is a form of statistical debugging, in which
(loosely speaking) deviant behavior is called a bug [9]. Such
methods have been used to identify code paths correlated
with failure [16, 17], concurrency bugs [14], shared influ-

ence (surprising behavior that is correlated in time) [26, 28],
invariant violation [13], and configuration errors [41]. In
the field of security, anomaly-based intrusion detection has
a long history [8, 34, 35]. Recently, statistical methods were
used to diagnose energy problems by comparing the behav-
ior of an app at different times on a single device [21]; this
kind of approach cannot disambiguate hogs from bugs or
separate app-intrinsic behavior (many apps consume differ-
ent amounts of energy depending on what features are being
exercised) from device- or user-specific factors.

These statistical methods frequently make use of a large
number of instances or users of these programs, which is
sometimes called a community. A recent paper suggests a
collaborative debugging framework called MobiBug for mo-
bile devices [1], but they focus on crashes, not continuous or
intermittent measurements. There is prior work for file sys-
tems [42] and peer-to-peer networks [22] that generate alerts
based on aggregate behavior.

Projects like the Application Communities project [20]
use the community to distribute work; instead, we employ
uniform, lightweight instrumentation. There are also secu-
rity applications for the community besides detection, such
as diagnosing problems by discovering root causes [41] and
preventing known exploits (e.g., sharing antibodies) [7, 25].

Many projects have sought to profile or emulate energy
use on mobile devices [10, 11, 23, 29, 30, 32, 44], sometimes
for prediction [37, 40], mitigation [3, 18], diagnosis [21], or
developer tools [15]. Human interface studies have shown
that 80% of mobile users will take steps to improve their
battery life [36]; Carat recommends specific, personalized
actions for users to take and even estimates the benefit they
are likely to see. This is a distinguishing feature of our work.

Energy debugging shares similarities with performance
debugging; both areas aim to account for the use or abuse
of a shared resource. Some notable performance debugging
work includes history-based analysis in datacenters [5], re-
source accounting [4], and blackbox debugging [2]

Pinpoint [6] and Magpie [4] track communication depen-
dencies with the aim of isolating the root cause of misbe-
havior; they require instrumentation of the application to tag
client requests. In order to determine the causal relationships
among messages, Project5 [2] and WAP5 [38] use message
traces and compute dependency paths. D3S [19] uses binary
instrumentation to perform online predicate checks. Recent
work shows how access to source code can facilitate tasks
like log analysis [43] and distributed diagnosis [12]. Car-
rierIQ17 collects detailed measurements by integrating with
the mobile platform, and has drawn criticism for the intru-
siveness of their implementation18. Unlike the preceding
methods, we do not assume such access to code, commu-
nications, or binaries, taking instead a black-box approach
with broader deployment potential.

8 Conclusions
This paper presents a method for diagnosing energy

anomalies in the wild given incomplete and noisy instru-
mentation measurements from a community of clients. We
implemented this method as an app for iOS and Android
called Carat and deployed it to a community of more than



500,000 devices. Carat diagnosed thousands of anomalies,
which involves detecting the anomaly, estimating its severity,
quantifying the error and confidence bounds on that estimate,
and sometimes identifying the device features that are corre-
lated with the anomaly. We also validated our implemen-
tation with hardware measurements and synthetic anomaly
injection, showing that Carat can accurately estimate energy
use and detect anomalies.

Specifically, Carat imposes negligible overhead on each
device, estimates energy use with accuracy comparable to
hardware, detected 100% of synthetically injected anoma-
lies in controlled experiments, produced no known false pos-
itives (based on corroborating dozens of anomalies using
other methods), and predicted the battery impact of anoma-
lies with greater than 95% accuracy. Finally, users receiving
reports from Carat improved their battery life by 21% after a
month; users who received no reports gained only 5.5% over
the same period.

A collaborative approach is required to diagnose energy
bugs; even complete knowledge of app behavior on a single
client could be specific to a device or user. We believe this
is the first collaborative diagnosis of energy anomalies in the
wild and represents a crucial extension of previous work in
distributed and statistical debugging to include a new class
of abnormal behavior related to mobile energy use.

Notes
1http://carat.cs.berkeley.edu
2http://msoon.com/LabEquipment/PowerMonitor/
3http://www.leydenenergy.com/
4http://techcrunch.com/2012/06/14/carat-battery/
5http://bit.ly/yTIUeU
6http://bit.ly/wsMraK
7http://bit.ly/WZ4dQi
8http://bit.ly/QSiv72
9com.bobisoft.wallpaper.beachatnight

10com.custom.lwp.FREE HeartAndLove
11http://bit.ly/QSixvT
12http://bit.ly/TLWRhV
13http://bit.ly/Scgjs2
14http://gdg.to/xeK9CZ
15http://bit.ly/ODNyxQ
16http://zd.net/y0dyCr
17http://www.carrieriq.com/
18http://onforb.es/zd1zmF
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