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Abstract—The question ”Where has my battery life gone?”
remains a common source of frustration for many smartphone
users. With the increased complexity of smartphone applications,
and the increasing number of system settings affecting them,
understanding and optimizing battery use has become a difficult
chore. The present paper develops a novel approach for construct-
ing energy models from crowdsourced measurements. In contrast
to previous approaches, which have focused on the effect of a
specific sensor, system setting or application, our approach can
simultaneously capture relationships between multiple factors,
and provide a unified view of the energy state of the mobile device.
We demonstrate the validity of using crowdsourced measure-
ments for constructing battery models through a combination of
large-scale analysis of a dataset containing battery discharge and
system state measurements and hardware power measurements.
The results indicate that the models captured by our approach
are both in line with previous studies on battery consumption
and empirical measurements, providing a cost-effective way to
construct energy models during normal operations of the device.
The analysis also provides several new insights about battery
consumption. For example, our analysis shows the energy use of
high CPU activity with automatic screen brightness is actually
higher (resulting in around 9 minutes shorter battery lifetime
on average) than with a medium CPU load and manual screen
brightness; a Wi-Fi signal strength drop of one bar can result in
a battery life loss of over 13%; and a smartphone sitting in the
sun can experience over 50% worse battery life than one indoors
in cool conditions.

Index Terms—Mobile, Subsystems, Energy

I. INTRODUCTION

Samsung sold over 40 million Galaxy S4 smartphones in six
months in 20131. Apple sold over 43 million iPhones in the
second quarter of 20142. Most of us use a smartphone daily,
for work, entertainment and a variety of other purposes besides
communication [3]. The processing and transmission power
of smartphones continues to grow [21], while their batteries
remain largely unchanged [10]. Consequently, energy efficiency
remains a high priority for current smartphone operating
systems, and increasingly, for applications. The importance
of energy efficiency has also been highlighted in several user
studies, which have shown that users actively take measures
to optimize the power consumption of their device [5], [19].

Modern smartphones incorporate several mechanisms for
optimizing battery consumption. On the operating system level,

1http://www.theinquirer.net/inquirer/news/2302755/samsung-disappointed-
with-galaxy-s4-sales-despite-hitting-40-million-milestone

2http://www.businesswire.com/news/home/20140423006671/en/Apple-
Reports-Quarter-Results#.U17IYnEZscl

Fig. 1. The number of system settings available on current smartphones can
be overwhelming.

complex on-demand resource optimization strategies are used
to reduce battery consumption [20]. However, the effectiveness
of these policies is highly dependent on the context of the user,
and there often are complex interdependencies that make it
difficult to determine the optimal policy for a given situation.
Ensuring the effectiveness of these policies requires fine-grained
models that can characterize how different contexts and device
features influence the power consumption of the device.

The alternative to automated policies is to give users control
over specific system settings, such as whether to prefer Wi-Fi
or cellular networks, which screen brightness to use, and when
to turn off the screen after inactivity. Indeed, contemporary
smartphones have interfaces that allow this kind of operations
with little effort. With an increasing number of user-controllable
system settings, keeping track of each setting’s energy impact
becomes unmanageable. To illustrate this problem, Fig. 1
depicts some of the system settings available on the Samsung
Galaxy S4. Over 20 different settings are visible, most of
which have a significant effect on energy. To fully understand
the impact of all of the settings would require a considerable
amount of learning. Furthermore, the total energy consumption
of the smartphone is not simply the sum of the energy impacts
of enabled system settings. Some subsystems, such as Bluetooth
and Wi-Fi, are integrated on the same chip, and can be enabled
simultaneously at much less than the sum of their combined
individually measured energy impacts. Another example is the
integration of accelerometers and gyroscopes on the same chip
to provide energy savings for activity monitoring applications.
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Enabling users to make optimal decisions would thus require
fine-grained information about how different settings influence
the overall battery consumption of the device in a given setting.

The present paper contributes by developing a novel ap-
proach for constructing energy models from crowdsourced
battery discharge measurements. Such information can be
increasingly collected through non-obtrusive instrumentation
of the device [13], which in turn enables capturing battery
information across a wide range of usage contexts and devices.
Experiments conducted through a combination of power
meter measurements and a large-scale analysis of crowd-
sourced discharge measurements demonstrate that our method is
capable of constructing models that accurately capture complex
interdependencies between system settings, sensors, and usage
contexts, providing an accurate view of the state of the device.
This contrasts with previous works, which have predominantly
focused on capturing the effect of a specific sensor, system
setting or application [4], [16]. Results from our evaluation
provide novel insights about battery usage, demonstrating how
complex the relationships between different factors and battery
discharge are. For example, our analysis shows the energy
use of high CPU activity with automatic screen brightness is
actually higher (resulting in around 9 minutes fewer battery
lifetime on average) than with a medium CPU load and manual
screen brightness; a Wi-Fi signal strength drop of one bar can
result in a battery life loss of over 13%; and a smartphone
sitting in the sun can experience over 50% worse battery life
than one indoors in cool conditions.

The contributions of the paper are summarized as follows:
• We develop a novel approach for constructing energy

models from crowdsourced measurements. The models
constructed by our approach can capture the combined
effects of multiple factors simultaneously, providing a
characterization of the energy state of a mobile device.

• Experiments carried out through a combination of power
meter measurements and a large-scale analysis of crowd-
sourced discharge measurements demonstrate that our
approach can capture the state of the device accurately
and cost-effectively, even in the presence of complex
interdependencies between context factors. Through our
analysis, we also reveal new insights, highlighting the
complexity of factors that influence battery consumption.

• We make available a large-scale data set of 11.2 million
data points from around 150.000 active Android users3.

II. RELATED WORK

Mobile device energy profiling has been studied in the
past [8], [14], [24], [25]. Most previous works take a holistic
view of the device and its energy use [24], while some
target application energy use specifically [11]–[14]. There
are a number of systems that take into account the hardware
subsystems of the device [25]. Some of these monitor inside
the device [8] while others utilize a support server [1]. Most of
these systems target specific sensors, such as location or Wi-Fi,

3http://carat.cs.helsinki.fi/research

or a subset of the sensors integrated on a typical smartphone.
However, the complete state of the device requires considering
all subsystems that can use energy. The BattOr [17] system can
be used to monitor a mobile device in the wild, but it needs to
be manually connected to the device prior to monitoring, and
has a limited operating time. The DeviceAnalyzer project [22]
is gathering rich measurements of mobile device state, but the
data has not yet been used for large–scale analysis. To our best
knowledge, no previous works are capable of constructing fine-
grained energy models from crowdsourced measurements. Also,
the effect of different system settings on battery consumption
remains under-explored.

Sensor power profiling focuses on constructing power con-
sumption models for individual sensors or sensor combinations.
One of the earliest works in this vein was introduced by
Rice and Hay [16], who examine fine-grained hardware power
measurements and their causes, and attribute energy drain to the
networking stack version, packet size, and Wi-Fi handshake
behavior. König et al. [9] measure power consumption of
different sensors using a hardware power monitor. Kjærgaard
et al. [7] use conditional functions, manually constructed from
empirical power measurements, to represent power consumption
of different sensors. Kjærgaard and Blunk [8] propose using
genetic algorithms for learning the conditional functions in
an unsupervised manner. Contrary to our work, none of these
approaches are capable of capturing complex interdependencies
in the energy consumption of different components.

Another alternative is to construct statistical models that
characterize the overall battery consumption of a device.
These approaches consider how application usage patterns,
workload and other system level parameters, such as screen
brightness and data transfer rate influence battery discharge.
The estimated discharge rate of the device can then be used to
predict the remaining lifetime of the device’s battery. Wen et
al. [23] propose constructing a reference curve of the battery
consumption under different workloads. Once the reference
curve has been constructed, a regression model is used to
compare current discharge with an estimate calculated using
the reference curve. The deviations from the reference curve
can then be used to refine estimates of remaining battery
lifetime. Instead of considering workload, Kang et al. [6] predict
discharge behavior from application usage patterns. Zhao et
al. [26] predict battery discharge using a regression model
that considers multiple different system variables (e.g., CPU
utilization, I/O rate and LCD backlight brightness). In addition
to predicting battery discharge, Ravi et al. [15] predict when
the user is likely to have the next charging opportunity and
how much battery power is needed for maintaining essential
functionality until then. If the system detects that the battery
is likely to run out before the next charging opportunity, the
system pro-actively provides a warning to the user instead of
waiting for the battery to be nearly depleted. Falaki et al. [4]
conduct an analysis of smartphone usage patterns, revealing
that usage patterns contain significant variation across users
and that personalized application usage models are essential for
accurate prediction of battery drain. In contrast to our approach,
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which can capture how changes in device state influence battery
discharge, these approaches can only provide aggregate level
information of power usage.

III. BACKGROUND: DATASET

We consider a large-scale dataset of crowdsourced battery
discharge measurements collected from a collaborative energy
diagnostic system Carat [13]. The application has collected data
from around 725,000 Android and iOS devices since summer
2012. We consider a subset, which we have made publicly
available for research purposes4, of the data containing 11.2
million samples from around 150,000 active Android devices.
The data includes information about the device’s operating
system and model, the current battery level, the set of currently
active applications, and information about different system
settings such as network connections and screen brightness
and subsystem variables such as the CPU use and the distance
traveled since the last measurement. We refer to these system
settings and subsystem variables collectively as context factors.

As a baseline for energy consumption, we consider the
energy rates reported by Carat, which reflect normalized energy
consumption per time unit, i.e., energy rate = ∆ battery / ∆ t.
The methodology used to derive rates and the validity of using
energy rates as a measure for battery consumption has been
shown in previous work by Oliner et al. [13].

We focus on 13 different context factors, including 5 user-
changeable system settings and 8 other pieces of subsystem
state information. These were selected based on previous studies
on energy-efficiency, which have shown them to be dominant
factors explaining battery consumption. We consider the status
defined by all 13 factors as the state of the device. The five
system settings that we have collected via the Android API
and that we utilize in this work are:
• Mobile data status, either connected, disconnected, con-

necting, or disconnecting,
• Mobile network type, such as LTE, HSPA, GPRS, EDGE,

or UMTS,
• Network type used for Internet connectivity, either none,

Wi-Fi, mobile, or wimax,
• whether Roaming is enabled or disabled, and
• Screen brightness, 0-255 or ”automatic” (-1).

We have also collected information about 8 subsystem variables.
These are not directly available as a user-modifiable system
setting, but can give information about the state of the
smartphone. For example, if we notice a decreased Wi-Fi
link speed or signal strength, we can recommend that the user
try to use the mobile network instead of Wi-Fi in this context.
This state information includes:
• Battery health, determined by the smart battery API of

the Li-Ion battery of the Android device,
• Battery temperature in degrees Celsius,
• Battery voltage in Volts,
• CPU use in percent,
• Distance traveled between two samples in meters,

4http://carat.cs.helsinki.fi/research

Context Factor Mean Std Median
CPU use 75% 33% 91%
Battery voltage (V) 3.78 0.61 3.84
Screen brightness (0-255) 128.03 85.71 109
Temperature (◦C) 29.27 5.75 30
Wi-Fi signal strength (dBm) -61.29 13.02 -61

TABLE I
SUMMARY STATISTICS OF SELECTED CONTEXT FACTORS.

• Mobile data activity, one of none, out, in or inout,
• Wi-Fi link speed, in Mbps, and
• Wi-Fi signal strength in dBm.
Most context factors are nominal-valued. To simplify compar-

ison of these factors, we have discretized them into categories
using an equal frequencies procedure, i.e., each factor was
divided into categories containing approximately the same
number of values. The number of categories was determined
empirically and based on observations reported in previous
battery usage studies. Summary statistics of selected context
factors are given in Table I and the different categories are
detailed below. For categorical variables (such as network type),
we have considered the different possible values as categories.

CPU use: We consider measurements that reflect the
percentage of time CPU is active. The mean and median in
Table I indicate that CPUs are mostly active. We split the CPU
use around the mean, resulting in three categories: Low (0 -
42%), Medium (43 - 85%), and High (86 - 100%).

Distance traveled: Most values are during stationary periods
or with little movement. Based on this observation, we consider
a split between stationary and non-stationary behavior.

Battery voltage: The safe operating voltage of a smartphone
Li-Ion battery is 3 - 4.2V. The nominal voltage of such batteries
is typically 3.7V. The mean, the median, and the standard
deviation reflect this very closely. We consider three categories
for voltage: Low (0 - 3V), Medium (3 - 4.2V), High (4.2V+).

Screen brightness: When screen brightness was manually
controlled, the mean was around 128, or the exact midpoint.
The standard deviation of the values suggests that almost the
entire range of brightness settings is used, making it difficult
to categorize the screen brightness values. Accordingly, we
consider a binary split into manual and automatic brightness.

Wi-Fi signal strength: We consider RSS values in the range
[-100, 0]. Good Wi-Fi signal strength values are normally
between -30 and -10dBm, and the worst, while still being
connected, is -95dBm. We consider four categories: Bad (-100
to -75dBm), Average (-74 to -61dBm), Good (-61 to -49dBm)
and Excellent (-49 to 0dBm). The mean RSS is between the
Average and the Good levels, and the Excellent and the Bad
levels are within one standard deviation. These values are in
line with typical values used in Wi-Fi positioning literature.

Ethical Considerations: We consider only aggregate level data
which contains no personally identifiable data. The privacy
protection mechanisms of Carat are discussed in detail by the
authors [13]. Data collection by Carat is subject to the IRB
process of UC Berkley. Users of Carat are informed about the
collected data and give their consent from their devices.

http://carat.cs.helsinki.fi/research


IV. BATTERY MODELING FROM
CROWDSOURCED MEASUREMENTS

Battery consumption has traditionally been based on empir-
ical models taken either directly on the battery level [17] or
through system-level APIs. The former requires specialized
measurements tools, limiting the contexts where measurements
can be taken. The latter, on the other hand, has been shown to
result in inaccuracies in the resulting models [25]. In this section
we demonstrate the validity of using crowdsourced battery
discharge measurements for constructing battery consumption
models. Our approach provides a cost-effective alternative for
modeling battery consumption, and, as we later demonstrate,
our approach can capture complex interdependencies affecting
battery consumption in everyday use.

A. Methodology

We construct battery models by measuring the strength
of statistical association between context factors and battery
discharge rates. To measure statistical association, we consider
two complementary metrics. As our first metric, we consider
gain in battery life, denoted BL Gain, which measures how
changes in context factors influence the lifetime of a device on
average. As our second measure, we consider the conditional
mutual information (CMI) between context factors and energy
rates. For assessing the influence of a single context factor
X and energy rate Z, the CMI is equivalent to the mutual
information (MI) given by:

MI(X,Z) =
∑
z∈Z

∑
x∈X

p(x, z) · log
(

p(x, z)

p(x) · p(z)

)
.

For higher order combinations containing two or more context
factors (denoted X and Y), the CMI is defined as follows:

CMI(X,Y |Z) =∑
z∈Z

∑
y∈Y

∑
x∈X

p(x, y, z) · log

(
p(z) · p(x, y, z)

p(x, z) · p(y, z)

)
.

The battery life gain measurements provide information about
absolute differences, whereas the (C)MI measurements can be
used for relative comparison between different context factors.
The two metrics provide complementary ways to analyze
strength of associations, and in applications the choice of
metric depends on the scenario being considered.

B. Individual Context Factors

We demonstrate the validity of using battery discharge
measurements for constructing energy models by examining the
mutual information between context factors and energy rates.
We derive a ranking for different factors based on their mutual
information values, and demonstrate that this ranking is in line
with findings from empirical studies on battery consumption.

Estimations by mutual information MI of context factors
and energy consumption are given in Table II. The results
of the MI analysis are well in line with previous results [4],
[18]. In particular, the major individual impact of CPU use and
traveled distance on battery consumption is clearly observable,

Context Factor MI Estimate
CPU use 1.330
Distance traveled 1.069
Battery temperature 0.143
Battery voltage 0.099
Screen brightness 0.030
Mobile network type 0.019
Network type 0.018
Wi-Fi signal strength 0.014
Wi-Fi link speed 0.014
Mobile data status 0.013
Mobile data activity 0.005
Battery health 0.004
Roaming 0.0002

TABLE II
CONTEXT FACTORS’ IMPACT ON ENERGY CONSUMPTION, ORDERED BY

MUTUAL INFORMATION ESTIMATE.

Context Factor Value BL Gain
CPU use Low (0–42%) +3.24%
CPU use Medium (43–85%) +5.72%
CPU use High (86–100%) -2.48%
Distance traveled None -0.76%
Distance traveled >0 +8.20%
Battery voltage Low (0–3V) -16.60%
Battery voltage Medium (3–4.2V) -0.76%
Battery voltage High (4.2V+) +69.08%
Screen brightness Manual -4.96%
Screen brightness Automatic +6.29%
Wi-Fi signal strength Bad (-100 – -75 dBm) -2.29%
Wi-Fi signal strength Average (-74 – -61 dBm) +4.00%
Wi-Fi signal strength Good (-61 – -49 dBm) +6.29%
Wi-Fi signal strength Excellent(-48 – 0 dBm) +7.63%

TABLE III
THE EXPECTED ENERGY USE TYPICAL VALUES OF CONTEXT FACTORS. BL

GAINS CAN BE COMPARED TO STATISTICS IN TABLE I.

and the ordering of the settings is similar to those derived
through explicit battery measurements.

The results also contain some exceptions to the findings
of previous studies. The most prominent example of these is
screen brightness, which is commonly considered the most
battery heavy feature. In our analysis, screen brightness results
in a lower score than many other attributes. In the next section,
we demonstrate that the absolute energy impact of screen
brightness actually is high. However, as mutual information
effectively looks at the correlation between battery discharge
and context factors, the changes are affected by other context
factors. In most use contexts screen use is correlated with
battery voltage and CPU use, both of which have a large
impact on the battery drain, and hence also on the mutual
information values. The main effect we observe for screen
brightness comes from switching to automatic brightness.

C. Energy Consumption of Context Factors

We next consider how typical values of context factors
influence battery discharge. We focus on the five factors
discussed in Section IV-A (CPU use, battery voltage, screen
brightness, temperature, and Wi-Fi signal strength) and consider
expected gain in battery life as our evaluation measure. The
results of this evaluation are shown in Table III.

In line with the results of mutual information analysis, the
worst battery life is obtained for high CPU use. The benefit



of maintaining a balanced CPU load is significant, as medium
CPU use produces +5.72% energy benefit compared to average
use. For screen brightness, the automatic setting of the device
usually improves battery life, providing even +6.29% better
battery life compared to the average. Manual brightness, in
contrast, shows a major loss of battery life (-4.97%).

We can make a number of other observations from the
results. First, higher battery voltage results in improved battery
life. This is partially explained by voltage correlating with
battery health and capacity. In addition, the rates reported by
Carat are based on changes in battery percentage, which tend
to follow voltage changes linearly. This contrasts with actual
discharge, which is nonlinear, particularly when the battery
is close to full charge. The results also suggest that battery
life tends to be higher for mobile than for stationary users.
Studies on application usage have shown that interactions with
applications are common during mobility, with web browsing,
news, music/video players, and gaming being the dominant
application categories [3]. Hence, the difference is likely a result
of shorter interaction periods rather than avoidance of energy
intensive operations. Finally, a high Wi-Fi signal strength leads
to better battery life, as the phone needs to spend less energy
for receiving and sending data. Bad signal availability can lead
to situations where the device has to reconnect to the network
repeatedly, further increasing battery consumption.

V. CONTEXT FACTOR COMBINATIONS

The results of our analysis thus far show that estimates
given by our method are in line with observations made in
studies carried out in laboratory conditions with specialized
hardware measurement tools, providing a strong indication of
the potential of using our approach as a cost-effective mech-
anism to construct models of battery consumption. However,
a limitation of our analysis thus far has been the focus on
individual factors’ impact on battery life, without considering
the state of the device as a whole. As an example, consider
the case of screen brightness, which according to previous
studies is one of the main battery hogs on a smartphone.
In terms of expected battery gain, our results also support
this observation, indicating over 5% deviations from average
consumption patterns. In actual application contexts, screen
usage is highly correlated with interactions on the device, which
in turn require CPU and network usage, suggesting that screen
brightness is not the dominant factor explaining battery usage.
To capture such nuanced differences in consumption, we argue
that models reflecting the state of the smartphone are required.
In the following we demonstrate the validity of considering
combinations of context factors as part of battery models.
We also compare our results against empirical power models
constructed using a hardware power monitor, demonstrating
that our approach can capture more fine-grained differences in
battery consumption than empirical power models.

A. Statistical Results of Context Factor Combinations

We first demonstrate the complexity of battery consumption
patterns by considering how pairs of context factors influence

Context Factors CMI
Battery voltage CPU use 4.29
CPU use Screen brightness 2.17
Battery temperature CPU use 2.07
CPU use Distance traveled 1.81
CPU use Wi-Fi signal strength 1.69
Battery voltage Distance traveled 1.53
Battery temperature Distance traveled 1.28
Distance traveled Screen brightness 1.26
CPU use Wi-Fi link speed 1.12
Battery voltage Screen brightness 1.08
Wi-Fi link speed Wi-Fi signal strength 0.99
Mobile data status Network type 0.95
Network type Wi-Fi signal strength 0.85
CPU use Mobile network type 0.80
Battery temperature Screen brightness 0.79
Distance traveled Wi-Fi signal strength 0.75
Network type Wi-Fi link speed 0.64
Mobile data status Wi-Fi signal strength 0.60
Battery temperature Battery voltage 0.56
Distance traveled Wi-Fi link speed 0.54
Battery voltage Wi-Fi signal strength 0.53

TABLE IV
TOP OF THE CONDITIONAL MUTUAL INFORMATION ESTIMATES FOR PAIRS

OF CONTEXT FACTORS FOR ENERGY CONSUMPTION RATES.

consumption. Similarly to the previous section, we derive a
ranking for the different pairs by considering the conditional
mutual information between each pair, and rank the pairs
in descending order of CMI values. The results of these
estimations are listed in Table IV.

Compared to the results of individual context factors’ impact
(see Table II), the combination of multiple factors gives more
accurate explanations of the battery consumption. A prominent
example is CPU use, for which we can observe significantly
higher impact when combined with another factor than when
considered alone. Also factors related to network connection,
such as Wi-Fi signal strength and network type, differ clearly
from the MI analysis. Both have lower MI values in Table II,
but are more prominent when considered in conjunction with
another context factor. Wi-Fi link speed and Wi-Fi signal
strength have a combined MI of 0.99, which is higher than they
get separately (0.014 each). Capturing this kind of nuances in
consumption is particularly beneficial when giving suggestions
to the end user on how to improve battery life. For example,
from the results we can observe that changing the other system
setting can help to improve battery life in cases where high
CPU use is mandated, for example, when playing a game.

The top context factors according to energy consumption
seem to be battery voltage, CPU use, battery temperature, and
movement (distance traveled) of the device, or combinations
thereof. The effects of these factors are mediated by other
factors, which in turn can cause significant increases or
decreases in consumption. Accordingly, providing an accurate
view of the battery consumption of a device requires models
that can capture both the effects of multiple context factors
and the effects of their interdependencies.

B. Battery Consumption of Context Factor Combinations

To further illustrate the complexity of battery consumption
patterns, we consider how selected context factor combinations
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Fig. 2. Battery gain from CPU use combined with another context factor.

affect battery consumption. We chose combinations with high
CMI values (see Table IV), and measured their expected battery
life gain. As an example case, we consider the impact of CPU
use and another factor on battery consumption. The results
of this analysis are shown in Fig. 2. The y-axis shows the
battery life gain in percentages when compared to the average
expected battery life in our dataset. The different columns
represent different values of context factors.

From the figure we can observe that the influence of context
factor combinations on battery consumption is rather complex.
For example, as long as the phone can observe average Wi-
Fi signal strength, improving the connection will not provide
significant savings unless CPU use is very high. In terms of
screen brightness, as shown previously, the main effect results
from switching to automatic brightness. However, this effect
is most beneficial for moderate CPU use, and during high use,
other factors can provide more pronounced changes. Another
important factor is battery temperature, which can result in a
loss of up to 50% battery life. The effects of temperature are
consistent across all CPU use categories, indicating CPU use
is not necessarily the (sole) cause for high battery temperature.

C. Power Meter Validation

The proposed approach of using crowdsourced measurements
for constructing battery consumption models has been intended
as a cost-effective way to capture fine-grained and nuanced
differences in battery consumption. As we have demonstrated,
these differences can have a significant impact on battery
consumption and need to be accounted for to provide accurate
estimates of the actual battery usage. We next compare our
approach against empirical power models constructed using a
hardware power monitor. We demonstrate that our approach
is better at capturing the effects of changes in device state on
battery consumption. In particular, our analysis indicates that
empirical models are dominated by instantaneous effect, which
tends to overestimate overall power consumption.

We consider measurements collected using a Samsung
Galaxy S2 phone that was connected to a Monsoon Power
Monitor5. The Power Monitor was set to output a constant

5https://www.msoon.com/LabEquipment/PowerMonitor/

voltage of 4.0V. The phone battery was still inserted, with
the + and - terminals blocked, letting the phone start up
normally. Each experiment run lasted 10 minutes. We connected
the phone to the cellular network and turned the phone
screen on for the duration of each experiment run. Wi-Fi
was enabled and Bluetooth disabled for all our experiment
runs. Automatic updating of applications was disabled. All
applications were closed. Before each experiment run, we let
the power consumption stabilize for several minutes to avoid
the impact of background activity on the experiment. The
experiment runs consisted of the following configurations:
• Full screen brightness, 30% CPU use, and bad (1); average

(2); and good Wi-Fi signal strength (3).
• Full screen brightness, 60% CPU use, and bad (4); average

(5), and good Wi-Fi signal strength (6).
• Full screen brightness, 100% CPU use (two tightly looping

threads), and bad (7); average (8); and good Wi-Fi signal
strength (9).

• Automatic screen brightness, average Wi-Fi signal
strength, and 30% (10); 60% (11); 100% CPU use (12).

The impact of considering combinations instead of individual
factors can be assessed by examining the relative standard
deviations (i.e., ratio between standard deviation and mean)
of the power monitor measurements. These are illustrated in
Fig. 3. In the figure we consider separately the combined effect
of CPU and Wi-Fi, and that of CPU and screen brightness. We
also consider how decomposing these factors into categories
influences the measurements.

The column groups in the figure correspond to the Wi-Fi
signal strength range, and an average value for all of the values
(signal all). Respectively, for screen brightness we consider
automatic and manual, and average over all values (screen both).
The columns in each group, from left to right, are CPU All
(average over all use levels), Low, Medium, and High CPU use
level. From the figure we can observe that the relative standard
deviations for combined CPU use (i.e., columns with CPU All)
are much higher than those of individual use levels by a factor
of at least 1.5. The same observation applies for signal strength
and screen brightness, indicating that considering individual
factors is much less accurate at explaining battery consumption
than the combination of multiple factors.

https://www.msoon.com/LabEquipment/PowerMonitor/
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CPU Use All Low Medium High
Experiment
All Wi-Fi 2.60 4.77 2.23 1.90
Bad Wi-Fi 2.51 4.52 2.20 1.93
Average Wi-Fi 2.60 4.99 2.27 1.91
Good Wi-Fi 2.53 4.82 2.21 1.87
All screen br. 2.69 5.40 3.27 1.92
Manual screen br. 2.60 4.99 2.27 1.91
Auto screen br. 2.78 5.89 2.50 1.92
Crowdsourced data
All Wi-Fi 5.24 5.53 5.54 5.53
Bad Wi-Fi 5.12 5.21 5.36 5.01
Average Wi-Fi 5.45 5.51 5.67 5.35
Good Wi-Fi 5.57 5.57 5.68 5.54
All screen br. 5.24 5.53 5.54 5.53
Manual screen br. 4.98 5.18 5.34 4.80
Auto screen br. 5.57 5.61 5.74 5.49

TABLE V
COMPARISON OF AVERAGE BATTERY LIFETIME IMPROVEMENT (IN HOURS)

BETWEEN POWER MONITOR ESTIMATES AND OUR APPROACH.

We next compare battery life estimates between power
monitor measurements and our approach. The results of this
analysis are shown in Table V. From the results we can make
two important observations. First, for low CPU use, the power
monitor measurements are closely in line with the estimates
provided by our approach. However, as CPU use increases, the
estimates provided by power monitor measurements indicate
significant decrease, whereas the estimates provided by our
approach are much less affected. Current smartphones have
several mechanisms to adjust CPU use and consistently high
use is rare. Accordingly, while the power monitor estimates
reflect actual battery consumption, they are over-zealous and
overfit on the instantaneous consumption. In contrast, our
approach can average over different usage contexts, providing
a more realistic estimate of the practical impacts on battery
consumption. Second, the results demonstrate that power
monitor measurements are poor at identifying the relative
importance of different context factors. For low CPU use, the
difference between manual and automatic screen brightness is
clearly observable. However, as CPU use increases, the power
monitor models overfit on the high power consumption of CPU,
providing limited information about the importance of other
context factors. In contrast, the impacts of changing screen

brightness to automatic and the impact of improving Wi-Fi
signal level remain observable across all CPU use levels for our
approach. In Fig. 3, we can observe that these differences are
even more observable from the conditional mutual information.

D. Highlights and Example Cases

As the final step of analysis, we demonstrate how our
approach can also be used to obtain new insights into battery
consumption. Examples of selected context factors’ impact on
battery consumption are listed in Table VI. We have selected
CPU use and temperature from subsystem variables, and dis-
tance (motion or stationary) and screen brightness from system
settings. In all examples, connection type has been a cellular
data connection. Table VI presents the estimated time to drain
the battery from 100% to 0%, while actively using a smartphone
with the given context factor and value combination. With
different values of CPU use, battery temperature, movement,
and screen brightness, the battery life can range from 3.45
hours up to 9.12 hours.

The table is sorted by the time to drain the battery,
descending. We can see that the main deciding factor for battery
life is the temperature of the battery. With a lower temperature,
we get a higher battery life. After that, traveling instead of
staying still seems to increase battery life. This may be due to
users driving and not using their mobile phones while mobile.
After these factors, the CPU is the most dominant, and changing
screen brightness brings the smallest, but still significant, battery
life differences. These results show that while CPU use alone
is a good indicator of energy consumption, significant gains
can be obtained by considering more complex combinations.
In addition to this, battery temperature and distance traveled
can be used together to predict battery life.

Complex combinations of factors, such as those listed in
Table VI, can be used to decide which factors to change
to improve battery life, while keeping others constant. For
example, while moving and playing a game, the CPU is often
high. If the phone can be kept relatively cool, 78% more battery
life can be expected compared to warmer battery (increase from
4.08h to 7.27h). Further savings can be obtained by switching
screen brightness to automatic.



Battery Temperature Distance Traveled CPU Use Screen Brightness Estimated Battery Life (h)
Under 30◦C >0 Low Automatic 8.83 – 9.12
Under 30◦C >0 Low Manual 8.49 – 8.82
Under 30◦C >0 High Automatic 8.09 – 8.24
Under 30◦C >0 Medium Automatic 7.65 – 7.89
Under 30◦C >0 Medium Manual 7.34 – 7.60
Under 30◦C >0 High Manual 7.27 – 7.41
Under 30◦C None Medium Automatic 6.57 – 6.64
Under 30◦C None Low Automatic 6.28 – 6.35
Under 30◦C None Medium Manual 6.13 – 6.20
Under 30◦C None Low Manual 5.88 – 5.96
Under 30◦C None High Automatic 5.78 – 5.82
Over 30◦C >0 Low Automatic 5.08 – 5.22
Under 30◦C None High Manual 5.00 – 5.04
Over 30◦C >0 Low Manual 4.73 – 4.88
Over 30◦C >0 High Automatic 4.62 – 4.69
Over 30◦C >0 Medium Automatic 4.59 – 4.70
Over 30◦C >0 Medium Manual 4.28 – 4.39
Over 30◦C None Medium Automatic 4.25 – 4.29
Over 30◦C >0 High Manual 4.08 – 4.14
Over 30◦C None Medium Manual 4.06 – 4.09
Over 30◦C None Low Automatic 4.02 – 4.06
Over 30◦C None High Automatic 3.91 – 3.94
Over 30◦C None Low Manual 3.74 – 3.78
Over 30◦C None High Manual 3.45 – 3.46

TABLE VI
BATTERY LIFE IN HOURS FOR SELECTED COMBINATIONS OF FOUR CONTEXT FACTORS.

With respect to the worst possible configuration, moving
to a cooler place (45% battery life gain) and changing screen
brightness without changing the CPU use can result in a battery
life increase from 3.45h to 5.78h (68%). Our results in Table VI
and in Fig. 2 show that the battery temperature is not always
directly related to CPU use. High battery temperature can be
caused, for example, by the ambient temperature in warmer
countries, battery misbehavior or a battery bug, or because the
smartphone has been forgotten under the windshield inside
a car on a sunny day. Battery temperature alone can shorten
the battery lifetime even by 50%. If cooling the device is
not possible, because of the ambient climate, for example,
re-configuring other context factors can help to improve the
battery lifetime.

With low CPU use and a cool battery, no movement, and
manual screen brightness, we can obtain an active battery life
of 6 hours, which improves to almost 9 hours by only changing
movement. That behavior can be caused by the users mostly
walking or driving a car and not using their smartphones while
moving from place to another. It is also possible, that energy
saving policies activate as movement requires re-connections to
the cellular base stations. As Table IV shows in Section V-A,
distance traveled is ranked high together with CPU use. It is
possible that the most CPU heavy actions, such as gaming, are
only done in longer periods while stationary.

VI. DISCUSSION AND SUMMARY

The present paper has provided three contributions. Our first
contribution has been the development of a novel approach
for constructing energy models using crowdsourced battery
discharge measurements. Contrary to previous works on energy
modeling, our approach is not restricted to capturing the effects
of individual sensors, features or system settings, but can
capture complex interdependencies between all of these. As

we have experimentally demonstrated, estimates provided by
our approach are in line with battery meter measurements,
providing an accurate view of the energy state of the device. The
second contribution is a large-scale analysis of the influence of
different system settings on battery consumption. Our analysis
validated our method and confirmed findings in previous studies.
It also provided novel insights about battery consumption and
quantified their effects. For example, we demonstrated that a
Wi-Fi signal strength drop of one bar can result in a battery life
loss of over 13% and that a smartphone sitting in the sun can
experience over 50% worse battery life than one indoors in cool
conditions. As our third contribution, we have made available
the large-scale (anonymized) dataset used in our analysis6.

Energy models that can accurately capture the energy
state of a device and that can estimate how system state
changes influence energy, are beneficial for several reasons.
Our approach can be used to bootstrap and support battery
management interfaces developed to support end users. Instead
of merely allowing users to switch off (or on) different settings,
our approach can estimate how these changes are expected
to influence device lifetime. Our approach can be used to
construct device-specific resource optimization strategies that
can estimate changes in battery use more accurately. Our
approach could be used to construct empirical energy models
for comparing and evaluating energy-effectiveness of different
sensing strategies.

In terms of battery management interfaces, an interesting
avenue of investigation are task-based recommendations that
provide actionable feedback to the user on how to preserve
battery for her current tasks. For example, if the user intends
to perform high CPU use activities, they can save battery life
by setting screen brightness to automatic or moving to an area

6http://carat.cs.helsinki.fi/research

http://carat.cs.helsinki.fi/research


with a better Wi-Fi signal. Such recommendations can also
help to increase the user’s knowledge over time, familiarizing
them with the inner workings of their smartphone. Similarly, if
personal measurements would be available, our approach could
be used to identify ”bad” behaviors for a user and provide
guidance on how to mitigate these. Another benefit of our
approach is the capability to construct device or OS-specific
energy models with minimal effort. The energy consumption of
sensors and system settings can contain significant variations
across platforms, e.g., Bhattacharya et al. [2] reported over
200% differences for GPS power consumption on two different
Nokia smartphone models. Accordingly, we can tailor the
guidance given to the user according to the model and operating
system version of her device.

The results presented in this paper are also potentially
beneficial for understanding long-term effects of sensor and
battery management strategies on battery life. The comparison
of battery life estimates between our approach and power
monitor measurements showed that our approach can average
effects over different usage contexts, whereas empirical power
models tend to focus on instantaneous effects. As the overall
state of a smartphone is complex, and in constant flux,
instantaneous estimates tend to result in overestimates of battery
consumption. Assessing the benefits of using crowdsourced
battery models for these purposes is another interesting venue
for future investigations.
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