
From trading to eCommunity population:
Responding to social and contractual challenges

Lea Kutvonen, Janne Metso, Sini Ruohomaa
Department of Computer Science, University of Helsinki, Finland
(Lea.Kutvonen | Janne.Metso | Sini.Ruohomaa)@cs.Helsinki.FI

Abstract

The emergence of networked eBusiness and the wave of
service-oriented computing facilities create new challenges
for automating inter-enterprise business process manage-
ment and eContracting. This development leads to strategi-
cal benefits for agile enterprises, but also to new challenges
on enterprise system architectures and platforms. This pa-
per discusses the techniques of introducing trust-related de-
cisions into eContracting, and their effects. This work en-
hances the web-Pilarcos project results on B2B interoper-
ability middleware; the architectural model supported com-
prises of autonomous business services forming loosely-
coupled, eContract-governed eCommunities.

1 Introduction

In the current trend, electronic business networks are
built from autonomous business services. This trend is to
be seen in the use of Web Services [2], various consor-
tia standards on inter-enterprise business process manage-
ment (e.g., [16, 27]), and in the rise of service-oriented
architecture (SOA) [18, 26]. It can also be seen in the
number of eContract-related research projects in action
(e.g., [1, 3–6, 8, 13, 25, 28]).

We call the collaborative, inter-enterprise business net-
works eCommunities. They are established dynamically to
serve a certain business scenario or opportunity. Their op-
eration is governed by an electronic contract negotiated dy-
namically by the participants. Evidently preliminary work,
such as initial trust relationships, is needed before these
electronic contracts can be formed. Given the necessary
prerequisites, the eCommunity is established by multilat-
eral negotiations on the properties of the business network.

Our contribution is to provide generic middleware ser-
vices for inter-enterprise collaboration management [11,
12]. Within this frame, the contractual aspects addressed
range from information representation issues to technical

and business aspects. This range makes the suggested solu-
tion differ from most eContracting proposals.

The management services include a number of pervasive
functions as follows. First, tools and repositories support
developing and publishing of new models for business net-
works, and defining new service types for business services
in such a way that the service types match the needs of the
business network roles [24]. Second, service offer reposi-
tories enable enterprises to publish business services to the
open service markets together with metainformation for au-
tomated matching to roles and for interoperability testing
against peers in the business network [12]. Third, means
are required for declaring policies that govern the use and
the availability of business services. Fourth, new proto-
cols are needed for negotiating eContracts to govern a new
business network [11]; the establishment phase is partially
performed by a third-party population process, partially by
a collective, refining or dropping-out negotiation protocol
between becoming peers. Finally, facilities are needed for
monitoring the behaviour within eCommunities and man-
age breaches within them as specified in the eContract [14].

We believe that by this kind of generic B2B middleware
services that are available through private agents at each en-
terprise, the right kind of software investment cycles can be
supported. The middleware services themselves are sepa-
rated from the application software, thus making applica-
tions less dependent on the platform technologies. At the
same time, the granularity of provided services grows to
the level understandable at the business strategies level; un-
derstanding the relationship between business services and
the computational counterparts is a necessary requirement
for controlling them [10]. Furthermore, the development
of B2B middleware and SOA-guided eContract-based ar-
chitectures require the separation of various business and
technical concerns in the contracting process, for example,
security, trust and reputation, and business policies.

This paper focuses on the business network establish-
ment phase in which decisions on required interoperability
are done and enhances it by addressing issues of trust man-
agement. The middleware agent that performs the analysis

is called the populator, and its task is to fill the different
roles of a business network model with service offers of ac-
ceptable types, and to check that the selected services are
able to interoperate. In the present situation, the importance
of the populator lies in its ability to check interoperability
conditions, but not in becoming an automated contract ini-
tiator with new partners from open service markets. The
main hindrance in automated selection of partners is the
lack of trust in unknown service providers and the lack of
any framework contracts to govern the service markets.

This paper discusses the effects and techniques of intro-
ducing trust-related decisions into eContracting. Trust is
evaluated between peers, while the middleware layer should
provide a trustworthy platform from which trustworthy in-
formation can be retrieved, and where trustworthy private
agents are running. A secure communication infrastructure
is assumed to be in place.

This paper is structured as follows. Section 2 discusses
forming dynamic collaborations from open service markets.
The populator functionality and its implementation are dis-
cussed in Section 3, while Section 4 introduces the trust
concepts and discusses embedding trust considerations into
the populator functionality.

2 Addressing social needs by eContracts

Establishing new eCommunities from business services
at the open markets rises problems that can be considered
as social: The interoperability demands between partners
emerge to sharing external business processes, meeting on
business value, understanding the pragmatics of policies,
and furthermore, embedding management of trust between
potential collaborators.

At present, there are no commonly accepted eContract
structures that would sufficiently cover the various business
and technical aspects of the eContract. We believe the nec-
essary aspects should be captured within a common upper-
level ontology that is further refined with published business
network models. Final details are rolewisely added from
service offers as partners enter eCommunities. In addition,
the eContract structures should address the needs of eCom-
munity membership and life-cycle management at runtime,
including interoperability testing and monitoring.

The business network models, specific to their business-
areas, should define a sufficient structure for each eCommu-
nity type to support the actual eContracting (negotiation, es-
tablishment, monitoring). These models bring in aspects of
regulatory systems, business targets, and common practises;
the descriptions of available business services in turn define
the limits within which the providing enterprises are willing
to assume responsibilities in the potential eCommunities.
Information related to the eContracts becomes defined by
designers, policy creators, service implementors, and enter-

prise system owners in separate steps of systems engineer-
ing and use. Fig. 1 illustrates the flow of business-related
and technology-related metainformation in the eContract-
ing process in the fundamental steps of metainformation
and software production processes for inter-enterprise col-
laborative systems [10, 24]. The elements are described be-
low.

A business network model defines the topology of an
eCommunity in terms of roles and interactions between
them. A role is a placeholder for a business service: the role
definition sets direct requirements with which the service
types must conform, and it can, in addition, define assign-
ment rules for other features, for example non-functional
aspects or the identities of the participants acceptable for the
role. The interaction declarations set conformance require-
ments for the business processes to be executed between
participants. The design of business network models is a
profession on its own, requiring understanding of regulatory
frameworks on the business area, best business practises,
and strategical methodologies suitable for the business.

A service type defines the syntactical structure of inter-
faces, the semantics of documents to be exchanged, and the
service behaviour in terms of the local business process, as
observed outside of the software module providing the ser-
vice. For each service type, there is a set of associated prop-
erties that are required for each service offer for this type. A
service offer is a declaration of a provided service, naming
its service type and giving values to the required properties.

A computational service is a collection of business-
relevant software modules. However, it has been a design
aim here that the software elements do not need to con-
sider the business strategies or policies. Instead, the runtime
environment provides metainformation-driven monitors for
governing the software elements. We call the combination
of the monitor, the governing rules, and the computational
service a business service. It should be noted that a part
of the governing rules are public as well as a part of the
eContract, while others are private and known only to the
provider of the business service.

While the eContract structuring by business network
models capture most social behaviour requirements in the
eCommunity, we must consider other layers of interoper-
ability simultaneously. We understand interoperability, or
the capability to collaborate, as the effective capability to
mutually communicate information in order to exchange
proposals, requests, results, and commitments. The term
covers technical, semantic and pragmatic interoperability.
Technical interoperability is concerned with connectivity
between the computational services, allowing messages to
be transported from one application to another. Semantic in-
teroperability means that the message content becomes un-
derstood in the same way by the senders and the receivers.
This concerns both information representation and messag-

− business policies
− collaboration processes
− communication solutions

ServiceOffer
− roles
− interactions
− policy frame

BusinessNetworkModel

− legal and other
 regulatory systems
− strategical business
 goals
− common best practices
 on business areaNegotiate & Refine

contract terms

eContract

Monitor Computational
Service

Information flow

Has effect on

Business modelingEnterprise modeling

model and publishmodel and publish

model, keep private;

− business strategies
− technical capabilities
− business policies

Establish

use for decisions

− business rules
 investments
− core competences and

− private strategical goals

representation of business service

business view

technical view

Figure 1. Information flows for building eContracts and business services.

ing sequences. Pragmatic interoperability captures the will-
ingness of partners to perform the actions needed for the
collaboration. This willingness to participate refers both to
the capability of performing a requested action, and to poli-
cies dictating whether it is preferable for the enterprise to
allow that action to take place.

To capture these interoperability levels, we use the five
ODP-RM viewpoints (Open Distributed Processing Refer-
ence Model) [9] to structure the metainformation in service
offers and eContracts. The Enterprise viewpoint is focused
on defining the roles and interactions needed between them
in order to reach the goal of the community. This corre-
sponds to the definition of external business processes and
policies over the eCommunity. The Information viewpoint
is for defining the information repositories and the exchange
of information elements, as well as calculi for invariants and
well-formed changes of the state of the information. The
Computational viewpoint is for defining the computational
services involved with the community, in terms of interfaces
and behaviour towards them. The techniques for describing
and comparing behavioural types of services are still imma-
ture [24]. The Engineering viewpoint is for expressing how
the computational services and the supporting infrastructure
are to be used. The Technology viewpoint is for express-
ing which standard solutions are required for computing or
communication platforms, or information exchanges.

The brief analysis above brings us to structuring eCon-
tracts and service offers as shown in Table 1. The eContract
is structured according to the roles defined in the business
network model, and refined by instructions found for each
service type required in the roles. The final level of detail
captures the requirements on the technical communication.

The eContract must also address breach detection and re-
covery by choosing a published model for that.

In contrast to some upper-level ontology development
initiatives, where the aim often is to define a universal con-
tract structure, we consider the business network model de-
veloped for a specific business domain as the right scope for
the “universe of discourse” when defining contract struc-
tures and ontologies. First, the full range of elements af-
fecting interoperability is not present. Due to the autonomy
of service providers, part of the knowledge is private, and
failures to conform to the category-forming selection crite-
ria or monitoring rules will raise issues to be addressed by
breach recovery processes at the community level. Second,
the structure of an eContract is not defined by one template
only, but the construction rules for the eContract structure
are retrieved from the business network model, service type
descriptions, and service offers.

To pair up with this structure of the eContract, the cor-
responding protocol stack is depicted in Fig. 2. The main
difficulty to overcome here is that each stack layer involves
different set of participants. The technology level protocols
are used by the peers in the business network to fulfil basic
communication interoperability needs, while service level
protocols are used between potential peers and the open
service market to determine the compatibility of single ser-
vices. The community level business processes are used to
manage the dynamicity and interoperability of the business
network as a whole. Besides this, the architecture must sup-
port mapping of the business rules and enterprise policies of
the members of the eCommunity to the community manage-
ment protocols on the layer below. Even contract breaches
should be resolved by community-level business processes.

Table 1. Technical structure and XML-tags for eContract contents.

Contract element label Information type and source Explanation
Identification and state management
contractID String assigned by the initiating

NMA
Identity for the eCommunity; potentially jointly with ses-
sionID

description String assigned by the BNM de-
signer

Describes the purpose of the business network model in a
sufficiently detailed level for generating monitoring rules.

startDate Set by initiating NMA during the
negotiation process

If the contract validity is time-triggered, the startDate and
endDate are used, indicating date and time.

endDate Date and time, as above
state Integer upkept by the NMA. The

eCommunity life-cycle is con-
trolled by a state machine with
states of populated, in-negotiation,
agreed, established, in renegotia-
tion, terminated.

During the established phase the progress of the conversa-
tions (external business processes) can be viewed as steps
of considerably large task blocks.

Management of repetitive execution of eCommunity behaviour
sessions Array of contractSessions where

elements encoded in string-valued
tagged fields

Each ContractSession element contains the contractID and
sessionID within that contract, identifier for the current
epoch, and an integer coded state indicator.

allowedSessions Integer, not mandatory Maximum limit of sessions for this eCommunity.
usedSessions Integer Counter for controlling the max limit.
concurrentSessions Integer Limit for maximum number of concurrent sessions.
The eCommunity structure and behaviour
businessNetworkModel String Identifies the correct model in repository
participants Array of participantInfo; partic-

ipantInfo elements encoded as
string-valued tagged fields

A participantInfo element contains service offer informa-
tion, especially logical and technical addresses of commu-
nication end-points for the participants, the management
interface location, the partner’s electronic signature, the
role it is associated with and whether this participant is
the coordinator or the eCommunity.

bindings Array of logical connections as-
signed by NMAs

Reference to the binding type for the mediating channel;
provides technical requirements.

modelPolicies Array of policies; policies ex-
pressed as a name-value pair.

Policies governing the eCommunity over all epochs.

architecturePolicies Array of policies Policies governing the eCommunity during one epoch.
rolePolicies Array of policies Policies governing each role in an architecture.
globalRecoveryProcess Array of process references Process models are available in the type repository.
conversationRecovery-
Process

Array of process references

roleRecoveryProcess Array of process references

Therefore, the community level processes form a backbone
for interoperability and collaboration management, placing
high demands on the supporting middleware to enable that.
In addition, the lack of workflow enactment in the stack is
intentional. The business applications are expected to exe-
cute their private (local) business processes independently,
only interacting according to a monitored external business
process. As the coordination approach here expects busi-

ness services to be able to initiate the necessary activities
themselves, only breach detection and recovery processes
are needed. The essential failures of service behaviour that
we should expect to address are involved with various non-
functional aspects (NFA), such as trust, security, QoS, or
discrepancies between business policies of autonomous par-
ticipants.

As the populators, repositories and business network

Figure 2. Interoperability management [23].

agents have an essential role in manipulating the eContracts,
we cannot omit discussing the trust placed on this eCon-
tracting infrastructure.

The metainformation elements the infrastructure pro-
vides through repositories must be trustworthy to begin
with. If the validity of model and typing information can-
not be relied on, the information storage becomes useless.
A populator builds on the model and typing information to
refine it into business network proposals. The refined in-
formation is passed to a network management agent, which
controls the negotiation phase finalising a business network
and an eContract to govern its operation. Trusting the eCon-
tracting infrastructure requires strict control over the type
repository and business network model repositories. Before
published entries can be stored, they must be validated, also
in relation to the existing entries. The asserted relationships
between stored entries must remain consistent.

These kinds of repositories have a considerable organ-
isational effect as well: they provide a means to regulate
electronic service markets. Service offer repositories can
be controlled by requiring well-formed offers, or even re-
quiring certified enterprises to test offers before accepting
them. However, these kinds of methods do not change the
fact that the service provider remains autonomous, and its
actions in the eCommunity may not be in accordance to the
service offer or the negotiated eContract. In other words,
trust in the infrastructure does not directly imply trust be-
tween potential partners in the eCommunity that is being
formed. Trust between eCommunity partners is a concern
of its own, and is one of the aspects to be included into the
eContracting process.

The populator uses the type and service offer repositories
to produce interoperable business network proposals. Like
the repositories, population can be provided as a service by
a third party, although a peer implementing a populator for
itself is not unfeasible either. A populator must be trusted
by the initiator of an eCommunity to match the business net-
work model and service offers as specified, but no further.
The populator operates on published information only, and
it is not necessary to trust it with for example private partner
preference policy, unless there is a benefit in doing so. The

populator is not told which of the proposals it produces is
accepted in the end.

A network management agent (NMA) represents an
eCommunity member in the business network [14]. It han-
dles negotiations with potential new members and renegoti-
ations if members are changed, it upkeeps state information
for the eCommunity, and determines the suitable reaction
to the information passed to it by local monitors. For ex-
ample, if the monitors detect a breach of the terms of the
eContract, the violation can at worst lead to a reorganisa-
tion of the business network. Every member of the eCom-
munity has its own network management agent, and they
are considered to be fully trusted local agents.

In order to bring trust considerations into the decision
processes, support for trust management mechanisms must
be added into the infrastructure. Our approach is based on a
dynamic combination of experience information and a sub-
jective analysis of the situation in which trust is needed.
Earlier experience with the eCommunity member being
evaluated is gathered both locally and received through a
global reputation network, and it forms a basis for pre-
dicting the member’s future behaviour. On the other hand,
subjectively estimated risk and tolerance for it depend also
on various factors not directly dependent on the particular
member being evaluated, and our model contains factors to
accommodate for these considerations as well.

From the business point of view, there are two contradic-
tory requirements for making business services available.
On one hand, it is preferable to have all potentially mar-
ketable services openly available for all potential clients and
collaborators, while on the other hand, the integrity and pri-
vacy of enterprise ICT systems require efficient access man-
agement, secure transfer of information and strict authenti-
cation procedures.

In open business networks, traditional hard security falls
short in protecting an enterprise, because it divides other
actors too narrowly into those trusted (authenticated and
authorized) and untrusted (all others), with little ability to
adjust to for example the misbehaviour of trusted actors.
Social control methods, such as trust management, allow
the system to be more open for collaboration, while still
protecting itself both from unknown actors as well as those
authorized for the time being [20]. In the centre, the ser-
vice itself is aware of its required integrity and security con-
straints, and refuses access that would break these limits,
regardless of the requestor.

The following sections go into detail on how trust in
peers can be taken into consideration in eCommunity es-
tablishment. A corresponding analysis of trust-guarded
transactions and actions triggered by trust-breaches during
the eCommunity lifetime has been performed separately,
see [22].

3 eCommunity establishment

We use a two-phased approach in eCommunity estab-
lishment. First, a populator is used to match multiple
service offers into a frame formed by a business network
model. Then, the eCommunity participants are further ne-
gotiated based on the proposed eContracts. The negotiation
is performed by network management agents, NMAs, that
represent each enterprise.

The populator is responsible for providing a reliable fa-
cility to produce interoperable sets of service offers in such
a way that they fulfil the requirements of a selected busi-
ness network model. The interoperable set of service offers
means that based on the network model, each service that
must communicate with each other can do it technically and
semantically. The willingness of the participants to inter-
operate (i.e. pragmatic interoperability) is not considered
during the population process and it will be determined at a
later time during the negotiations.

The populator chooses the most suitable service offers
for each role. First of all, the offers must be of an acceptable
service type for the role. The selection is based on client
defined constraints to roles, constraints imposed by the net-
work model itself, service offers included by the client, and
restrictions on the service providers which can be used.

The population process results into a set of eContract
proposals, still requiring a negotiation round amongst the
proposed partners before the eCommunity establishment
phase is completed. The protocols in itself is simple, the
populator client sends out a proposal to all partners referred
to in the proposed eContract. These peers can respond by
accepting the proposal, or making a refined proposal, or re-
jecting. The responses are sent back to the initiator for com-
bination and further refinement cycles or initiation of a new
round with the next eContract proposal.

The populator is used by network management agents
(NMAs), which represent an organisation in the commu-
nity. Each participating organisation has its own NMA. The
NMAs are used to create the population requests and get
back the results from the populator. The populator returns a
specified number of compatible sets of service offers or all
of the available ones. The number is specified in the pop-
ulation request. Then the initiator, which made the popula-
tion request, chooses one of the business network proposals
for further negotiation. During the negotiations, the par-
ticipating organisations refine the contract terms until they
are satisfactory. The NMAs run the negotiations among
themselves and consult users for decisions. The technical
environment of the populator is created by the other web-
Pilarcos middleware services. The middleware environment
is described in [11, 12].

As a representative of open service markets, the popula-
tor uses a service offer repository, a service in many respects

ManagementAgent
Network

Provider
Service

Service Offer
Repository

Type
Repository

Populator
eCommunity

Figure 3. The populator’s environment [19].

similar to UDDI [15] or CORBA Trader [17]. The signifi-
cant addition to a basic trading facility is its ability to match
multiple service offers to a interoperable virtual organisa-
tion. The populator uses a metainformation service, a type
repository, to achieve this functionality. For the populator to
be reliable, the metainformation must be reliably managed
and consistent.

The populator and its connections to other services sur-
rounding it are shown in Fig. 3. The populator and the ser-
vice offer repository work in very close cooperation with
each other during business network population. The pop-
ulator uses the type repository for business network model
(BNM) discovery and uses the BNM and its topology for the
service offer interoperability checks. Service providers use
the service offer repository to publish their services. During
the publishing, the offers are verified to be consistent with
their alleged service type.

The population request carries two information ele-
ments. The first, general part includes a reference to the
business network model to be used during the population
and directions for the populator for selecting service of-
fers for any of the roles. These directions can advise on
the desired number of returned sets of offers, or the max-
imum time the populator can use for searching the inter-
operable sets. The directions can also restrict possible ser-
vice providers or attribute values. The populator client can
also refine the properties expressed in the business network
model. The model itself expresses requirements for the
eCommunity participants, for example, the offers can be re-
quired to indicate capability to support transactions. The
second part expresses advise on filling each role separately
and can include a pre-selected service offer, or directions
to use specific selection criteria, or role-based utility func-
tions. The client can also fill in service offers for known
partners which will participate the following virtual organ-

isation. The populator respects these preliminary choices
made, and even makes use of the knowledge by restricting
the potential search space accordingly.

Although the populator client is not required to include
its own service offer in the population request to represent
its own role in the business network, this is beneficial. The
included offer will go through the same checking process as
all other service offers that will be considered for the busi-
ness network. At the same time the included service offer
and its attribute values acts as the starting point of the prop-
erties for the virtual organisation. Similarly, there are prop-
erties in the business network model which have an effect
on the eCommunity and its properties.

Population is based on a eight-step algorithm [19]:

1. Receive population call

2. Retrieve the business network model and service types
referred to in the role descriptions from the type repos-
itory

3. Create role populators, set utility functions

4. Request matching service offers for roles from service
offer repository using all appropriate service types

5. Check the interoperability of pre-filled roles

6. Find service offers for each role

7. Walk through the search tree and test the interoperabil-
ity of service offer combinations in the roles

8. Return business network proposals.

In the second step, the populator requests the model from
the business network model repository. The model infers
the roles and properties of interest. If there is a conflict with
the properties of the business network model and the prop-
erties given in the population call, the population algorithm
is terminated.

For the third step the populators creates role populators
for each role in the network model to contain role specific
information. The information includes current limits of the
attribute values, the available service offers based on the
attribute values, and if a service offer is selected for the role
or not. Utility functions are set as defined in the call; general
utility functions are individually set to each role.

Steps from four to six can execute concurrently. Dur-
ing the fourth step the role populators request service of-
fers from the service offer repository for their own role.
The request contains the current restrictions for the role and
the service offer Repository only returns matching offers.
While the role populators are waiting for the offers, they
check the interoperability of the pre-filled roles and their
service offers. If the pre-filled roles cannot interoperate, the
populator terminates the population request.

The sixth step forms the main body of the populator.
The population advances as a depth first search by select-
ing a matching service offer based on the requirements from
available offers and locking it to a certain role. The locking
restricts the possibilities to other roles further and the new
restrictions are propagated to other role populators. When
the role populators receive the restrictions, they remove the
mismatching service offers temporarily from the possibili-
ties. The temporary removal allows the process to roll back
in case one or more remaining roles have no possible offers
left. The locking of service offers to roles is repeated until
every role has service offer locked, all possible combina-
tions are exhausted, or the time limit is exceeded. During
the population the role populators can request more service
offers from the service offer repository.

Finally the populator returns the business network pro-
posals to the requesting network management agent. The
number of proposals depends on the requested amount on
the call and the service offers. The populator cannot guar-
antee that it finds the requested amount of proposals.

During the aforementioned depth first search, the algo-
rithm tries to select the service offer one role at a time. This
creates a search tree of the service offers. Depending on the
propagation of the selection criteria the size of the search
tree varies. Because the selection criteria changes every
time a certain offer is selected for a certain role, the size
of the remaining search tree changes as well. By taking this
into account the populator is able to reduce the search time
to find suitable business network proposals. The populator
has several variations for doing the criteria propagation, but
we only illustrate the technique called forward checking.

The populator uses attribute frameworks to manage
chains of attributes in the roles of the network model that
must all have the same value, because the value has an effect
on the interoperability of all roles in the chain. An exam-
ple of such a requirement is transaction support along the
whole supply chain. Essentially this means that each ser-
vice offer must have the same attribute value for a given set
of attributes if a role is a part of an attribute framework. At-
tribute frameworks make the propagation of constraint val-
ues easy, and they enable the populator to detect which at-
tribute values effect which roles.

Each role populator maintains a set of service offers suit-
able for the business network. Role populators are able to
query several service offer repositories at the same time.
The amount of service offers received from each repository
varies, as does the time to get the offers. Because of this
the role populators only request a certain amount of offers
during the setup phase. Once the already requested offers
are exhausted, the role populators will request more. The
offer queries are built in a way that allows the service offer
repository to determine which service offers have already
been sent to the role populator. The queries are also always

made with the starting constraints included. By doing this
the role populators can be sure that the requested offers will
match even if the process has to be rolled back. The role
populators will temporarily remove offers that do not match
the current criteria, however.

The populator propagates the new constraint values to
the role populators after a role is filled with a service of-
fer. The propagation itself is done by copying the new at-
tribute value limits from the just filled role populator to the
remaining unfilled role populators with the help of attribute
frameworks. At this point the role populators representing
unfilled roles temporarily remove all mismatching service
offers from their set of available offers. Using this kind of
strategy, the remaining offer tree gets rapidly smaller each
time a role is filled with a service offer. If the mismatching
offers were not removed before a certain role is reached in
the search, the search tree would be considerably larger and
there would be many more combinations to check.

The technical contents of a service offer is described in
Table 2. Service offers have mandatory typeIDs which de-
fine the service type of the offer. A service offer is created
from port offers which represent the partial interfaces of the
service. There are also properties to define the attributes of
the service itself as well as the service provider.

The populator is able to match several different types
of attributes while testing service offers. The main XML
Schema simple data types are supported. These include
all numeral types (such as float double, etc.) and string,
anyURI, time, date, datetime, and boolean. In addition,
there are a few different ranges which can be used. These
are OneOf, SomeOf, Exactly, and NoneOf. The OneOf
range means that any single one of the given values must
be same and supported by the service offer. SomeOf means
that a number of the given values must be the same but not
all. Exactly means that all values must be the same that
in other service offers. NoneOf is an exclusive range and
means that none of the given values are suitable for the ser-
vice offer. For continous values, the ranges are given as a
minimum-maximum value pair and for non-continuous val-
ues the ranges are given as sets of values.

Utility functions are used to determine the benefit of in-
cluding a given service offer to the eCommunity. Utility
functions can be role specific, network model specific, or
the client can do the population without them. The utility
functions in the populator are defined as follows [19]:

U(a1, ..., an) =
∑

i
wifi(ai)

where ai is a constraint on attribute i, wi is the weight
of the attribute, and fi is the function to calculate utility
based on the value of the attribute. The function returns a
value from range [0,1]. The sum of the attribute weights are
scaled to 1. It follows that the value of an utility function
U is always from the range [0,1]. The higher the value, the
higher the utility.

Even though the populator can use utility functions and
tries first the offer with the highest utility value, it does not
mean that the resulting business network proposal has the
highest possible total utility. This is because the depth first
search. For example, if the best offer for role two is chosen,
the populator will try every possible offer to role three be-
fore selecting the second-best offer for role two. Therefore
the best offer for role two can result as a lower utility on the
whole than the second-best offer for role two. This all de-
pends on the values of the attributes in a given service offer
and the effect the values have on the remaining roles.

The populator has been found feasible to use for eCom-
munity discovery [10]. The performance behaviour of the
populator is acceptable both in terms of delay and scalabil-
ity. The performance of the populator is dependent on the
constraint propagation scheme used. The forward check-
ing model is efficient in reducing the size of the remaining
search tree. The size of the search tree will effectively de-
termine how many possible combinations are left at a given
time during the population. The size of the tree is not con-
sistent through the whole population. As more roles have
been filled with service offers, the size of the search tree will
decrease. If the process has to roll back a role, the tree will
grow in size again. The main cost in this model is dependent
on the efficiency of calculating new constraints on the ser-
vice offer attributes and propagating them. These constraint
values are always recalculated when a role is filled during
the population. The utility functions are just another way of
calculating the constraints on the service offers. However,
the complexity of an utility function plays a factor when us-
ing them. The more complex the utility functions, the more
time it takes from the populator to calculate the utility value.

Compared to traditional trading facilities such as
CORBA Trader [17] and UDDI [15], the main advantage of
our approach is the ability to match multiple service offers
into a functioning eCommunity. This cannot be achieved
using the traditional traders with just one request.

Compared to the CORBA trader, the populator has more
elaborate service types. They both have similar white and
yellow page information, but the green pages are much
richer in the populator. They allow behavioural descrip-
tions and thus can be used to verify the interoperability of
two given service types. The CORBA trader has a simple
type repository compared to the type repository in web Pi-
larcos middleware. The typing structure is similar and both
support subtyping. The web-Pilarcos type repository ver-
ifies the type hierarchy and the interoperability of the ser-
vice types using the richer typing information. As such the
CORBA type repository cannot be used for interoperability
checking.

The UDDI registry is a the standard Web Services dis-
covery service. UDDI provides an extensive facility to de-
scribe the white, yellow and green pages. UDDI is designed

Table 2. Technical structure and XML tags of service offers.
Element Mandatory Instances Explanation
typeID yes 1 Identifies the service type the offer is based on.
portOffer yes 1-* Defines operations and their order regarding one port. Describes the

properties of each port, and contains the pre and post conditions of each
operation.

syncStruct no 1 Provides causal relation of the events for synchronization.
typingContext yes 1 Defines the typing hierarchy that contains the service type which is used

by this service offer.
serviceProperty no * Gives values to service attributes. Defines a name-value pair. The value

can either be a single type or a value range. The attributes must corre-
spond to the ones in the service type.

providerProperty yes 1-* Describes properties of the service provider. The description is based on
a common ontology.

to support queries made by humans and does not suit well
to automated searches. UDDI has a typing system but does
not have a service like the type repository to maintain the
consistency of the typing information. As a result it can-
not be relied upon while doing automatic interoperability
checks or verification.

4 Trust in eCommunity establishment

In this section, we describe methods for enhancing the
eCommunity establishment process to consider trust and
reputation of potential partners. First, the trust model devel-
oped in the TuBE project [22] is outlined, then various alter-
natives for the relationship between the peers’ trust manage-
ment systems and the populator are discussed, as the organ-
isation affects both the security as well as the controllability
of the resulting system.

4.1 Trust model

We define trust as the extent to which one party is will-
ing to participate in a given action with a given partner,
considering the risks and incentives involved. Trust deci-
sions are made by each peer in two areas of the eCom-
munity life cycle. First, decisions are needed during the
eCommunity establishment phase to determine the willing-
ness to participate in the eCommunity. We will focus on
this decision point. Second, trust decisions are made during
the eCommunity operation, to determine whether particu-
lar risk-relevant commitment is deemed reasonable [22]. A
trust decision is the result of a subjective evaluation of lo-
cal information combined with additional third party expe-
rience information received via a reputation network.

Our trust model has 7 factors: trustor, trustee, ac-
tion, reputation, risk, importance and context. The trustor,
trustee and action parameters, together with the current

state of the system, determine the situation the trust deci-
sion is made in. The party making a subjective trust de-
cision, the trustor, is the guarded service, represented by
an agent. The target of the decision is the trustee, another
peer in the network. The action parameter denotes a group
of SOAP messages exchanged, and a trust decision is trig-
gered at a risk-relevant commitment point. For partner se-
lection purposes, the action parameter can be seen to ex-
tend to cover the entire collaboration from a risk estimation
point of view. Technically, however, it remains a set of mes-
sages exchanged with the populator, who in essence acts as
a proxy of the actual trustee by suggesting it as a possible
partner for a collaboration.

Reputation is the measure of a peer’s perceived trust-
worthiness. It is based on a subjective view combined from
experience information received from local monitoring as
well as experiences reported by other peers through a global
reputation network. The credibility and information content
of the statements is evaluated by the recipient in order to
build a local reputation value.

The risk factor provides a tactical cost-benefit estimate
on the action considered. It expresses the potential benefits
and costs of a positive trust decision to different assets, such
as money, security and customer satisfaction. The informa-
tion is stored as probability values for each severity class
of effects to a particular asset, for example a 0.1 probabil-
ity of a “considerable” loss of security, 0.3 probability of a
“minor” loss and 0.6 probability of no effect. For for exam-
ple monetary assets, a positive result is both possible and
desirable. The action parameters and the reputation of the
trustee affect this estimate, as well as context adjustments
described later.

The importance factor represents strategic valuations in
the enterprise, which are independent of any estimate of
what the trustee might do. These considerations, such as
the cost of denying an action defined in the eContract, or

the benefit of good service to creating a working partner-
ship, guide the tolerance of risk.

The context factor represents temporary adjustments
made to other factors, especially risk and importance. The
changes can be initiated by any of three possible source
types: the internal state of the peer’s system, the state of
the enterprise in general or the state of the business network
the peer is a member of.

To produce a trust decision, the trust management system
checks whether its completed risk analysis is within toler-
ated values for that situation. A situational cost-benefit es-
timate and representation of the tolerance for the particular
situation are generated dynamically from the 7 factors, and
a trust decision is produced by comparing the two.

For partner selection, an ordering between candidates is
needed for those that pass the minimum threshold compar-
ison. In order to determine which result pair denotes the
most trust, i.e. the highest willingness to collaborate, a
weighted sum of the differences between probability val-
ues in the risk tolerance and the risk estimate can be used,
for example. Classes of trust may be more interesting than
an absolute ordering, however, as parameters such as the
price of a service are likely to be interesting criteria for or-
dering as well. Combining trust and price ordering in the
grid environment has been experimented on by Griffiths and
Chao [7].

4.2 Trust decisions for membership

In the web-Pilarcos middleware, the population of a busi-
ness network can be provided as a service to the initia-
tor by a third party [11]. This separation of concerns re-
quires that the initiator trusts the populator to match given
requirements as specified, similarly as service offer repos-
itories must be trusted to faithfully reproduce offers stored
in them. The populator has access to the public business
network models and service offers. It produces a set of in-
teroperable business network proposals, and passes them on
to network management agent of the initiator, either as one
set or a few at a time until the initiator is satisfied for one
reason or the other. The populator does not know which
proposal is accepted in the end, if any.

In the negotiation phase, the initiator passes the proposal,
including the adjusted service offers and the network model,
on to the selected members of the business network. They
can then accept the network as is, reject it or modify the pro-
posal to suit them better and return it. These modifications
do not include changing members in the network; if the pro-
posal is not accepted, another composition is proposed until
no further options are available.

Trust can be used in the population process in two ways.
Any member of the eCommunity can have a requirement for
a minimum trust in other members in order to be willing to

participate. In addition, the initiator can use trust measures
as an ordering factor, similarly to price or other measures,
when passing the proposals to the other members.

When trust information is used in connection with pop-
ulating the network, there are privacy concerns involved
in passing such information to the populator. Service of-
fers and business network models are public information,
but trust information includes private evaluations which can
have averse effects if they become public knowledge. For
example, a subcontractor may not wish to make its distrust
in a large vendor known to the world, nor reveal details
of its evaluations of risks and incentives related to a par-
ticular business network composition. Participants should
therefore be able to set trust requirements related to their
business network models and service offers, while retaining
control of their private trust information. In addition, even
these trust requirements should be made public only if it
adds value to the process.

Trust requirement information can be made public in
three ways: in a business network model by the modeller,
as a parameter to the populator by the network initiator us-
ing the model, or recorded in a service offer by the provider
wishing to become a member of an eCommunity.

Trust requirements can be brought into the population
process without requiring participants to publish related in-
formation at all. In this approach, the populator provides
business network proposals completely unaware of the trust
requirements, and only considers public factors. In the
end, it gives several proposals to the network initiator who
passes them one at a time to the potential participants, ask-
ing whether they are satisfied with the proposal. This is a
normal part of the negotiation, and during it the potential
participants can adjust their offers further or reject the pro-
posal altogether for any private reason. For example, the
price range of a service can be narrowed to smaller values
if other participants of the eCommunity are well-trusted, or
to larger values if the venture seems more risky.

The main benefit of this approach is that the trust deci-
sions are fully left to the parties with vested interests in their
results. No subjective trust information needs to be passed
around, and the requirements can be kept private. The main
drawback is that trust information is introduced fairly late in
the process. Some resources could be saved if the populator
could be made capable of pruning candidates based on trust
information before forming final proposals.

To make trust decisions, the populator needs a source
of trust information: Either the populator has its own trust
management system based on public information, or it pulls
the necessary information from the interested parties.

As the populator is not an expert in anything else than
population, it can only gain experience from third parties,
and it will not have a model of the risk and benefit anal-
ysis of an action available. Should it make decisions on

its own, therefore, it can only base them on reputation in-
formation. In addition, it will not be able to tell by public
reputation information only whether an actor that relies on
it for pruning has a completely reversed subjective reputa-
tion view of a party. Reputation networks have many error
sources; the biggest problem with blindly relying on one
is that good reputation in a network is not predictable; it
is also not a given that the interested party agrees with the
reputation network.

Third party information used by the populator does not
necessarily have to come from a reputation network. A dif-
ferent approach is to accept certification for certain kinds
of basic trustworthiness, which may be achieved through
for example insurances and guarantees. The benefit this ap-
proach has over the reputation system one is that a particular
certificate of trustworthiness can be clearly defined. Service
providers will then present their certification in their offers,
and demands for certification are matched with the offers
as with any attribute. Checking the validity of the certifi-
cation can be done either directly in the populator or later
by the interested party, for those potential members that
have not been dismissed before for other reasons. However,
certificate-based trust is different in nature to experience-
based dynamic trust [21].

The populator can also draw upon the trust information
of the interested parties as needed. This approach becomes
especially interesting when an initiator provides its own
populator service. In all other cases, there are privacy impli-
cations in passing sensitive trust information to the popula-
tor, which is generally not an ultimately trusted third party.
To minimise the trust information that needs to be passed
to the populator, the populator can ask for each actor only
whether they fulfil the requirements or not. As the trust
decision is produced by the interested party, the process re-
mains opaque to the populator. The requirements can be
unrelated to trust altogether, or positive judgements can be
made at random and the proposal refused in the negotiation
phase if necessary.

There is a technical challenge involved in this approach.
Although current traders support dynamic values in service
offers, the result of a trust decision depends on the actor the
query is made on as well as context information, most im-
portantly the network being built. This would require a pop-
ulator implementation which supports embedding remote
function calls with nontrivial parameters in service offers
or network models.

The current populator can also be passed an utility func-
tion to use for ordering service providers. To apply trust
values in this utility function, the remote call technology
described above can be used to request trust values or cat-
egories for the actors. As an option, the trust utility value
can be built on public information only, by using the trust-
relevant certificates described earlier as a basis for scoring.

Functions and weights for different certificate fields are de-
fined by the initiator, and support for this kind of trust or-
dering is already present in the populator.

Finally, the populator allows the initiator to pass it a list
of service offers of given partners to fill a particular role,
or a blacklist of service providers to not fill the role with.
This feature enables the initiator to make preemptive trust
decisions, if it so wishes and has the information to do so,
for example from earlier eCommunity instances.

We plan to continue by implementing trust decision mak-
ing in the negotiation phase, described as the first option in
this section. The approach is a strong combination of in-
formed decisions and protecting the peers’ privacy. In ad-
dition, these kinds of decisions should be possible to make
also after the populator has done some pruning or ordering
by itself.

5 Conclusion

This paper proposes an automated, generic method for
selecting eCommunity participants with focus on the social
and contractual aspects, especially external business pro-
cesses, concept of utility, and trust on potential collabora-
tors. The solution is based on multi-partner matching of
service offers, guided by a jointly selected, public business
network model. It thus extends the traditional trading or
brokering architectures. The presented eContract structure
pulls out publishable aspects of interoperability issues, still
leaving some pragmatic aspects private.

In comparison to related work on eContracting solutions,
the proposed method is unique in the way it captures all
three aspects, social, contractual and technical, into an au-
tomated process where all functional and non-functional as-
pects of the collaboration are treated according to a few
simple principles. The main design goal has been to sep-
arate interoperability and eCommunity management tasks
into a B2B middleware layer, that is founded on metain-
formation repositories for business networks, business ser-
vices and contractual rules. The solution is closely related
to work on virtual enterprises and virtual enterprise breed-
ing environments, but takes a more pragmatic view on the
separation of generic B2B negotiation and eCollaboration
management routines.

Acknowledgement

This work has been performed at the Department of
Computer Science at the University of Helsinki. The
research group involved, Collaborative and Interoperable
Computing group, builds up on work done in various
projects funded by the national technology development
center TEKES and industrial partners.

References

[1] S. Angelov and P. Grefen. The 4W framework for B2B e-
contracting. Int. J. Networking and Virtual Organisation,
1(3), 2003.

[2] D. Booth et al. Web Services Architecture. W3C
Working Group. http://www.w3.org/TR/2004/
NOTE-ws-arch-20040211/.

[3] D. K. W. Chiu, S. C. Cheung, P. C. K. Hung, S. Chiu,
and K. Chung. Developing e-Negotiation Support with a
contract template meta-modeling approach in a Web Ser-
vices environment. Special Issue on Web Services and Pro-
cess Management in the Decision Support System (DSS),
40(1):51–69, July 2005. http://teaching.ust.hk/
∼csit600c/eNeg.pdf.

[4] A. Daskalopulu. Evidence based electronic contract perfor-
mance monitoring. The INFORMS Journal of Group Deci-
sion and Negotiation. Special Issue on Formal Modelling in
E-Commerce, 2002.

[5] C. Dellarocas and M. Klein. Designing robust, open elec-
tronic marketplaces of contract net agents. In Proceedings
of the 20th International Conference on Information Systems
(ICIS), Charlotte, NC, Dec. 1999.

[6] F. Griffel, M. Boger, H. Weinreich, W. Lamersdorf, and
M. Merz. Electronic contracting with COSMOS - how to
establish, negotiate and execute electronic contracts on the
Internet. In Proceedings of Second International Enter-
prise Distributed Object Computing Workshop (EDOC ’98),
1998.

[7] N. Griffiths and K.-M. Chao. Experience-based trust: En-
abling effective resource selection in a grid environment. In
Proceedings of the iTrust 3rd International Conference on
Trust Management, pages 240–255. Springer-Verlag, LNCS
3477/2005.

[8] B. N. Grosof and T. Poon. SweetDeal: Representing agent
contracts with exceptions using XML rules, ontologies and
process descriptions. In Proc. Intl. Conf. on the World Wide
Web, 2003.

[9] ISO/IEC JTC1. Information Technology – Open Systems
Interconnection, Data Management and Open Distributed
Processing. Reference Model of Open Distributed Process-
ing, 1996. IS10746.

[10] L. Kutvonen and J. Metso. Services, contracts, policies and
eCommunities – Relationship to ODP framework. In P. Lin-
ington, A. Tanaka, S. Tyndale-Biscoe, and A. Vallecillo, ed-
itors, Workshop on ODP for Enterprise Computing (WOD-
PEC 2005), pages 62–69, Sept. 2005.

[11] L. Kutvonen, J. Metso, and T. Ruokolainen. Inter-enterprise
collaboration management in dynamic business networks. In
On the Move to Meaningful Internet Systems 2005: CoopIS,
DOA, and ODBASE: OTM Confederated International Con-
ferences, CoopIS, DOA, and ODBASE, Agia Napa, Cyprus.
Springer-Verlag, LNCS 3760/2005.

[12] L. Kutvonen, T. Ruokolainen, and J. Metso. Interoper-
ability middleware for federated business services in web-
Pilarcos. International Journal of Enterprise Information
Systems, 2006.

[13] P. F. Linington, Z. Milosevic, J. Cole, S. Gibson, S. Kulka-
rni, and S. Neal. A unified behavioural model and a contract
language for extended enterprise. Data Knowledge and En-
gineering Journal, 51(1):5–29, Oct. 2004.

[14] J. Metso and L. Kutvonen. Managing Virtual Organizations
with Contracts. In Workshop on Contract Architectures and
Languages (CoALa2005), Enschede, The Netherlands, Sept.
2005.

[15] OASIS. UDDI Registry - Technical Specification, Feb. 2006.
http://uddi.org/pubs/uddi v3.htm.

[16] OASIS ebXML Collaboration Protocol Profile and Agree-
ment Technical Committee. Collaboration-Protocol
Profile and Agreement Specification. OASIS, Sept. 2002.
http://www.oasis-open.org/committees/
ebxml-cppa/documents/ebcpp-2 0.pdf.

[17] Object Management Group (OMG). CORBA Trading Ser-
vice, 2002. http://www.omg.org/cgi-bin/doc?
formal/2000-06-27.

[18] M. P. Papazoglou and D. Georgakopoulos. Introduction.
Communications of the ACM, 46(10):24–28, 2003.

[19] I. Ponka. Populaattori. Technical report, University of
Helsinki, 2004. Internal report, in Finnish.

[20] L. Rasmusson and S. Jansson. Simulated social control for
secure Internet commerce. In Proceedings of the 1996 work-
shop on New Security Paradigms, pages 18–25. ACM Press,
1996.

[21] S. Ruohomaa and L. Kutvonen. Trust management survey.
In Proceedings of the iTrust 3rd International Conference
on Trust Management, pages 77–92. Springer-Verlag, LNCS
3477/2005, May 2005.

[22] S. Ruohomaa, L. Viljanen, and L. Kutvonen. Guarding en-
terprise collaborations with trust decisions—the TuBE ap-
proach. In Proceedings of the First International Work-
shop on Interoperability Solutions to Trust, Security, Policies
and QoS for Enhanced Enterprise Systems (IS-TSPQ 2006),
Mar. 2006. To appear.

[23] T. Ruokolainen and L. Kutvonen. Interoperability in
Service-Based Communities. In C. Bussler and A. Haller,
editors, Business Process Management Workshops: BPM
2005 International Workshops, BPI, BPD, ENEI, BPRM,
WSCOBPM, BPS, pages 317–328. Springer-Verlag, LNCS
3812/2006.

[24] T. Ruokolainen and L. Kutvonen. Service typing in Collab-
orative Systems. In Interoperability for Enterprise Software
and Applications Conference (I-ESA2006). Springer Verlag,
2006.

[25] M. Schoop, A. Jertila, and T. List. Negoisst: A negotiation
support system for electronic business-to-business negoti-
ations in e-commerce. Data and Knowledge Engineering,
47(3):371–401, 2003.

[26] M. P. Singh and M. N. Huhns. Service-Oriented Comput-
ing: Semantic, Processes, Agents. John Wiley & Sons, Ltd.,
2005.

[27] S. Thatte et al. Business Process Execution Language for
Web Services. BEA Systems, IBM, Microsoft, SAP AG, and
Siebel Systems. ftp://www6.software.ibm.com/
software/developer/library/ws-bpel.pdf.

[28] L. Xu and M. A. Jeusfeld. Pro-active monitoring of elec-
tronic contracts. In Proc. CAiSE 03, number 2681 in Lecture
Notes in Computer Science. Springer-Verlag, 2003.

