Service Typing in Collaborative Systems

Toni Ruokolainen, Lea Kutvonen

Dept. of Computer Science
P.O. Box 68 (Gustaf Héllstromin katu 2b)
FI-00014 UNIVERSITY OF HELSINKI
FINLAND
toni.ruokolainen@cs.helsinki.fi,lea.kutvonen@cs.helsinki.fi

Abstract. Advanced enterprise computing environments are computing
systems comprised of networked business services and interwork-enabling
infrastructure services. Modern networked enterprises require flexibility
and openness of computing systems to tolerate changes in ever-changing
technology and business domains, and to gain a competitive edge. Such
requirements, however, make it difficult to achieve interoperability be-
tween distinct enterprise-information systems. This paper discusses the
use of service typing as the conceptual basis for achieving interoperability
in enterprise computing environments. Type management infrastructure
services are considered as an essential part of a future B2B-middleware
platform. First the notions of service typing and type management infras-
tructure are introduced. After this brief introduction, the use of service
typing is motivated. After this more detailed descriptions of service types
and type management functionality are given. We conclude with a brief
discussion and comparison to related fields of research.

1 Introduction

Advanced computing environments are inter-enterprise computing systems con-
sisting of networked enterprise services are supported by interwork-enabling in-
frastructure services. Current business models, outsourcing, highly specialised
core competencies and globalisation stress the openness and flexibility of en-
terprise computing environments. Openness provides possibilities for exploiting
business opportunities, such as formation of collaborations between enterprises
acting in different business domains or creating new kinds of business collabo-
ration networks as a reaction to market changes. Agility is needed for tolerating
and managing changes in both technology and business domains.

The architecture of enterprise computing systems must take into account the
inherent autonomy-related properties of network business: differences in busi-
ness strategies, operation models and legacy systems which induce technological
and semantic heterogeneity between enterprise information systems. Enterprises
are autonomous administration domains engaging practices best suited for their
own needs and they have internal policies regarding the use of their services.
Each enterprise exposes selected parts of their business functionality to clients
as business services. The term business service is used to make a distinction

between services provided by different vendors, public infrastructure (middle-
ware) services and the more general notion of a service. Business services in
enterprise computing environments are inherently dynamic entities since they
are regulated by the business rules and policies of the corresponding enterprises.
The behaviour of a business service provided by an enterprise may change with-
out warning, therefore business services may become available while others may
become inaccessible.

Due to the characteristics of modern business networks, interoperation of
business services becomes problematic: interoperation must be reached simulta-
neously at different abstraction levels and between varying aspects of service-
based communities [1]. The means to achieve interoperation must not conflict
with the requirements and characteristics of modern electronic business net-
works. A “loosely coupled” model of interoperation can be established by relying
on explicitly available meta-information describing the properties of business
services and networks, interoperation-safe service discovery mechanisms, nego-
tiable collaboration parameters and contract-based governance of the resulting
business network [2, 3]. This kind of collaboration model based on the notion
of business services, dynamically negotiable interoperation and eContracting is
called a federated service community. Relying on the aforementioned mechanisms
and service-oriented modelling of business networks, federated service communi-
ties tolerate the autonomy and dynamism inherent in inter-enterprise computing
as well as magsk heterogeneity of systems and processes.

Federated service communities require extensive infrastructure support for
meta-information management and interoperability validation, community breed-
ing, as well as runtime monitoring of communities. An essential part of the
required infrastructure is the service-trading system, which is used for for re-
trieving suitable business services that implement desired business functionality.
We use the term “service trading” to mean automated service discovery mecha-
nisms and to make a distinction from more generic yellow-page services such as
UDDI [4] which are more usable for service browsing. A service-trading infras-
tructure needs mechanisms to structure the amount of service offers into consis-
tent hierarchies as well as means to guarantee interoperation between business
services. These requirements can be fulfilled with service-typing.

A service type defines structural, semantic and behavioural characteristics
for a certain kind of business services and provides the basis for interoperability
validation through type checking procedures. Structural properties define the
syntax for business service interfaces and exchanged documents. Semantic anno-
tations can be attached to the documents. Behavioural descriptions define the
externally visible behaviour of business services.

Based on the principles of type systems, object and component typing, and
formal methods, a service type provides a rigorous basis for the tasks needed
through the life-cycle of business services and networks. Interoperation of busi-
ness services is provided by formally defined notions of substitutability and com-
patibility between corresponding service types. Type management infrastructure
is a public and distributed meta-information management system which main-

tains service type information and relationships between service types. Type
management infrastructure consists of public type repositories and name reg-
istries. Type repositories implement type checking and type matching function-
alities which are needed for interoperation validation during service trading.
Name registries are used for name-based resolution of meta-information in the
open distributed service-architecture.

This paper presents an approach of service type management for collabora-
tive computing environments which is realised in the web-Pilarcos project [2,5].
Some of the application areas of service-typing illustrating its benefits during
engineering of collaborative systems are described in Section 2. Section 3 de-
scribes characteristics of service types and type management systems. Implemen-
tation issues related to type repository functionality are introduced in Section 4.
The service-typing model and type-management infrastructure are similar to the
ODP model of open distributed processing [6,7] and is applied to Web-Services—
based environments.

2 Use of service types during business service life-cycle

Service types provide a uniform abstraction of business services for software en-
gineers, enterprise modelling experts and system administrators to establish an
interoperable collaborative system. Service types are used for interoperability
validation during the design of business services and by code generation and
conformance validation tools in implementation phase. For enterprise modelling
service types provide means for interoperation verification between business ser-
vices and networks. On deployment phase of business services and operation of
business networks service types are used to establish conformance validation.
The tools and platforms used in different phases use public infrastructure ser-
vices through common middleware interfaces.

Service types are products of the software engineering design phase and their
construction is supported by business service modelling tools. The design phase
captures the characteristics of the business service that are determined by ap-
plication domain, intended usage patterns and optionally by pre-existing service
types. This interdependence is illustrated as a two-way meta-information ex-
change between desing-time service modelling tools and public type repositories
in the Figure 1. Behavioural description provided by a service type can be utilised
for simulation and prototyping purposes. When the business service designer is
satisfied with the properties of the service type, it is published in a public type
repository. Before the new service type can be published, it has to be checked
against the typing rules of the targetted type repository. This functionality is to
be embedded into the service modelling tools.

In the implementation phase published service types are used to aid busi-
ness service development. Conformance and compatibility validations between
a service type and the implementation interface are used to guarantee interop-
erability with eligible business services. Service types can be used as templates
for the implementations. A suitable service type is fetched from a type reposi-

| | |
Design ! Implementation | Modelling ! Deployment
Service : Software : Enterprise : Community
Modelling : Engineering : Modelling : Configuration
Tools | Tools | Tools | Facilities
4 1 2 N 1 S l
:‘ : . \\ : : AN : ! |
[web—Pilarcos middleware interfaces

Meta—information
exchange:

Uses—relationship:

—_—

Type
Repositories

BNM
Repositories

Fig. 1. Use of service types during business service life-cycle.

tory, after which generative methods can be used to provide skeleton code for
the service implementation from the service type. This usage pattern of service
types is similar to the MDA [8] approach; service types can be considered as
a platform independent model (PIM) of business services. Service types could
also be used to generate dummy implementations for testing the implementation
with respect to other business services.

When the new business service is published in a public service offer repos-
itory, its behavioural properties and especially its conformance to the claimed
service type are verified. Each service offer must correspond to a service type
and when a service offer is exported to the system, its conformance with respect
to the claimed service type is validated. Service offer repositories use type repos-
itories to accomplish this task. This procedure guarantees type safety in them
by ensuring that no ill-typed business services are published.

Service types are re-usable design components. Their primary purpose during
the business network modelling phase is to provide well-structured design ele-
ments to be used with enterprise modelling tools. The structure and properties
of a business network are modeled in Business Network Models (BNM). Further
details of BNMs can be found from [5]. During the modelling phase, service types
are composed into business roles. Business roles are attached to each other with
connectors to describe the topology of the business network.

Enterprise modelling tools use type repositories for fetching interoperable
service types. Type checking and matching operations provided by type repos-
itories are exploited when verifying service type interoperability and searching
for applicable service types to use in the business network model. The resulting
business network model is published in a public BNM repository. During publi-

cation the corresponding business network model is verified using the validation
functionalities provided by type repositories.

Two different kinds of activities can be identified from the deployment phase
of federated service communities: community breeding and local computing in-
frastructure configuration. In the community breeding process a business net-
work model is used as a community template to be populated with business
services [2]. Service types are used for discovering the appropriate business ser-
vices. Business services can be located from service offer repositories directly
via their corresponding services types. However, the client is sometimes not in-
terested in business services with a specific service type, but instead looks for
business services which offer a certain kind of functionality. To serve this pur-
pose, a service offer repository may exploit type matching functionality provided
by the type repositories to return services of matching type. A matching business
service provides the same functionality semantically, yet it is not exactly of the
same service type.

As federated service communities are very loosely coupled open systems
and their collaboration is based on negotiated contracts, runtime monitoring
is needed for catching any erroneous behaviour and for establishing coordina-
tion of the community. For the local computation infrastructure configuration,
service types provide the means for generating the monitoring components or
configuring monitors with appropriate rules. Behavioural descriptions provided
by service types are used as a specification which must be matched by the run-
time behaviour of each business service.

3 Service types and their management

The main goal of type management functionality is to provide type safety. A type
essentially enumerates properties for a kind of object: if two objects have equal
types, then they should also have similar properties. Type safety basically means
that entities labeled to carry a type are required to respect the properties sub-
sumed by the type system. The type system provides rules for subsumed entity
properties, and methods for checking that the entities managed actually fulfill
these properties. For example, a programming language type gives requirements
for the representation of data items, rules for possible operations on them, and
rules for transformations between different types where meaningful. The valida-
tion of programming language type safety takes place at compilation time or in
the interpretation process.

We apply the idea of typing and type-based validation of safety properties
into the domain of business services. Service types are abstract descriptions which
define the properties for a kind of business services. A service type defines the
structural properties of a business service interface and documents. Semantic
annotations can be attached to document descriptions to distinguish concepts
that are semantically different but syntactically similar. In addition to the above
static properties, service types consider the dynamic properties of business ser-
vices in form of the behavioural descriptions. The behavioural description of a

service type prescribes the externally visible behaviour to be expected from busi-
ness services of the corresponding type. This approach is known as behavioural
typing [9,10].

Service type safety essentially means that business service interoperation is
guaranteed by service-typing rules. Interoperation of behaviourally typed ar-
tifacts reduces to two dual concepts of substitutability and compatibility [11].
Substitutability means that two business services can be replaced by each other.
Compatibility means that two services can co-operate in a meaningful way if
they are connected together: their interplay does not lead to a locking situation
and the types (structure and semantics) of communicated messages are the ex-
pected ones. The concepts of substitutability and compatibility, and rules for
verifying these properties have to be provided by the service-typing discipline.
Substitutability is manifested in the service-typing system by type equivalence
and subtyping rules. Compatibility of business service behaviour is provided with
use of the notions of session type duality and subtyping [11].

Service type checking, that is procedure of verifying the correspondence be-
tween a claimed type and an entity, is performed during service publication.
Given a service type and a service offer, a type checking algorithm verifies if the
structure and behaviour of the service offer corresponds to the requirements of
the service type. Functional properties of the type checking algorithm are char-
acterised by the service-typing rules. Service type checking must be performed
by the institution that is authoring the corresponding service offer repository
before the service offer can be published.

To enable efficient service discovery mechanisms needed for service trading,
the universe of service offers has to be structured into consistent, interoperation-
preserving hierarchies. For example in CORBA [12] nominal subtyping hierar-
chies are used for structuring the service offers in traders. In UDDI [4] stan-
dardised taxonomies, such as North American Industry Classification System
(NAICS), can be used to categorise service offers [13]. However, both of these
aforementioned approaches are only suitable for (semi-)closed and regulated sys-
tems, where interoperation is manifested by the notions, naming conventions and
concepts provided by out-of-band-negotiations. Service-typing discipline with
similarity measures based on behavioural and structural properties of business
services provides a more tractable structuring mechanism. For structuring pur-
poses the type system for service types must have concepts of type equivalence
and subtyping, and algorithms for checking these relationships between service

types.

Type management infrastructure is needed for guaranteeing type safety dur-
ing service trading in collaborative systems. Type management infrastructure
consists of two kinds of infrastructure services: type repositories and name reg-
istries. Type repositories are persistent storages of meta-information, in this case
service-typing information. Name registries provide facilities for name-based res-
olution of meta-information and are needed for governing naming policies. In the
following the characteristics of type repository functionality are described.

4 Type repository services

A type repository provides storage and management for service type descrip-
tions, relationships, and naming of types. A type repository is basically a persis-
tent storage of meta-information. The meta-information consists of type system
description, type descriptions and associations between these descriptions. The
type repository interface provides operations for adding, removing and query-
ing type information. The characterizing features of the type repository include
information representation method, type checking procedures, type matching
procedures, type naming conventions, and replication/partitioning for cooper-
ating type repositories [6,14,15]. The information represented consist of service
types, document types, basic types and relationships between the corresponding
types.

Service types are represented using a XML-based description language. A ser-
vice type schema comprises definitions for service attributes, document types,
and an interface protocol. Service attributes declare additional properties needed
for service selection. Document types define the structure for exchanged messages
using XML-Schemas [16]. Interface protocol provides a description of the the ex-
ternally observable service behaviour. A simplified abstract syntax of the service
type schema is given in Figure 2.

<serviceType
name = xs:string>
(serviceAttributes?, <iproto
documgntTypes, iproto) name = xs:NCName>
</serviceType> (channel+, session)
</iproto>

<serviceAttributes>

(property+) <channel
</serviceAttributes> name = xs:NCName>

[channel properties]

<property) </channel>

name = xs:string

type = xs:(QName <session

concept = xs:QName?> name = xs:NCName>
constraint? (parallel | sequence |
</property> if | repeat | choice)7

</session>

<documentTypes>

[XML-Schemas for documents]
</documentTypes>

Fig. 2. Simplified schema of a service type description.

Service attributes, such as quality of service prerequisites, are provided by
serviceAttributes-element which includes a set of property-elements. Each
property element defines a named property with a type, a semantic concept from
some shared ontology and an optional constraint. A constraint can be a set or
range-based restriction over the value-space of the property’s type. For example
a property of type xs:int can be attached with a range-based constraint such
that the integer value must be between values 0 to 5.

Document types used by the service type are defined in the documentTypes-
element. New documents types can be defined using the constructs represented
by XML-Schema -language [16]. Existing document type definitions can be
reused using namespace import mechanisms. Semantic annotations can be at-
tached into document types when needed.

An interface protocol described by the iproto-element in Figure 2 defines
bilateral behaviour for a business service. By constraining service to bilateral
connections, the modularity and independence of each business service and
thus reuse possibilities are increased. The interface protocol declares the service
behaviour (session-element) and a set of communication channel definitions
(channel-element). Sequences of communication actions, choices, parallel pro-
cesses, conditional processes and repetition are used for describing the service
behaviour. A session does not describe the whole life-time behaviour of a ser-
vice but one service conversation-instance with a client. Parallel instantiations of
service sessions with several clients are thus not modeled. Channel declarations
introduce communication channels to be used for interacting with the business
service.

Engineering level information, such as binding of a service instance into a spe-
cific communication protocol or address, is not covered by a service type. Instead
this kind of technical information as well as values or value ranges for service
attributes are declared in service offers. A service offer provides the bindings
between the communication actions defined in the service type and the cor-
responding Web-Services—compliant business service interface. These technical
bindings can be given for both SOAP/WSDL [17] and REST (REpresentational
State Transfer) [18] based business services; the communication mechanism is
not constrained by the service type.

In service type checking, the structural and behavioural properties of a service
offer are verified against the properties defined by a service type. Concerning
behaviour, each communication action described in the service offer has to be
matched with the communication behaviour defined in the service type. Both
substitutability and compatibility relationships can be used as a behavioural
matching criteria. For structural properties, similarity between the document
structures used in the service offer and document types declared in the service
type must be matched.

Thus, service type checking procedure requires thus algorithms for verify-
ing behavioural substitutability and compatiblity between the behaviours rep-
resented by a service offer and service type. Algorithms for verifying subschema
relationships between the corresponding document types are also needed. Al-
gorithms for checking behavioural substitutability and compatibility are based
on the behavioural subtyping relation and notion of behavioural duality of the
session typing discipline [11,19]. These syntax-directed algorithms are expected
to be efficient in practise [11]. For the purpose of subschema checking, XML-
document structures are to be considered as regular tree grammars and the
simulation relation between corresponding automata is used as a subschema, re-
lation [20]. In general case the algorithm for deciding the subschema relationship

has exponential complexity in the size of the schema, althoough the complexity
can be decreased to polynomial by constraining the schemas to be labelled-
determined [21]. Semantic correspondences between the concepts used in the
exchanged documents are not validated during the previous verification proce-
dure. Instead, semantic “proof obligations” are gathered during type checking
from the semantic annotations in the document structures. These proof obliga-
tions can then be validated utilising standard reasoning techniques and tools
used for ontology management.

Type matching procedures search for a set of types that satisfy the given
relationships with given types. Type matching is for searching for example ser-
vice types that are substitutable or compatible with each other. Type matching
is used during business service discovery to provide more flexibility and wider
range of results. Type matching relationships (substitutability, compatibility)
are asserted by users and validated by the corresponding type repositories. Thus
no special algorithms are needed for validating or inferring type matching except
for the substitutability or compatibility algorithms needed during validation of
the match. A user may also proclaim that two service types match via adaption.
In this case the user must provide the appropriate adaption service or adaption
specification. These kinds of matches can not be verified. The form of appropriate
adaption specifications are to be studied.

The type naming conventions are required for maintenance of identified ser-
vice types in the repository. In web-Pilarcos environment type names are for-
matted as Uniform Resource Identifiers, or URIs [22]. When type descriptions
are stored into repositories they are given unambiguous names. Names are main-
tained in the name registry subsystem which is responsible for name-based res-
olution of meta-information. Name registration must be strictly controlled by
name registries to maintain unambiguousness and global uniqueness of names.
A hierarchical name registry system with naming domains based on the names-
pace structure is one possibility to establish these requirements. Different kinds
of namespace structures can be established for example on the basis of appli-
cation, business or organisational domains. Aliasing mechanisms provided by
names are used to refer to a type description in another naming domain via a
local name.

In order to provide an useful infrastructure service for publishing and relating
service types for an open network, it is necessary to arrange for collaboration
between multiple repositories. Replication of type repository functionality and
local caching of type information are utilised to increase efficiency of the system.
Document type and service types declarations are reused via importing names-
paces or referencing names from other namespaces in service types and business
network models. Imports and references are considered as read-only references
and the imported type definitions can not be modified or extended. Circular de-
pendencies between type descriptions are not allowed or supported. Subtyping
by extension is allowed during publication of new document and service types.
When extending a document type with new structures or a service type with
new behaviour, the resulting subtype must be published in the same repository

as the corresponding super-type. These restrictions simplify the maintenance of
typing hierarchies and their consistency. Evolution of type descriptions necessi-
tates versioning support in the type repositories. Maintenance of type description
consistency evolution requires mechanisms similar as those taken in the KAON
platform [23] for example.

Service-typing discipline provides rules for expressing properties of business
services via service types and hierarchies between them. Essentially, service typ-
ing thus provides a kind of a distributed, shared ontology which defines rules
to express terms and relationships between the terms. However the “ontology”
induced by a typing discipline has some differences when compared to ontologies
used typically for knowledge representation. Typical knowledge representation
logics and languages are more suitable for representing static properties since
they usually do not have concepts for expressing communication and concur-
rency. Service types are software engineering artifacts whereas ontologies are
knowledge engineering artifacts: ontologies are by nature descriptive whereas
service types are declarative. Ontologies are usually used as annotated auxil-
iary information whereas types describe more fundamental properties and are
more tightly bound to structural and behavioural properties of business services.
Performance-wise, type checking is syntax directed and can use more specified
proof-techniques whereas inference in logic languages has to use more general,
usually more complex techniques.

The web-Pilarcos type repository provides its functionality through Web-
Services— compliant interfaces. The type repository functionality is implemented
with Java, as it currently provides the most comprehensive support for XML pro-
cessing and Web-Services—technology. The XSB logic programming and deduc-
tive database system [24] is used to implement part of the back-end functionality
and especially to infer the transitive closures induced by typing relations. The
type checking functionality will be implemented using an ML-language because
of its suitability for processing term-like structures and large code-base related
to functionalities needed for verifying properties of service types.

The type repository functionality of the web-Pilarcos platform is similar to
the type repository function of ODP reference model [7] and Meta-Object Facil-
ity standard of OMG [25]. The actual data or information (MO-level of MOF)
in the web-Pilarcos platform consists of service offers. The model-layer (M1)
consists of different service-types. The meta-model layer (MOF M2-level) de-
scribes target concepts and type relationships, such as the notions of service
types and compatibility relationships. It should be noted that basically only one
meta-model is currently provided in web-Pilarcos: the one based on the notion
of service types. The meta-meta-model (M3) contains hard-wired basic concepts
such as meta-classes, meta-associations and data types of XML-Schema.

5 Conclusion

Service-typing and corresponding type management infrastructure provides a
valuable tool for service-oriented software engineering. A service type provides an

unifying abstraction of business service functionality to be used by software engi-
neers, enterprise modelling experts and enterprise system administrators through
the life-cycle of business services. Type management infrastructure consists of
public type repositories and name registries. Type repositories are persistent
storages of typing information whereas name registries provide name-based res-
olution of meta-information and control over naming conventions.

Because collaborative systems involve interaction between independently ad-
ministered services, the supporting infrastructure must provide service trading
with type safety properties. In this context, type safety involves much of the
same issues as interoperability of business services. Having been involved with
the development of the ODP trading function, and type repository standards —
mostly shared publications with OMG [6,26] — we consider that the ODP refer-
ence model provides a necessary element for interoperability facilities. However,
the Web-Services technology family lacks similar consistency in type manage-
ment issues. The web-Pilarcos type management system provides enhancements
on both these frameworks: the ODP type system is complemented with more
specific meta-information needed on business services and behavioural aspects
of services. In comparison to the Web-Services approach, we suggest controlled
service type management within the infrastructure layer, and increased amount
of in-band regulation of interoperation knowledge and naming conventions.

Acknowledgement

This article is based on work performed in the Pilarcos and web-Pilarcos projects
at the Department of Computer Science at the University of Helsinki. The Pilar-
cos project was funded by the National Technology Agency TEKES in Finland,
Nokia, SysOpen and Tellabs. In web-Pilarcos, active partners have been VIT,
Elisa and SysOpen. The work much integrates with RM-ODP standards work,
and recently has found an interesting context in INTEROP NoE collaboration.

References

1. Ruokolainen, T., Kutvonen, L.: Interoperability in Service-based Communities. In
Bussler, C., ed.: Business Process Management — BPM 2005 Workshops, Springer-
Verlag (2005) To appear.

2. Kutvonen, L., Metso, J., Ruokolainen, T.: Inter-enterprise collaboration manage-
ment in dynamic business networks. In: OTM Confederated International Confer-
ences. Volume 3760 of LNCS., Springer-Verlag (2005)

3. Metso, J., Kutvonen, L.: Managing Virtual Organizations with Contracts. In:
Workshop on Contract Architectures and Languages (CoALa2005), Enschede, The
Netherlands (2005) To appear in the IEEE Digital Library.

4. UDDI: Universal Description, Discovery, and Integration of Business for the Web.
(2001)

5. Kutvonen, L., Ruokolainen, T., Metso, J., Haataja, J.: Interoperability middle-
ware for federated enterprise applications in web-Pilarcos. In: Interoperability of
Enterprise Software and Applications, Springer-Verlag (2005)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

ISO/IEC JTC1/SC7: ISO/IEC 14769: Information technology - Open distributed
processing - Type repository function. (1999)

ISO/IEC JTC1/SCT7: ISO/IEC 10746: Information technology — Open Distributed
Processing — Reference model. (1998)

Frankel, D.S.: Model Driven Architecture: Applying MDA to Enterprise Comput-
ing. OMG Press (2003)

Ravara, A., Vasconcelos, V.T.: Typing non-uniform concurrent objects. In: CON-
CUR ’00: Proceedings of the 11th International Conference on Concurrency The-
ory, London, UK, Springer-Verlag (2000) 474-488

Chaki, S., Rajamani, S.K., Rehof, J.: Types as models: model checking message-
passing programs. In: POPL ’02: Proceedings of the 29th symposium on Principles
of programming languages, New York, NY, USA, ACM Press (2002) 45-57
Vallecillo, A., Vasconcelos, V.T., Ravara, A.: Typing the behavior of objects and
components using session types. Electronic Notes in Theoretical Computer Science
68 (2003) Presented at FOCLASA’02.

Object Management Group: Common Object Request Broker Architecture
(CORBA) v3.0.3. (2004) OMG Document formal/04-03-01.

Singh, M.P., Huhns, M.N.: Service-Oriented Computing: Semantics, Processes,
Agents. John Wiley & Sons, Ltd. (2005)

Muenke, M., Lamersdorf, W., Christiansen, B.O., Mueller-Jones, K.: Type man-
agement: A key to software reuse in open distributed systems. In: 1st International
Enterprise Distributed Object Computing Conference (EDOC ’97). (1997)
Kutvonen, L.: Trading services in open distributed environments. PhD thesis,
University of Helsinki (1998)

W3C: XML Schema Documentation; Part 1:Structures, Part 2: Datatypes. 2nd
edn. (2004) W3C Recommendation, http://wuw.w3. org/XML/Schema.
Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web Services De-
scription Language (WSDL) 1.1. W3C. 1.1 edn. (2001)

Goth, G.: Critics Say Web Services Need a REST. IEEE Distributed Systems
Online 5 (2004) 1

Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: Proceedings of the 7th
European Symposium on Programming, Springer-Verlag (1998) 122-138

Amadio, R.M., Cardelli, L.: Subtyping recursive types. ACM Transactions on
Programming Languages and Systems 15 (1993) 575-631

Brown, A., Laneve, C., Meredith, G.: PiDuce: A process calculus with native XML
datatypes. In: 2nd International Workshop on Web Services and Formal Methods
(WS-FM 2005), Springer-Verlag (2005) To appear.

Berners-Lee, T., Fielding, R., Masinter, L.: Uniform Resource Identifiers (URI):
Generic Syntax (1998) RFC 2396.

Maedche, A., Motik, B., Stojanovic, L.: Managing multiple and distributed on-
tologies on the Semantic Web. The VLDB Journal 12 (2003) 286-302

Sagonas, K., Swift, T., Warren, D.S.: XSB as an efficient deductive database
engine. In: SIGMOD ’94: International conference on Management of data, New
York, NY, USA, ACM Press (1994) 442-453

Object Management Group: Meta Object Facility (MOF) 2.0 Core Specification.
2.0 edn. (2003)

ISO/IEC JTC1l: ISO/IEC 13235: Information Technology — Open Distributed
Processing. ODP Trading function. (1997)

