
1

Framework for managing features of

open service ecosystems
Toni Ruokolainen

Department of Computer Science, University of Helsinki, FINLAND

Lea Kutvonen

Department of Computer Science, University of Helsinki, FINLAND

ABSTRACT
The recent increased use of Internet, social media, and networked business mark a development trend where

software-based services flow to the open market for enabling service-oriented networked business. Our

vision is that in future, organizations and individuals collaborate within open service ecosystems. An open

service ecosystem is characterized especially by the autonomy of its entities, its evolution with respect to

available services and collaboration types, and dynamic establishment of collaborations. For facilitating

collaboration establishment in open service ecosystems features of services and cooperation facilities, and

feature inter-dependencies need to be governed rigorously. Towards this purpose we have established a

framework for unambiguous description of service ecosystem features. The framework comprises a

conceptual model which provides especially a categorization of features, and a formalization of the

conceptual model as a meta-model for service ecosystems. We show that the corresponding feature

categories have their specific roles and semantics as part of different ecosystem elements and in different

phases of service ecosystem processes.

1. INTRODUCTION

The recent increased use of Internet, social media, and networked business mark a development trend where

software-based services flow to the open market. Technological approaches like SaaS, SOA, and Web

Services present tools and architectures for this: they provide protocols for accessing remote functionality

encapsulated to a business-relevant units, declared available though service registries and manifests of

service functionality, requirements for messaging platform support, information representation and

semantics, and choreography (protocol) for exchanges in utilising the service.

However, this situation is uncontrolled and uncontrollable in several ways. First, the trustworthiness of

the services marketed is unknown, as there is no guaranteed knowledge (facts) about their properties. The

clientele is left to rely on declarations by the service providers. The declarations carry several risk aspects.

The semantic of the declaration may be obscure due to the lack of shared vocabulary for describing service

behaviour in functional and nonfunctional aspects exists. Furthermore, the declarations can be biased, as the

cost of inaccurate declarations is not sufficient as an incentive.

Second, the interoperability between independently developed services is immature, especially in terms

of nonfunctional properties. There is no commonly accepted framework for functionality and selectable

properties or property management for those functions. Middleware platforms have built-in support for

various transparency properties (e.g., location and access, data representation, transactionality) and various

security technologies (e.g., encryption, non-repudiation), but as the groupings of properties differ, the

interworking challenges still exist. Furthermore, the concepts of nonfunctional properties commonly refer to

platform services, but in modern social networking and inter-enterprise collaboration scenarios, business

2

and user oriented properties (such as policies for governing joint behaviour, pricing schemes, privacy

preservation declarations) are relevant requirements.

Third, the current platforms weakly support collaboration management or concepts required for it.

Concepts of contracts, parties, authority and ownership, policies and breaches of contracts causing sanctions

are necessary for the different kinds of networked collaborations.

As a partial solution to these challenges, software ecosystems have become popular as a means for

producing software applications more efficiently for heterogeneous clientele with varying requirements. A

software ecosystem is typically based on a software platform provided by an organization. The platform is

then used by internal and external developers for implementation of applications (Bosch & Bosch-Sijtsema,

2010). Software ecosystem strategy is utilized by companies such as Amazon
i
 or Nokia

ii
 for establishing

communities of developers and clientele over their own corresponding platforms.

While the software ecosystem approach emphasises the software production challenges, the open use of

services from the open marketplace is stressed by service ecosystem approaches. A service ecosystem is an

environment for creating and managing service-based collaborations, such as virtual organizations or

service mash-ups, from services provided by a community of service providers. Service ecosystems exist

currently especially in form of platform provider specific Software-as-a-Service (SaaS) -environments. The

typical service ecosystems available currently are closed, meaning that the methods and technologies used

for providing new services are pre-determined by the hosting environment, and service compositions and

collaboration networks are determined statically during service development. Such closed ecosystems can

not be applied in domains where services are to be provided and managed by autonomous entities, or when

service collaboration networks are to be established dynamically on demand.

The challenge still remains to provide an environment where several service-oriented software

engineering (SOSE) methodologies and distributed teams could produce services that easily can be

organised into collaborations managed by dynamic contracts, because linkage between these two sides is

missing.

The main architecture design must address a more complex situation where the clientele and the

ecosystem itself have potential conflicts of interest in details, but still, the members of the ecosystem have

incentives for collaboration both at business network level and ecosystem introduction, control and

evolution levels.

Instead of considering nonfunctional features as a single, uniformly directed domain of research, there is

definite need to address separately three levels: i) business collaboration aspects, ii) service properties, and

iii) collaborative management of communication technology usage in specific cases. For the business

collaboration aspects, the declaration of vocabulary and behaviour requirements is directed by companies

and consortia focusing on issues including business processes, legal systems, business models. For service

properties, the aspects to be managed will be implemented mainly as software – and thus design choices

depend on the software engineering practices used – but the management of quality, business issues and user

interaction aspects need to be aligned across the service ecosystem with the needs of the business

collaboration level. Further, the communication technology needs to be governable though shared

vocabulary with the level above, although the facilities are provided and designed by platform service

producers.

Our vision in the CINCO group (Collaborative and Interoperable Computing research group,

http://cinco.cs.helsinki.fi) is that in future, organizations and individuals collaborate within open service

ecosystems for enabling service-oriented networked business. An open service ecosystem is characterized

especially by the autonomy of its entities, its evolution with respect to available services and collaboration

types, and dynamic establishment of collaborations. In an open service ecosystem the service providers and

clients are not bound to a shared development platform. Instead, each ecosystem member may utilize

methods and technologies that suit best their own needs. A set of global infrastructure services are then used

for service publication and discovery, as well as dynamic establishment of service-based collaboration

networks (Kutvonen, Ruokolainen, Ruohomaa, & Metso, 2008). An open service ecosystem is based on the

service-oriented architecture (SOA) architectural style with service brokering and dynamic binding

3

facilities, but requires more sophisticated infrastructure services for enabling interoperable service

collaboration.

The contribution of this Chapter is built up in steps. First we introduce the service ecosystem framework

that merges the concepts for service-oriented software engineering and eContracting in such a way that

ecosystem level evolution is facilitated. This provides the environment in which, as the second step, the

enhanced concepts of ecosystem features can be connected to the relevant primary targets, i.e. service,

collaboration and communication. Once the concepts are introduced, the third step provides the processes

necessary for evolving the open service ecosystem understanding and usage of the features. This text

provides insight for the Pilarcos ecosystem work, and as new contribution, introduces the feature

management method within the Pilarcos ecosystem frame. Thus the text reflects the CINCO group vision

that in future, individual users, enterprises or public organizations can easily compose new services from

open service markets, or establish temporary collaborations with complex peer relationships. Furthermore,

these contract-governed collaborations can be managed by all involved parties. All this is supported by a

global infrastructure with facilities for interoperability control and contract-based community management

(establishment, control and breach recovery) among autonomous organization; this infrastructure also takes

responsibility of governing trust and privacy-preservation issues. The support environment is

complemented with service-oriented software engineering practices that enable semantic and pragmatic

interoperability management.

Section 2 introduces the open service ecosystem, while Section 3 elaborates on the ecosystem spanning

from technical platforms to business-oriented needs of managing inter-enterprise collaborations. Section 3

demonstrates the conceptual model and its formalization as a meta-model hierarchy, and how the necessary

concepts can be organised to achieve the goals of synchronous management of the three levels of issues

described above. Section 4 proceeds then to discuss management of features in several service ecosystem

processes: service ecosystem life-cycles, eContracting, and ecosystem evolution. Section 5 discusses the

benefits of the framework, while conclusions are given in Section 6.

2. OPEN SERVICE ECOSYSTEM

We propose open service ecosystems as a coherent solution for the challenges of interoperability and

collaboration management, met in the phases of service production and utilisation through collaborations,

and innovation of new types of collaborations and services. Most of the challenges arise from the inherent

and necessary independence of actors involved, including collaboration partners, parties engineering

services, clients, and platform providers.

In terms of operational time composability of services and facilities of inter-enterprise collaborations, a

key point is sufficient, automated support for interoperability. Interoperability concept covers technical,

semantic and pragmatic interoperability aspects. Technical interoperability is concerned with connectivity

between the computational services, allowing messages to be transported from one application to another.

Semantic interoperability means that the message content becomes understood in the same way by the

senders and the receivers. This concerns both information representation and messaging sequences.

Pragmatic interoperability captures the willingness of partners to perform the actions needed for the

collaboration. This willingness to participate refers both to the capability of performing a requested action,

and to policies dictating whether it is preferable for the enterprise to allow that action to take place.

At the design and engineering time concerns include efficient production and maintenance of service

software with clear, published interfaces and behaviour descriptions. While the direct production concern is

how to extend model-based methodologies to distributed team environment, an even more pressing is the

need of producing exploitable, composable services that can be managed in such a way that interoperability

can be achieved at operational time. Behind these two problem areas remains the problem of changing

business models and changing computing and communication platforms: both the production and

operational systems should be tolerant for changes.

4

Against this background we define a service ecosystem as an environment for creating and managing

service-based collaborations, such as virtual organizations or service mash-ups, from services provided by a

community of autonomous entities. In future service-oriented networked business, organizations and

individuals collaborate within service ecosystems. Currently there are several emerging service ecosystems

in the domains of business and technology. Software ecosystems (Bosch & Bosch-Sijtsema, 2010) are

utilized by enterprises for producing software applications more efficiently for heterogeneous clientele with

varying requirements. Software ecosystems can be characterized as product centric service ecosystems.

Different kinds of electronic business networking environments, such as eCommerce platforms, supply

chains, and virtual organizations, can be considered as collaboration and process centric service ecosystems.

Cloud computing platforms, such as provided by Amazon, Google, or Salesforce, are resource centric

service ecosystems. Finally, community and individual centric service ecosystems are realized by social

networking platforms such as Facebook, LinkedIn or MySpace. The maturity of these ecosystems vary from

closed software systems to open collaboration systems with ad hoc collaboration models.

For us, the open service ecosystem is characterized especially by its evolution with respect to available

services and collaboration types, and dynamic establishment of collaborations. Indeed, the purpose of the

ecosystem is to provide infrastructure, tools and vocabulary for independent entities (people, organisations,

collaborations) to create new collaborations, utilising the already existing services from the ecosystem. This

is in contrast to a common goal in related work (e.g., ECOLEAD (Rabelo, Gusmeroli, Arana, & Nagellen,

2006), CrossWork (Mehandjiev & Grefen, 2010)) for creating a shared space with a shared incentives of the

members. In open service ecosystems the initiators of collaborations each have their private incentives and

conflicts of interest are to be expected, and resolution of such conflicts need to be supported.

The open service ecosystems are defined by a conceptual framework and a set of life cycles:

• The conceptual framework provides a vocabulary and an ontology for defining the properties of

services, collaborations and entities in the ecosystem.

• A service ecosystem life cycle declares which kinds of activities are expected from the ecosystem

participants to support the operation of the ecosystem. Foundational ecosystem life cycles, which

exist in every service ecosystem, include a service life cycle and a collaboration establishment life

cycle. Additional life cycles can be associated with a service ecosystem depending on the

requirements of the domain of interest, such as ecosystem evolution life-cycle.

The service life cycle addresses steps of service innovation, modeling, production and utilisation. Therefore,

the service-oriented software engineering methodologies and instruments must produce modules that

exploit the facilities of the ecosystem infrastructure for efficient and dependable service delivery (i.e.

service publication, discovery, selection, location and binding). The collaboration establishment life cycle

relies on artifacts defining the content of contracts, and infrastructure mechanisms for dynamic

establishment of safe, interoperable service collaborations taking qualitative requirements into

consideration. The ecosystem evolution life-cycle allows the concept base and infrastructure service base to

be enhanced and modified while the ecosystem is utilised. This evolution then allows existing SOSE

methods and eContracting methods to facilitate the new innovations.

The Pilarcos ecosystem illustrated in Figure 1 can be considered as a concretization of the ecosystem

framework. The Pilarcos architecture views inter-enterprise collaboration as a loosely-coupled, dynamic

constellation of business services. The constellation is governed by an eContract that captures the business

network model describing the roles and interactions of the collaboration, the member services, and policies

governing the joint behavior (Kutvonen, Metso, & Ruohomaa, 2007, Kutvonen, Ruokolainen, & Metso,

2007).

The Pilarcos architecture for the open service ecosystem comprises of

1. the participating enterprises, with their public business service portfolios exported (Kutvonen,

Ruokolainen, Ruohomaa, & Metso, 2008);

2. business-domain governing consortia, with their public models of business scenarios and

business models expressed as exported business network models (comprising a set of business

5

process descriptions and compulsory associations between roles in them, and governing policies

about acceptable behavior)(Kutvonen, 2002);

3. a joint ontology about vocabulary to be used for contract negotiation, commitment and

control (Metso & Kutvonen, 2005, Ruokolainen & Kutvonen, 2006, 2007b);

4. legislative rules to define acceptable contracts (Metso & Kutvonen, 2005);

5. technical rules to define conformance rules over all categories of meta-information held as

collaboration and interoperability knowledge (Ruokolainen, 2009, Ruokolainen & Kutvonen,

2007a);

6. infrastructure services to support partner discovery and selection, contract negotiation and

commitment to new collaborations, monitoring of contracted behavior of partners, and breach

detection and recovery services; these services especially include trust aspects in

decision-making on commitment and breaches (Kutvonen, Metso, & Ruohomaa, 2007,

Kutvonen, Ruokolainen, & Metso, 2007);

7. reputation information flow, collected from past collaborations (Ruohomaa & Kutvonen, 2008,

Ruohomaa, Viljanen, & Kutvonen, 2006).

Figure 1: A schematic view of the Pilarcos service ecosystem life-cycles.

Figure 1 illustrates the ecosystem life-cycles. On the left, meta-information repositories and flows are

shown to be created by the publishing and exporting processes denoted above as items 1 and 2. The

repositories in particular contain public information about the available business network models, available

services and reputation information about the available services. This information is stored in globally

federated repositories, applying strictly specified structuring and conformance rule (Kutvonen, 2004)

created by the processes listed above as items 3, 4 and 5. The information is in turn utilized by the ecosystem

infrastructure functions listed as item 6, e.g. service discovery and selection, eContracting functions,

6

monitoring of business services and reporting of experience on the services when a collaboration terminates.

These functions are further described below.

On the right, the life-cycle of independent collaborations is shown to flow from establishment to

evaluation at the dissolution phase. The infrastructure functions provide support for the four phases of the

collaboration: establishment, agreement, enactment and control, and evaluation. In the Pilarcos framework

the collaboration establishment is a multi-lateral process involving a collaboration initiator and one or more

service providers that have published their services in the service ecosystem.

Service discovery and selection supports the collaboration establishment phase. It is based on public

business network models describing the collaborations, and public service offers made by service

providers (Kutvonen, Metso, & Ruohomaa, 2007, Ruokolainen & Kutvonen, 2007b). The business network

models capture the best practices of a given field, and they are built from formally defined service types.

The task of producing these models and types naturally falls to consortia and standardization bodies.

Service selection includes automated static interoperability checking, which ensures that the service

offers fit the model of the collaboration, and have terms that are compatible with other offers being selected

into the proposed business network. As service discovery and selection is separate from contract

negotiations, it can be done without access to sensitive information; this makes it possible to have this task

implemented as a third-party service (Kutvonen, Metso, & Ruohomaa, 2007).

Automated eContract establishment supports the agreement phase of the collaboration (Kutvonen,

Metso, & Ruohomaa, 2007). The business network model and the proposed service offers to populate the

roles in it are processed by an automated contract negotiation infrastructure, which is controlled locally by

each collaboration partner. Contracts are based on templates specific to the collaboration model, and the

terms of service provision given in service offers form the basis of negotiations. The negotiated eContract

includes a model of the business process of the collaboration, as well as the finalized terms of service in the

form of accepted service offers.

Monitoring supports the enactment and control phase of the collaboration in particular (Kutvonen,

Metso, & Ruokolainen, 2005). It is done by each collaborator to protect local resources, keep track of the

progress of the collaboration, and to ensure that partners follow the collaboration model. The business

network model and service provision terms set by the negotiated eContract form the specification of correct

behavior in the collaboration, which becomes relatively straightforward to monitor.

Experience reporting supports the evaluation phase of the collaboration, and connects to the monitoring

service during the enactment of the collaboration (Ruohomaa & Kutvonen, 2008, Ruohomaa et al., 2006).

Experience reporting forms the core of social control in the open service ecosystem. As contract violations

are detected by monitors, they are published to other actors as well: it is important to create a direct

reputation impact to privacy and data security violations in order to limit the damage that misbehaving

actors can achieve in other collaborations.

For evaluating the ecosystem approach, a set of prototype infrastructure services has been implemented

in the Pilarcos interoperability middleware (Kutvonen et al., 2008). Systematic performance testing of the

framework has been conducted in the context of the Pilarcos interoperability middleware. The results show

that the approach is feasible performance-wise (Metso & Kutvonen, 2005). The conceptual framework and

the corresponding metamodels has been scrutinized during their development with architectural analysis.

For example, a threat analysis has been conducted with respect to privacy issues (Moen et al, 2010).

As can be detected experimenting with the Pilarcos type of ecosystem, the ecosystem features have

several roles within service ecosystems. They are used as qualitative service features, for example during

service discovery and selection. During collaboration establishment they are considered as contractual

artifacts that are negotiated between entities willing to establish service-based collaborations. Finally, they

are deployable products, that is artifacts created by someone using a specific process, which are put into use

during collaboration enactment. Furthermore, while the set of possible service ecosystem features is open

and can not be predetermined or enumerated due to their context dependency and evolution of an open

service ecosystem, their usage can be disciplined by deliberate management facilities. These facilities

involve design and deployment of the features, as well the operational time facilities for governing their

utilization.

7

3. FEATURES IN SERVICE ECOSYSTEMS

Service ecosystem is a socio-technical complex systems where autonomic entities collaborate with each

other over a service-oriented computing environment. The service-oriented computing environment

provides infrastructure services for establishing interoperable collaborations. Collaborations are enabled by

cooperation facilities, such as communication channels, that are set up during collaboration establishment

for arbitrating activities and knowledge between ecosystem members. In service ecosystems the different

features of entities and cooperation facilities affect the structure, behaviour and qualities of service-based

collaborations.

For facilitating collaboration establishment processes and other service ecosystem processes the features

and their inter-dependencies need to be governed rigorously. Towards this purpose we have established a

framework for unambiguous description of service ecosystem features. The framework comprises a

conceptual model which provides especially a categorization of features, and a formalization of the

conceptual model as a meta-model for service ecosystems. In the following we describe the categorization

of service ecosystem features. As we will see, the categorization does not actually contain a notion of

non-functional features. Different features in service ecosystems govern activities taken in different phases

of ecosystem life-cycles: so-called cooperative features defining intensions of legal entities are used for

decision making in the preparatory phases of collaboration establishment, whereas so-called

extra-functional features declare qualitative features of interaction and communication. All service

ecosystem features have active roles during collaboration establishment processes (e.g. virtual organization

establishment).

In this Section we discuss the characteristics of service ecosystem features and their management. We

first define what we mean with feature management and discuss related problems, and activities. We then

provide a categorization of service ecosystem entities and cooperation facilities that are utilized for enabling

service-based collaborations. After that we define a categorization of ecosystem features. The

categorization is derived from the identification of ecosystem entities and cooperation facilities, and

requirements stemming from foundational ecosystem life-cycles, such as collaboration establishment

life-cycles. The categorizations and the conceptual framework describing relationships between the kinds of

ecosystem entities, cooperation facilities, and their features are formalized in a service ecosystem

meta-model. UML class diagrams (Object Management Group, 2005) described in this Chapter illustrate

parts of a larger modelling framework (Ruokolainen, 2009) for managing service ecosystem knowledge.

Finally, we provide a discussion of the semantics for service ecosystem features. We perceive that each

feature category is associated with a distinguishing semantic framework.

Managing service ecosystem features

Managing features of software systems is problematic: features may have complex dependencies with each

other, they can be defined at different abstraction levels, and interpretation of their meaning or importance

can be subjective. In addition to these generic problems, more specific challenges are introduced for feature

management in open service ecosystems. In open service ecosystems new kinds of features emerge

following the demands of the individual members and the domain of operation. This dynamism of the

knowledge landscape must be addressed by mechanisms that allow extension of the feature ontologies. Due

to the autonomy of ecosystem members feature management can not be centrally controlled. Instead,

features should be managed using a federated approach where feature descriptions can be shared between

ecosystem members and utilized efficiently in the local systems. Finally, for guaranteeing interoperability

during dynamic collaboration establishment processes, features should be provided with rigorous and

unambiguous semantics.

Features can have several kinds of inter-dependencies. When addressing features at the same level of

abstraction, features may have horizontal interactions with each other. Behavioural features of business

8

services can be affected by security features requiring key-exchange protocols, for example. Another

example of horizontal feature interaction is the potential conflict between performance and security

features: introduction of communication encryption may increase the response time of business service.

Features at the same level of abstraction may require other features to function correctly: introducing

message encryption feature on a communication endpoint is typically not valid without introducing an

decryption feature on the other communication endpoint. Finally, features may have direct conflicts with

each other (e.g. monitoring of communication vs. privacy preservation), be mutually exclusive (e.g.

different message encryption schemes), or have some domain specific dependencies with each other.

Features are defined in different levels of abstraction for decreasing the complexity of their description

and for achieving loose coupling between business and technology. In this setting features defined at a

higher level of abstraction are instantiated at a lower level of abstraction by a collection of more specific

features. For example, at the business level a feature requirement for communication confidentiality is

declared. This high-level feature can be implemented at a lower level of abstraction by an appropriate

combination of features representing strong encryption and privacy. Further down the abstraction chain, the

feature of strong encryption can be implemented by providing a feature that represents usage of RSA

algorithm with 1024 bit key length, for example.

Especially in open service ecosystems the subjectivity of interpretation of feature intensions has to be

addressed carefully. Without a shared understanding about the meaning of ecosystem features,

identification and selection of eligible features, and analysis of feature interoperability are impossible. For

this purpose, means for categorizing service ecosystem features must be provided. The categorization is

utilized for classifying available features such that features providing required characteristics of business

services and communication can be efficiently identified. Such feature categorization provides a basis for an

ontology of service ecosystem features. In addition to prescribing feature categories, such ontology should

also provide means for defining horizontal and vertical feature dependencies.

For increasing the elasticity and sustainability of the service ecosystem, an ontology describing service

ecosystem features must be dynamically extensible. Especially, it should be possible to introduce new kinds

of feature categories on demand. A modelling framework that is based on the powertype pattern (see

e.g. (Gonzalez-Perez & Henderson-Sellers, 2006)) or some other means for dynamic type definition should

be used. While it may be sufficient in other contexts to use ontologies for simply describing features, such as

has been done for example in (Kabilan et al., 2007) or (Kassab, Ormandjieva, & Daneva, 2009), this is not

sufficient in open service ecosystems. Instead, feature definitions need to be provided also with prescriptive

definitions for reducing ambiguity in feature interpretation, and for enabling efficient feature

implementation in ecosystem member organizations. Feature intensions in service ecosystem domain

ontologies can be formalized as meta-models and models (Ruokolainen, 2009).

However, even defining both the descriptive and prescriptive characteristics of features is not sufficient

in open service ecosystems. While such an ontology provides some guidance especially for the selection and

development of required features, from the interoperability management perspective these descriptions are

incomplete. What is still missing from this setting is rigorous semantics providing unambiguous

interpretation of feature intensions and dependencies. This deficiency can be approached with abstract

platform thinking and by providing proper semantics for the different categories of features.

An abstract platform represents the support that is assumed by platform-independent models of a

distributed application (Almeida, Dijkman, Sinderen, & Pires, 2004). In open service ecosystems abstract

platforms are made explicit by models that prescribe the characteristics of interaction and communication.

From feature management perspective, these models provide a mechanism for prescribing the effects that

certain features have on interaction and communication. More over, feature dependencies can be

characterized with respect to abstract platform models, such as descriptions of communication channels. For

example, it can be described that two specific features can not be bound simultaneously to a communication

channel.

Semantics for features in service ecosystems should be formalized by using proper, category specific

semantics. Behavioural features of services can be formalized using Petri-nets, process algebra, or finite

state automata, for example. Structural features of communicated information can be formalized based on

9

different type systems. Policies and business rules, which are kinds of non-functional features, can be

formalized as temporal or deontic constraints over service behaviour. Different alternatives for formalizing

feature semantics are discussed below, after introducing the feature categories of service ecosystems.

Service ecosystem entities and cooperation facilities

Features in service ecosystems specify the characteristics of ecosystem entities and abstract platform

components. An entity has its own existence and has an identity (e.g. a unique identifier, address, name, or

URI) which can be used for referring to and identifying the corresponding entity. Examples of service

ecosystem entities are organizations, individuals, business services, and service endpoints. We consider

entities and features as the primary artifacts in service ecosystems, and meaning of an entity is prescribed by

the features it possesses. Abstract platform components are called in this framework as cooperation

facilities, since they provide elements that are needed for realizing interaction and communication in service

ecosystems. Denotation of a cooperation facility comprises a selection of features.

A diagram illustrating the relationships between entity kinds and features, as well as the top-level

categorization to functional and legal entity kinds is given in Figure 2. The notions of Concept and Intension

are foundational parts of the service ecosystem meta-model which enable ontological and linguistic

meta-modelling practices (Ruokolainen, 2009).

Figure 2: Ecosystem entity kinds.

Functional entities provide the essential activities, behaviour, and interactions for realizing collaboration in

service ecosystems. Functional entities comprise endpoint, information, behavioural and service entity

kinds, as illustrated in Figure 3. The intensions of functional entities are prescribed by functional features.

10

Figure 3: Functional entity kinds.

Endpoint entities represent interaction endpoints in the system. Their features declare what kind of

interaction semantics is to be used, e.g. remote procedure calls or publish-subscribe. Information entities

represent information contents available in the system with the corresponding features describing business

document structures, for example. Behavioural entities’ intensions compose behavioural patterns that are

supported for realizing collaborations in the ecosystem. We may have behavioural entities that define

simple message exchange patterns (MEPs) of the web services architecture (Web Services Architecture

Working Group, 2004) or behavioural entities that declare more complex business protocols, as in the case

of the Pilarcos service ecosystem (Kutvonen, Ruokolainen, et al., 2008, Ruokolainen & Kutvonen, 2007b).

Finally, service entities represent the actual services available in the system. Service entities are further

classified to two distinct categories: business services and infrastructure services. Business services are used

in the business networks for realizing collaboration activities. Infrastructure services, such as business

service discovery services or populators (Kutvonen, Ruokolainen, et al., 2008), are used for realizing

service ecosystem life-cycle activities.

Service providers, consumers, clientele and other real-life actors are represented in service ecosystems

by the concept of legal entity. Legal entities are categorized to individuals and organizations, as illustrated

in Figure 4. The intension of a legal entity kind is defined by a collection of cooperative features. A

cooperative feature can prescribe policies a legal entity must conform to, or declare a reputation mechanism

for evaluating the trustworthiness of a legal entity.

Figure 4: Legal entity kinds.

Cooperation facilities provide elements for describing the abstract platform of a service ecosystem. These

abstractions provide representations for interaction and communication which are agnostic with respect to

the actual technological platforms (e.g. web services or other middleware platform) used. The

categorization of cooperation facilities is illustrated in Figure 5. Intensions of cooperation facilities are

defined by a set of facility features.

11

Figure 5: Cooperation facilities.

There are two categories of cooperation facilities: channel types and binding types. Binding types represent

interaction relationships taking place between two or more service endpoints. A binding type provides an

abstraction for declaring interaction characteristics, such as if interaction is to be taken in a one-to-one or

one-to-many setting. Binding types provide especially an abstraction for interception mechanisms that can

be utilized for adaptation (e.g. mappings in different representation formats), exogenous coordination (e.g.

notifications about specific communication activities), or implementing enterprise integration patterns.

Channel types are used for declaring abstract communication media and their features. A channel type

comprises an ordered set of channel phases. Each phase represents an individual activity that must be taken

for propagating the communication payload from one interaction endpoint to another.

Categorization of service ecosystem features

To facilitate interoperability management in service ecosystems it becomes essential to unambiguously

specify ecosystem features. As was discussed above, a specification of ecosystem features must declare

both descriptive (ontological) and prescriptive (engineering) characteristics of the features. In the following,

we introduce a descriptive categorization of service ecosystem features. The categorization is based on

definition of ecosystem entities and cooperation facilities. Especially, most of the feature categories are

declared for providing intensions for the entities and cooperation facilities. In addition, qualitative features

affecting the functionality of entities and cooperation facilities are provided with appropriate categories.

The categorization of service ecosystem features identifies five different categories, namely

1) functional features, 2) facility features, 3) cooperative features, 4) contractual features, and

5) extra-functional features. The categorization is illustrated in Figure 6. Functional features declare

intensions of functional entity kinds, while cooperative features are associated with legal entity kinds.

Facility features provide meaning for the cooperation facilities. Cooperative, contractual and

extra-functional features are qualitative features of legal entity kinds, business services and operations, and

cooperation facilities, correspondingly. In the following we discuss the non-functional part of this

categorization; features associated with semantics of functional entities such as business services,

information or service endpoints are not discussed further in this Chapter.

12

Figure 6: Service ecosystem feature categories.

Facility features define the characteristics of cooperation facilities and thus, the abstract platform. There are

two categories of facility features, namely binding port types and channel phases, as illustrated in Figure 7.

Binding port types are used for specifying the intensions of binding types. Each binding port type represents

an endpoint of an interaction relationship. A binding port type can be associated with an endpoint entity kind

(e.g. a service endpoint), or another binding port type. These different associations of binding port types

provide representations for typical interaction and exogenous coordination patterns, correspondingly. The

intension of a channel type is declared by an ordered set of channel phases. The ordering is provided by the

predecessor-association inherited from the concept of Event. Each channel phase declared in a channel type

is associated with a binding port type defined in a binding type. This effectively makes the set of channel

phases a bipartite collection, each phase now belonging to a set associated with one of the two binding port

types defined in a binding type.

Figure 7: Facility features.

Cooperative features represent a category of service ecosystem features that define the intensions of legal

entities. Legal entities are characterized by the rules they must conform to, and means for judging their

trustworthiness in a service ecosystem community. As illustrated in Figure 8, the characteristics are

represented by the concepts of Policy and ReputationKind. Cooperative features are utilized in the decision

making phase of collaboration establishment processes for evaluating the feasibility of a potential service

provider. During the operation of a business network community the rules declared by cooperative features

are monitored dynamically. Finally at the dissolution phase of a community the reputation of community

members can be updated corresponding to the quality of their performance (Kutvonen, Metso, &

Ruohomaa, 2007).

13

Figure 8: Cooperative features.

Policies are further classified to legislation, policy frameworks and business models. Legislation comprises

legal acts that must be obeyed by the corresponding kind of legal entities. Policy frameworks comprise

operational policies, or practices, that are characteristic for a certain kind of organization or individual.

Operational policies regulate the use of business functionality and knowledge provided by a legal entity,

such as an enterprise. For example rules addressing accessibility, authorization, trust and privacy with

respect to the provided business services and information are typical examples of organizational policies.

Business models are collections of business rules, which are declarative statements defining or constraining

some aspect of a business. Different kinds of reputation models or criteria, such as recommendations or

ratings, can be categorized under the concept of ReputationKind.

Cooperative features address the pragmatic interoperability issues, that is policies and methods of

decision-making on collaborations, such as risk, business value, trust and reputation. Again, there is need to

define policies that are commonly understandable but dependent on all business domains involved.

Collaborative properties especially are subject to business service owners’ autonomic intentions. For

collaborative properties to be truly usable within an open business service ecosystem, facilities for identity,

trust and reputation management should also exist, since assertions of cooperative features can not usually

be validated in advance.

Contractual features represent qualitative characteristics of business services and their operations.

Contractual features comprise availability constraints and different charging styles, in addition to different

models for settling about the service usage, as illustrated in Figure 9. Contractual features are instantiated to

contractual properties. A contractual property is a declaration of a concrete value or value constraint over

some contractual feature. For example, response time can be considered as a temporal availability feature

with values declared in milliseconds; now the corresponding property can be for example a declaration of

constraint ―response time must be less than 200 ms‖.

14

Figure 9: Contractual features.

Contractual features address especially the semantic interoperability concerns related to the qualitative

characteristics of business services and operations. Contractual features are agreed upon during the

negotiation phases of collaboration establishment life-cycles. The features and property values that have

been agreed upon negotiations are used during the operational phase of the community as monitoring

criteria. If the agreed qualities are not met, compensations or other mechanisms for recovering from the

contract breach can be used. Contractual features are controllable by the business service provider and

modifying these features requires business administrative authority over the service. More over, for

enabling loosely coupled and dynamic business collaborations, contractual features should be dynamically

configurable in the local systems.

Extra-functional features represent qualitative characteristics of cooperation facilities. We identify two

categories of extra-functional features: interaction features and communication features, as illustrated in

Figure 10. Interaction features are bound to binding types and they represent interaction characteristics,

such as functionality related to messaging and encoding. Communication features are bound to channel

types and represent functionality such as encryption, decryption or monitoring of behaviour.

Communication features must be introduced in certain order to be feasible, that is they can have mutual

ordering dependencies: information monitoring must be executed before encryption, for example.

Figure 10: Extra-functional features.

Extra-functional features address semantic and technical interoperability issues relevant for managing the

dependability of the underlying communication platform. These features are controllable by the service

realisation provider by using the computational platform. Modifying these features requires technical

administrative authority over the local communication platform, and they are closely intertwined with the

computational services administered within administrative domains. Extra-functional features manifest

static aspects of interaction and communication that are selectable during service binding and collaboration

contract establishment.

15

Characteristics of service ecosystem features

The feature categories presented above represent characteristics of distinctive ecosystem elements. From

the set of categories we can identify two groups of categories: 1) intensional features and 2) qualitative

features. Intensional features specify intensions of ecosystem entities and cooperation facilities. That is, the

group of intensional features includes functional, facility and cooperative features. Rest of the feature

categories, namely contractual and extra-functional features, can be characterized as qualitative features,

since they are used for specifying qualitative features of business services and cooperation facilities.

Especially, there is a difference in the usage of intensional features and qualitative features. Intensional

features are declared statically over the corresponding subjects, that is entity kinds and cooperation

facilities. By contrast, qualitative features are bound dynamically to their targets, such as business services

or communication channels. Qualitative features are bound with a mechanism of property binding. A

property binding is a relationship between a property subject (e.g. a business service) and a property

declaration, as illustrated in Figure 11.

A property object can be either a set-based constraint, such as PropSomeOf or PropNoneOf, a

contractual property (applicable over business services or service operations) or an extra-functional feature

(applicable over cooperation facilities). The set based constraints give means for declaring different

property variations, such as different service pricing policies, for example. During the population phase of

the eContracting life-cycle, the properties required by a business network are matched against those

declared by service providers. The PropOneOf constraint means that any single one of the given properties

must be same and supported by a provided services. Constraint PropSomeOf means that a number of the

given values must be the same but not necessarily all. PropExactly means that all properties must be the

same. PropNoneOf is an exclusive range and means that none of the given values are suitable.

Figure 11: Property binding model.

The categorization also constitutes a family of semantic domains: each feature category is associated with

distinctive semantic frameworks. Functional features can be formalized by using a selection of semantic

frameworks. For formalizing behavioural features, such as service conversations, formal methods based on

Petri-nets (Hamadi & Benatallah, 2003), process algebras (Salan, Bordeaux, & Schaerf, 2004), or

finite-state machines (Berardi, Calvanese, Giacomo, Lenzerini, & Mecella, 2003) can be used. Structural

features, such as business document typing, can be formalized with appropriate typing schemes addressing

XML (Simeon & Wadler, 2003, Hosoya, Vouillon, & Pierce, 2005), for example.

16

Facility features are used for specifying the semantics of binding types and channel types. In each

service ecosystem there are some principles how communication channels can be constructed, for example.

These rules can be provided with axiomatic semantics which ―involves rules for deducing assertions about

the correctness or equivalence of programs and corresponding parts‖ (Zhang & Xu, 2004). Axiomatic

semantics is a kind of semantic framework which is used especially for formalizing programming

languages. In the context of service ecosystems the cooperation facilities are associated with

domain-specific axiomatic semantics. The corresponding rules constrain the construction of channel types

and binding types, and provide criteria for their correctness.

Cooperative features are utilized for establishing feasible service provisioning relationships, and for

governing the usage and operation of business services. Declarative business rules can be formalized with

conceptual graphs (Valatkaite & Vasilecas, 2003) or defeasible logic (Antoniou & Arief, 2002), for

example. Operational policies (e.g. privacy preservation) or other normative rules can be formalized, at least

to some extent, with different modal logics. Modal logics, such as temporal, deontic or epistemic logics, are

utilizable for declaring operational policies over business services, for specifying obligations and

permissions over legal entities, and for defining privacy policies, for example (see e.g. (Lupu & Sloman,

1999, Luo, Tan, & Dong, 2009, Benbernou, Meziane, & Hacid, 2007)).

Contractual features are bound to business services and service operations for characterizing their

business capabilities. This category includes features such as service availability (e.g. declarations that a

service is available during business hours or within a geographical location), charging style (e.g. per

business operation or intensity of use), and different models for settling about service use (e.g. rental or

subscription). Contractual features are negotiated during eContract establishment; the negotiations are

typically bilateral. The properties accepted in negotiations are put in service-level agreements.

The distinguishing characteristics of contractual features is that they are instantiated to concrete values.

These values are called contractual properties. A contractual feature is considered as a type definition

which defines the acceptable value range for the corresponding kinds of properties. An simplified example

of contractual feature instantiation is given in Figure 12. The example is illustrated as UML class

diagram (Object Management Group, 2005) with instance specifications of the classes presented

previously.

In this example, AvailabilityInCountries is defined as a kind of a SpatialAvailability; this is declared

with a conformsTo relationship. Contractual features define especially the acceptable value ranges for the

corresponding properties. In this case, the acceptable values are lists of ISO standardized country codes
iii

(this declaration is provided only as an informal comment in the example). The contractual property named

MyServiceAvailability declares that a contractual subject, i.e. a business service or operation, is available in

Finland, United Kingdom, Japan and United States. Finally, the contractual subject is bound with the

PropertyBinding concept to a business service with the name of MyService.

17

Figure 12: Instantiating a contractual feature.

In addition to contractual features, the extra-functional features are a category of qualitative features that

can be bound dynamically. Extra-functional features are bound with the property binding mechanism to

cooperation facilities, that is binding types and channel types. In distinction to contractual features that were

instantiatable to contractual properties, extra-functional features do not have such a direct typing

relationship. Instead, extra-functional features are made concrete by transformations between abstraction

levels, e.g. from business level requirements to technology level artifacts.

In this framework, the semantics of extra-functional features are given as model transformations. The

model transformations take as an input a cooperation facility and produce a cooperation facility with the

required feature implemented by appropriate channel phases, for example. We clarify the characteristics of

extra-functional features with a simple example. In this example an extra-functional feature for secure

communication is addressed. Within the knowledge base of the service ecosystem exists a declaration for an

extra-functional feature named SecureCommunication; this is illustrated in Figure 13. More over, a model

transformation has been published, named SCTrans, which is declared as a representation of (Favre, 2004)

the SecureCommunication feature.

Figure 13: Example of representing an extra-functional feature with model transformation.

In this example we assume that the intensions of cooperation facilities are modeled using a meta-model

described in Figure 14. The meta-model is a simplified and streamlined version of the meta-models defined

in (Ruokolainen, 2009). The meta-model is an Ecore meta-model of the Eclipse Modeling Framework (The

Eclipse Foundation, 2010a) declared in XText-based (The Eclipse Foundation, 2010b) concrete textual

syntax. The metamodel defines seven classes with appropriate properties for describing cooperation

facilities.

18

Figure 14: A simplified Eclipse Ecore meta-model prescribing intensions of cooperation facilities.

The SCTrans model transformation can be defined using the QVT model transformation language (Meta

Object Facility (MOF) 2.0 Query/View/Transformation Specification, 2005), for example. Such description

of the model transformation is given in Figure 15. The model transformation effectively adds encryption

and decryption phases to the channel phase sequences contained in any channel type conforming to the

meta-model defined in Figure 14. Encryption phases are introduced before every initial phase of channel

sequences induced by the predecessor reference. Decryption phases are introduced after each final phase of

channel sequences.

19

Figure 15: SCTrans model transformation defined in QVT language.

Extra-functional features may induce a series of model transformations, or transformation chains. In this

setting, the application order of the transformation is essential, since the corresponding features can have

mutual dependencies that have to be respected, or there are several abstraction levels in use.

4. MANAGING FEATURES IN SERVICE ECOSYSTEM PROCESSES

Service ecosystems involve several processes where feature management activities take place. The

ecosystem processes include those of service-oriented software engineering processes, ecosystem

evolution, service ecosystem life-cycles. Service-oriented software engineering processes utilize

20

domain-specific methodologies suitable for producing service artifacts. The artifacts include service

implementation components and models defining different features of services, service collaborations and

cooperation facilities. By ecosystem evolution we mean the ―meta-life-cycle‖ of service ecosystems from

their design and initiation to operation, and their progressive development, especially with respect to

available features, during their operation. Finally, ecosystem life-cycles are processes which prescribe

especially processes for collaboration establishment. Service delivery or product life-cycles, among others,

could be prescribed in as service ecosystem life-cycles depending on the domain and objectives of the

corresponding ecosystem.

Feature management activities in the preceding processes can be characterized as comprising of a)

feature identification and selection, b) feature concretization, c) feature introduction, and d) feature

coordination. These activities are enacted in different phases of the ecosystem processes and have their

distinguishing interpretations. Manifestations of feature management activities in service-oriented software

engineering, eContracting and ecosystem evolution processes are illustrated in Table 1.

 SOSE eContracting Evolution

IDENTIFICATION Requirements

engineering

Population Domain analysis

CONCRETIZATION Feature specification Negotiation Ecosystem modeling

INTRODUCTION Feature

implementation

Binding Feature publication

COORDINATION Deployment &

configuration

Monitoring Knowledge

management

Table 1: Feature management activities in service ecosystem processes.

The actors and the visibility of produced artifacts are different in each of the processes illustrated in Table 1.

In service-oriented software engineering processes ecosystem members act typically as individuals for

producing local, private artifacts such as implementation components. In service ecosystem life-cycles,

such as the eContracting process, a collection of ecosystem members constitute a community which shares

knowledge about the characteristics, i.e. features, of the collaboration. Finally, in ecosystem evolution the

members of the ecosystem introduce new, public and globally available knowledge into the service

ecosystem; this knowledge includes especially features and their categories.

In service-oriented software engineering processes feature identification is provided by requirements

engineering activities. Identified features are made concrete by feature specifications which define the

descriptive (i.e. ontological) and prescriptive (i.e. engineering) characteristics of the features. The set of

identified features can then be formalized with a service ecosystem modeling language (Ruokolainen,

2009). New ecosystem features are introduced locally by implementing them in platform specific

technologies. Finally, ecosystem features are coordinated by deployment and configuration activities which

weave feature implementations with provided business services, communication components, or other

feature implementation components.

In ecosystem evolution the fundamental features and their categories are identified by a domain analysis.

The domain analysis is executed during the initial design of the service ecosystem. Domain analysis is

―process by which information used in developing software systems is identified, captured and organized

with the purpose of making it reusable when creating new systems‖ (Prieto-Díaz, 1990). When this

definition of domain analysis is put into the context of service ecosystems, ―software systems‖ are

21

considered as service collaborations, and ―creation of new systems‖ means establishment of new service

collaborations.

During the design of a new service ecosystem the foundational features, the abstract platform, and their

inter-dependencies are identified during a domain analysis process. The results of the domain analysis are

used for modeling the features of the service ecosystem. Feature concretization is implemented thus during

ecosystem modeling. During the operation of service ecosystem new features can be introduced by

ecosystem members by publishing feature models. Infrastructure services providing knowledge

management functionality are used for such model publication. Ecosystem specific knowledge base, which

includes especially the feature models, is coordinated by knowledge management activities enacted by

infrastructure services. These activities maintain the knowledge base consistency needs for enabling

establishment of interoperable service collaborations.

In the following, we describe more thoroughly the role of feature management activities in collaboration

establishment life-cycles, taking the eContracting process of the Pilarcos service ecosystem (Kutvonen,

Ruokolainen, et al., 2008, Kutvonen, Metso, & Ruohomaa, 2007) as an example.

eContracting

Service ecosystems are provided with a collaboration establishment life-cycle. A collaboration

establishment life-cycle defines a process for preparing necessary agreements and facilities required for

service-based cooperation between community members. In the context of the Pilarcos

framework (Kutvonen, Ruokolainen, et al., 2008, Kutvonen, Metso, & Ruohomaa, 2007) this process is

known as eContracting. During eContracting processes features are managed during population,

negotiation, configuration, operation and dissolution phases, as illustrated in Figure 16. Phase specific

activities, such as service discovery in the population phase or monitoring in the operation phase, are taken

for managing business network and service features; the activities are enacted in cooperation by legal

entities and infrastructure services. Each phase is also associated with a collection of business services

which is refined or utilized in the corresponding eContracting phase.

Figure 16: Phases in an eContracting life-cycle.

An eContracting life-cycle starts with a population phase where a business network model is filled with

services matching the criteria of the selected business network and those set by the initiator of the

population phase (Kutvonen, Metso, & Ruohomaa, 2007). Population phase utilizes infrastructure services

available in a service ecosystem for realizing necessary activities; the population activities themselves are

enacted by a infrastructure services known as a populator (Kutvonen, Ruokolainen, et al., 2008). Service

discovery mechanisms provided by the infrastructure services are first used for identifying services that can

22

be potentially accepted for a specific business network. The primary criteria for service discovery is the

functional features associated with services, e.g. behaviour and structure.

Service discovery activity provides a set of services that are technically compatible with the

corresponding business network model. The primary purpose of the service selection activity is to guarantee

technical and semantic interoperability. Each service passing the service selection criteria should be at least

technologically and behaviourally compatible with the given form of collaboration. In addition to

interoperability criteria, both collaboration itself and its initiator may require certain level of initial trust and

reputation from corresponding service providers. Infrastructure service providing trust and reputation

management mechanisms (Kutvonen, Metso, & Ruohomaa, 2007), are utilized for this purpose.

In the population phase a set of collaboration proposals are established from a selection of services and

and a business network model that characterizes the structure and requirements of the

collaboration (Kutvonen, Ruokolainen, & Metso, 2007a, Kutvonen, Metso, & Ruohomaa, 2007). Semantic

interoperability is addressed further by the population phase especially with respect to the non-functional

features of the services and requirements set by the collaboration. Compatibility between different features

are matched; for this purpose, constraint satisfaction algorithms can be used (Kutvonen, Metso, &

Ruohomaa, 2007). As a final outcome of the population phase, a set of collaboration contract proposals is

provided. The services included in the proposals are guaranteed to be interoperable with each other.

While the population phase addresses technical and semantic concerns of interoperability, negotiation

phase is utilized especially for addressing the pragmatic interoperability aspects. As an example of

pragmatic interoperability aspects, expression of the entities’ willingness to collaborate, are considered

during the negotiation phase. Cooperative features are utilized especially for such decision making. First of

all, the policies associated with the kinds of legal entities are used as the principal criteria for selecting

members for business networks to be established. Secondly, reputation of legal entities is used for further

judging the eligibility of an entity as a member in the business network.

The negotiation phase enables autonomic ecosystem members to resolve and bargain about the

contractual features of the collaboration. The negotiations result in formulation of a collaboration contract

which states the responsibilities for each participating entity, the structure of the collaboration, and features

expected from the corresponding cooperation facilities, such as communication channels. The collaboration

contract is then used for managing the operation of the collaboration (Kutvonen, Ruohomaa, & Metso,

2008, Metso & Kutvonen, 2005).

In service binding the features agreed upon during the preceding negotiations are introduced as more

concrete, usually technology specific, declarations. Especially, cooperation facilities are refined with the

required extra-functional features; more over, features in higher abstraction levels are instantiated to lower

abstraction levels using model transformations, for example.

After a successful binding service providers are equipped with declarations that can be used locally for

configuring the technological platforms. Models of the cooperation facilities declared during service

binding can be utilized for configuring systems in local administration domains. Models of extra-functional

features can be used for generating appropriate implementation components, such as communication

interceptors or adapters. More over, models representing cooperative features can be utilized for feeding the

local business rule engines with appropriate rules.

During the operation phase the use of features is coordinated with monitoring mechanisms. Especially,

contractual properties are used for service-level monitoring of both external (e.g. detecting contract

breaches) and internal services. Finally, in the dissolution phase especially the reputation features of legal

entities are coordinated. The reputation of entities are updated in accordance to the corresponding kind of

reputation system.

5. DISCUSSING THE FRAMEWORK

Due to the dynamism of the environment and autonomy of entities special emphasis must be imposed on

controlling and maintaining interoperability knowledge in open service ecosystems. During collaboration

establishment processes information is required especially about the features of ecosystem members,

23

provided services, and available cooperation facilities. In the previous Sections we have described a

framework for enabling management of service ecosystem features. In this Section, we discuss impacts of

this work on the management of non-functional features in open service ecosystems. After that we introduce

a selection of related work with comparison to our framework and a brief analysis on future research

directions in the area of model-driven management of service ecosystem features.

Impacts on the management of service ecosystem features

The framework presented in this Chapter provides a well-defined classification of service ecosystem

features. We have shown that the corresponding feature categories have their specific roles, as part of

different ecosystem elements and in different phases of service ecosystem processes. We have intentionally

avoided the use of term ―non-functional feature‖. First of all, the meaning of a non-functional feature or

property is ambigous. It’s definition as ―any other feature than functional‖ does not get us too far in their

management. In this framework, we have first analyzed the components that act in service ecosystems and

then defined the features in accordance to the categorization of entities and cooperation

facilities (Ruokolainen, 2009). Secondly, features in service ecosystem are all functional in a sense that they

are used for decision making, negotiation, or supporting service interactions in the different phases of

service ecosystem processes.

Based on the categorization of the foundational entities, a feature categorization has been defined. The

characteristics of the corresponding categories are summarized in Table 2. In this characterization two

groups of features are distinguished. The three feature categories on the top of the table (functional, facility

and cooperative features) can be considered as intensional feature categories, since they are used for

specifying the intensions of service ecosystem entities and cooperation facilities. Two remaining categories,

contractual and extra-functional, specify qualities of provided business services and the abstract platform.

Categories are first characterized with respect to the target of the feature definitions in the corresponding

category. Secondly, the kind of semantics utilizable for formalizing the features is given. Finally, some

characteristic examples of concrete feature definitions are provided for each of the categories.

 TARGET SEMANTICS EXAMPLES

FUNCTIONAL
FEATURES

Functional entity
intension

Various frameworks
(e.g. for operational or

structural features)

Service behaviour;
business document

structures

FACILITY FEATURES Cooperation facility
intension

Axiomatic One-to-one interaction;
communication

monitoring

COOPERATIVE
FEATURES

Legal entity intension Various logics (e.g.
temporal, deontic,
epistemic logics)

Corporate form
definitions; domain

specific business rules;
information privacy laws

CONTRACTUAL
FEATURES

Business service and
operation qualities

Denotational Availability of business
services; price per

operation call

EXTRA-FUNCTIONAL
FEATURES

Interaction and
communication qualities

Translational
(transformations over
cooperation facilities)

WS-* / REST –style
messaging;

communication security

24

Table 2: Overview of the service ecosystem features.

The framework discussed in this chapter is based on a conceptualization of service ecosystem elements and

formalization of the corresponding concepts with a formal meta-model (Ruokolainen, 2009). The

meta-model can be considered as a domain specific meta-modeling language (Zschaler, Kolovos, Drivalos,

Paige, & Rashid, 2010) for service ecosystems. The corresponding meta-modeling language is used for

defining the fundamental elements of a service ecosystem prescribing life-cycles, entities and features.

Additional domain specific concepts are also included in the resulting service ecosystem models. A service

ecosystem model is then utilized for generating service ecosystem specific engineering artifacts. The set of

artifacts includes meta-models for describing concept intentions; one such meta-model describing

cooperation facilities was illustrated in context of the example given in Section 4. The set of meta-models

generated from a service ecosystem model actually constitutes a family of domain specific languages

(DSLs). In addition to DSLs, skeletons for ecosystem specific infrastructure services can be generated from

the ecosystem model; these include especially model repositories for maintaining information about

entities, cooperation facilities and their features.

This work provides facilities for enhancing interoperability management and software engineering

support in service ecosystems. For enhancing interoperability management in service ecosystems, this work

formalizes a top-level ontology for declaring service ecosystem specific features. Such interoperability

knowledge is utilized in service ecosystem life cycles for guaranteeing interoperable operation of

service-based collaborations. Interoperability knowledge includes information about features and their

mutual dependencies, and their applicability with respect to different models of collaboration, for example.

From the software engineering support perspective this work provides a comprehensive definition of the

entities and features identifiable from service ecosystems. Thus, a unifying framework for defining

vocabularies enabling engineering knowledge exchange about service artifacts is provided. Knowledge

repositories based on a unified ecosystem model and maintaining corresponding feature information can

then be utilized by developers for sharing information and enabling global software engineering practices.

Especially, formalization of service ecosystem concepts as models and meta-models makes it possible for

enabling development tool interoperability by integration of software engineering processes and domain

specific languages through the ecosystem models and knowledge repositories.

We can analyze the impacts of this work by considering different actors in service ecosystems and what

level of support is provided for their activities. First of all, the framework discussed in this Chapter enables

efficient development of domain specific service ecosystems. The domain specific meta-modeling language

behind this framework is used for modeling the service ecosystem. Service ecosystem modeling can be

utilized by information system providers in requirements gathering and design processes in cooperation

with their clients. After an appropriate service ecosystem model has been designed, the resulting model is

utilizable for producing ecosystem specific meta-models, corresponding DSLs and model repositories.

Model-driven engineering principles are exploited for efficient generation of these artifacts.

Secondly, the framework provides means for individual service providers to join selected service

ecosystems in a more flexible manner. The collection of tools, methods and modeling languages are

typically specific for individual service providers based on their expertise, experience and practice. When

joining a new service ecosystem, a service provider must possibly adopt new kinds of methods, tools or

languages to provide services in conformance with the ecosystem. Such an intrusive adoption of new

practices and expertise makes joining new service ecosystems an expensive process. However, explicit

service ecosystem models, such as provided by this framework, can provide more efficient means for such

adaptation by conceptual unification: organization specific languages (and tools) can be mapped to the ones

used by the ecosystem. Such mappings can be formalized as weaving models (Bézivin et al., 2005) and

further utilized for efficient implementation of model integration (Jossic et al., 2007).

Finally, the framework presented in this Chapter can be exploited by modeling and software engineering

tool providers. The domain specific meta-modeling language for service ecosystems provides means for

developing coherent families of domain-specific languages, or DSLs. Traditionally DSLs are developed one

language at a time. However, in service ecosystems several languages need to be used in conjunction to

25

describe the different viewpoints (e.g. legal entities vs. functional entities) in the service ecosystem. In the

single-language-at-a-time model the correspondences between languages and consistency between

viewpoints may become hard to handle due to complex dependencies between features. In this framework

these complexities can be handled more efficiently, since the correspondences are formalized in the service

ecosystem model. The model can be used for generating the abstract syntaxes of the individual DSLs in the

corresponding language family, and especially, for creating explicit correspondence descriptions between

the elements of the DSLs. Correspondences between individual viewpoint languages can be formalized with

use of QVT, for example (Romero, Jaén, & Vallecillo, 2009).

Research issues in model-driven management of service ecosystem features

The framework presented in this paper utilizes model-driven engineering principles for modeling and

managing features in open services ecosystems. Similar approaches have been introduced before for

example in (Jonkers et al., 2005). The authors introduce a method for integrating functional models with

non-functional ones in the context of model-based service development processes. In their work, the authors

make a distinction between two modeling spaces for non-functional features, namely design and analysis

space. Design space comprises modeling languages and tools for describing non-functional features.

Analysis space consists of specification languages and notations which are applicable for formalizing the

semantics of the non-functional features of interest. Horizontal transformations are then used for propating

information between a design space and a corresponding analysis phase. Vertical model transformations are

used for model refinement within the modelling spaces in the traditional model-driven engineering sense.

Similarly, (Köllmann et al., 2007) presents an approach for managing several Quality of Service (QoS)

dependability dimensions. This approach applies model-driven development and aspect-oriented techniques

for detaching the QoS aspects from software specifications. Graph transformations are then utilized for

weaving the QoS aspects to QoS independent models. The approach of (Jonkers et al., 2005) for attaching

domain-specific semantics for non-functional features can be utilized in the framework presented in this

Chapter. Also, the approach of (Köllmann et al., 2007) for providing translational semantics for

non-functional features can be used. Our approach is more specific in a sense that it is targeted for open

service ecosystems. Especially, our approach formalizes the inter-dependencies and roles between different

―non-functional‖ and functional features in service ecosystems. We have, to a certain degree, fixed the

semantic for different features in service ecosystems. We see that such constraints over the feature

categories, their definitions and usage are needed for enabling feature management in various service

ecosystems.

 In (Ameller, Cabot & Franch, 2010) the authors report current state of model-driven engineering

approaches for managing non-functional requirements in software engineering processes. They make a

remark based on a literature survey that in general non-functional requirements are not addressed in

model-driven engineering methods. Towards enhancing the situation they envision a general framework

that integrates non-functional requirements management into model-driven software engineering process,

and identify research issues related to their framework. In their framework proposal the authors utilize a

platform-independent model (PIM) for representing the functionality and non-functional requirements of a

system. This PIM is then analysed against a knowledge base containing information about available

non-functional, architectural and technological features and solutions. Based on this analysis a model

transformation is created which transforms the PIM to an architectural model. The architectural model

describes an architecture that implements all the functionality of the system in a way that satisfies the

non-functional requirements whose satisfaction depends on the decisions made at the architectural level

(Amellers, Cabot & Franch, 2010). The architectural model is then analyzed againts the knowledge base and

a second model transformation is applied. The model transformations takes the architectural model as an

input and produces a platform-specific model (PSM). The PSM follows the architectural guidelines

expressed in the architectural model but also takes into account non-functional requirements depending on

technological choises. Finally, a model to text transformation can be applied for generating technology

specific code from the PSM. The approach proposed by Amellers, Cabot & Franch (Amellers, Cabot &

26

Franch, 2010) can be aligned with our approach. In our framework the knowledge about service ecosystem

features is available in specific knowledge repositories. This knowledge is based on the categorization of the

features and the corresponding metamodels presented in this Chapter. The metamodels introduced in this

Chapter are part of a larger metamodel which formalizes the foundational elements of service ecosystems

(Ruokolainen, 2009). This service ecosystem metamodel can be considered as a model for architectural

models in the sense of (Amellers, Cabot & Franch, 2010). It is used as a basis for defining

platform-independent models that specify all requirements of service-based collaborations and their

elements. In addition to architectural issues, the service ecosystem metamodel includes technology-oriented

knowledge in form of cooperation facility features and extra-functional features, as discussed in the

previous sections.

 More generally the framework behind the work presented in this Chapter is related to research conducted

in the areas of large-scale SOA systems, their modeling and corresponding service-based middleware

platforms. There are a few European research initiatives and projects that have similar goals with this

respect. NESSI (Networked European Software & Services Initiative) is a European Technology Platform

dedicated to software and services (Lizcano et al., 2010). As part of its research activities, the NESSI

consortium is developing the NESSI Open Service Framework (NEXOF) which is described as ―a coherent

and consistent open service framework leveraging research in the area of service-based systems‖ (NESSI

Consortium, 2009). In comparison to the reference architecture developed as part of the NEXOF, our

service ecosystem framework is more focused on the knowledge management side of service ecosystems,

and explicitly provides means for extending domain models of specific ecosystems with new concepts.

 The SeCSE (Service Centric System Engineering) is an EU Integrated Project of the 6
th
 Framework

Program that aims for developing processes, methods and tools to develop service-oriented systems

(Colombo et al., 2005). The SeCSE project provides a conceptual model for service oriented systems

describing actors, entities and activities relevant to the service domain, and relationships between them.

While the conceptual model of SeCSE addresses the various steps (e.g. publication, discovery, composition

and monitoring) of the service-centric system creation process, the primary purpose of the model is to

provide a common understanding for human readers about the main concepts involved (Colombo et al.,

2005). The primary purpose of our framework and the corresponding conceptual model is to facilitate the

infrastructure services and tools needed for instrumenting service ecosystems.

 The framework presented in this Chapter includes several topics for further research; a selection of these

are discussed below. The framework implicitly proposes an approach for modeling service-oriented systems

with a family of feature-specific languages. Each of the are used for defining different aspects of the system,

and the overall model defining the service ecosystem is utilized for guaranteeing coherency of the language

family and consistency between different languages. Utilizing such a language family for operating in a

service ecosystem necessitates appropriate modeling tools and methodologies. From modeling tools

perspective, several notations have been developed for describing different kinds of features in software

systems (e.g. Object Management Group, 2005; Amellers, Cabot & Franch, 2010). However, simply

providing a notation for feature modeling is not sufficient. What is still lacking from most of the modeling

tools is the capability analyze feature interactions and effects of introducing cross-cutting concerns in

system models. Towards this purpose, research should be conducted especially in the areas of analysing

viewpoint correspondences and consistency based on semantics frameworks defined for corresponding

domain-specific languages. Feature interactions are likely to introduce interactions between the different

semantics frameworks (e.g. between operational semantics of business processes and declarative semantics

of business rules); this is a research topic that should be investigated more in the future. From the

methodological viewpoint, engineering processes and methols should be developed that are applicable for

distributed development taking place in open service ecosystems and that utilize multi-viewpoint modeling

practices. Knowledge sharing facilities provided by shared, global knowledge repositories should be also

integrated to corresponding software engineering tools.

 Modeling of service ecosystem features is only the first phase in their application. Especially in open

service ecosystems models are utilized for configuring, adapting and governing the operation of the system.

Such a models-at-runtime –approach (e.g. Blair, Bencomo, & France, 2009) involves in itself several new

27

research challenges, the most foundational one being that of maintaining the causal relationship between

the model and the running system. Maintaining the causal relationship becomes problematic especially in

open service ecosystems, where individual services are maintained by autonomous service providers and

access to the underlying technological systems are restricted due to security related and competitive reasons.

In the Pilarcos framework (Kutvonen et al., 2008) we have especially covered issues related to maintaining

a coherent view over the service collaborations between autonomous partners.

6. CONCLUSION

Open service ecosystems present means to solve many collaboration management and interoperability

control problems. Indeed, the ecosystem concept reveals that there is notably different interest domains

within the feature concept family: business control needs, service control needs, and configuration needs on

communication channels between services. Although the presently arising software and service ecosystems

forward the business domain significantly, there are still severe problems to be solved:

• trustworthiness of service offers,

• interoperability control automation, and

• collaborative, systematic methods for dynamic collaboration management.

These issues cannot be resolved unless the open service ecosystems are able to bind together

• the service-oriented software engineering methodologies that are responsible of providing business

network models serving as eContract templates and thus providing evaluated rules for detecting

illegal, unwanted, or low quality services;

• operational time collaboration management, including service selection advised with trustworthiness

predictions, eContract forming, monitoring of contract breaches, and feedback on the experiences

gained.

This Chapter has shown how a consistent knowledge base for maintaining features in open service

ecosystems can be provided, thus creating a life link between the engineering and operational environments.

Furthermore, the knowledge base structure must allow for declaration of new concepts and new

relationships between concepts, thus facilitating further evolution of the ecosystem without disturbance in

the already existing collaborations. The framework allows multiple different kind of ecosystems to be

established, and controlled either as isolated, or federated, for cases of competing or collaborating

ecosystems.

REFERENCES

Almeida, J. P., Dijkman, R., Sinderen, M. v., & Pires, L. F. (2004). On the Notion of Abstract Platform in

MDA Development. In EDOC ’04: Proceedings of the Eighth IEEE International Enterprise Distributed

Object Computing conference (pp. 253–263). Washington, DC, USA: IEEE Computer Society.

Ameller, D., Cabot, J. & Franch, X. (2010). Dealing with Non-Functional Requirements in Model-Driven

Development. In Requirements Engineering Conference (RE), 2010 18
th
 IEEE International (pp. 189-198).

Washington, DC, USA: IEEE Computer Society.

Antoniou, G., & Arief, M. (2002). Executable declarative business rules and their use in electronic

commerce. In SAC ’02: ACM Symposium on Applied Computing (pp. 6–10). New York, NY, USA: ACM

Press.

28

Benbernou, S., Meziane, H., & Hacid, M. S. (2007). Run-Time Monitoring for Privacy-Agreement

Compliance. In ICSOC ’07: Proceedings of the 5th International Conference on Service-Oriented

Computing (pp. 353–364). Berlin / Heidelberg, Germany: Springer-Verlag.

Berardi, D., Calvanese, D., Giacomo, G. D., Lenzerini, M., & Mecella, M. (2003). Automatic Composition

of E-services That Export Their Behavior. In ICSOC ’03: Proceedings of the First International Conference

on Service-Oriented Computing (Vol. 2910, pp. 43–58). Berlin / Heidelbert, Germany: Springer.

Bézivin, J., Jouault, F., Rosenthal, P. & Valduriez, P. (2005). Modeling in the Large and Modeling in the

Small. In Model Driven Architecture. (Vol. 3599, pp. 33-46). Berlin / Heidelberg, Germany: Springer.

Blair, G., Bencomo, N., France, R.B. (October, 2009). Models@run.time. Computer (vol. 42, no. 10, pp.

22-27). Washington, DC, USA: IEEE Computer Society.

Bosch, J., & Bosch-Sijtsema, P. (2010). From integration to composition: On the impact of software product

lines, global development and ecosystems. Journal of Systems and Software, 83(1), 67–76.

Colombo, M., Di Nitto, E., Di Penta, M., distante, D., & Zuccala, M. (2005). Speaking a common language:

A conceptual model for describing service-oriented systems. In Benatallah, B., Casati F. & Traverso, P.

(Ed.), Service-Oriented Computing – ICSOC 2005, (Vol. 3820, pp. 48-60). Berlin / Heidelberg, Germany:

Springer.

Favre, J.-M. (2004). Foundations of Model (Driven) (Reverse) Engineering : Models - Episode I: Stories of

The Fidus Papyrus and of The Solarus. In Bézivin, J. & Heckel, R. (Ed.), Language engineering for

model-driven software development, (Vol. 04101). Schloss Dagstuhl, Germany: Internationales

Begegnungs- und Forschungszentrum für Informatik (IBFI).

Gonzalez-Perez, C., & Henderson-Sellers, B. (2006). A powertype-based metamodelling framework.

Software and Systems Modeling, (Vol. 5, pp. 72-90).

Hamadi, R., & Benatallah, B. (2003). A Petri net-based model for web service composition. In CRPITS’17:

Proceedings of the Fourteenth Australasian database conference on database technologies 2003 (pp.

191–200). Darlinghurst, Australia: Australian Computer Society, Inc.

Hosoya, H., Vouillon, J., & Pierce, B. C. (2005). Regular expression types for XML. ACM Transactions on

Programming Languages and Systems, (Vol. 27, no. 1, pp. 46–90).

Jonkers, H, Iacob, M.E., Lankhorts, M.M. &Strating, P. (2005). Integration and Analysis of Functional and

Non-Functional Aspects in Model-Driven E-Service Development. In Proceedings of the Ninth IEEE

International EDOC Enterprise Computing Conference. Washington, DC, USA: IEEE Computer Society.

Jossic, A., Didonet Del Fabro, M., Lerat, J., Bézivin, J., & Jouault, F. (2007). Model Integration with Model

Weaving: a Case Study in System Architecture. In Proceedings of the 2007 International Conference on

Systems Engineering and Modeling (ICSEM’07) (pp. 79–84). IEEE.

Kabilan, V., Johannesson, P., Ruohomaa, S., Moen, P., Herrmann, A., Åhlfeldt, R.-M. (2007). Introducing

the common non-functional ontology. In Enterprise Interoperability II — New Challenges and Approaches

(pp. 633–646). London, United Kingdom: Springer.

29

Kassab, M., Ormandjieva, O., & Daneva, M. (2009). An ontology based approach to non-functional

requirements conceptualization. In International Conference on Software Engineering Advances (ICSEA)

(pp. 299–308). Washington, DC, USA: IEEE Computer Society.

Kutvonen, L. (2002). Automated management of interorganisational applications. In Proceedings of the

Sixth International Enterprise Distributed Object Computing Conference (EDOC’02). Washington, DC,

USA: IEEE Computer Society.

Kutvonen, L. (2004). Challenges for ODP-based infrastructure for managing dynamic B2B networks. In

A. Vallecillo, P. Linington, & B. Wood (Eds.), Workshop on ODP for Enterprise Computing (WODPEC

2004) (pp. 57–64).

Kutvonen, L., Metso, J., & Ruohomaa, S. (2007, July). From trading to eCommunity management:

Responding to social and contractual challenges. Information Systems Frontiers (ISF) - Special Issue on

Enterprise Services Computing: Evolution and Challenges, (Vol. 9, no. 2-3, pp. 181-194).

Kutvonen, L., Metso, J., & Ruokolainen, T. (2005, November). Inter-enterprise collaboration management

in dynamic business networks. In On the Move to Meaningful Internet Systems 2005: CoopIS, DOA, and

ODBASE: OTM Confederated International Conferences, CoopIS, DOA, and ODBASE. (Vol. 3760, pp.

593-611). Berlin / Heidelberg, Germany: Springer.

Kutvonen, L., Ruohomaa, S., & Metso, J. (2008, September 8–10). Automating decisions for

inter-enterprise collaboration management. In Pervasive collaborative networks. IFIP TC 5 WG 5.5 Ninth

working conference on virtual enterprises, september 8–10, 2008, poznan, poland (pp. 127–134). Springer.

Kutvonen, L., Ruokolainen, T., & Metso, J. (2007, January). Interoperability middleware for federated

business services in web-Pilarcos. International Journal of Enterprise Information Systems, Special issue

on Interoperability of Enterprise Systems and Applications, 3(1), 1–21.

Kutvonen, L., Ruokolainen, T., Ruohomaa, S., & Metso, J. (2008, October). Service-Oriented Middleware

for Managing Inter-Enterprise Collaborations. In A. Gunasekaran (Ed.), Global Implications of Modern

Enterprise Information Systems: Technologies and Applications (pp. 208–241). IGI Global.

Köllmann, C., Kutvonen, L., Linington, P., & Solberg, A. (2007). An Aspect-Oriented Approach to Manage

QoS Dependability Dimensions in Model Driven Development. In L. Ferreira Pires and S. Hammoudi (Ed.),

The 3
rd

 International Workshop on Model-Driven Enterprise Information Systems (MDEIS 2007) (pp.

85-94). INSTICC Press.

Lizcano, D., Jiménez, M., Soriano, J., Cantera, J. M., Reyes, M., Hierro, J. J., Garijo, F., & Tsouroulas, N.

(2008). Leveraging the Upcoming Internet of Services through an Open User-Service Front-End

Framework. In ServiceWave ’08: Proceedings of the 1
st
 European Conference on Towards a Service-Based

Internet (pp. 147-158). Berlin / Heidelberg, Germany: Springer-Verlag.

Luo, X., Tan, Z., & Dong, R. (2009). Automatic verification of composite web services based on temporal

and epistemic logic. In WGEC ’09: Proceedings of the 2009 Third International Conference on Genetic and

Evolutionary Computing (pp. 693–696). Washington, DC, USA: IEEE Computer Society.

Lupu, E. C., & Sloman, M. (1999). Conflicts in Policy-Based Distributed Systems Management. IEEE

Transactions on Software Engineering, 25(6), 852–869.

30

Mehandjiev, N., & Grefen, P. (Eds.). (2010). Dynamic Business Process Formation for Instant Virtual

Enterprises. Springer.

Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification. (2005, 11November). (Final

Adopted Specification – ptc/05-11-01)

Metso, J., & Kutvonen, L. (2005, September). Managing Virtual Organizations with Contracts. In

Workshop on Contract Architectures and Languages (CoALa2005).

Moen, P., Ruohomaa, S., Viljanen, L. & Kutvonen, L. (2010). Safeguarding against new privacy threats in

inter-enterprise collaboration environments. (Report No. C-2010-56). Helsinki, Finland: University of

Helsinki, Department of Computer Science.

NESSI Consortium. NESSI Open Framework - Reference Architecture – RA Model V2.0 (April, 2009).

Retrieved December 17, 2010, from http://www.nexof-ra.eu/sites/default/files/D6.2_v1.0.pdf

Prieto-Díaz, R. (1990). Domain Analysis: an Introduction. SIGSOFT Software Engineering Notes, 15(2),

47–54.

Rabelo, R. J., Gusmeroli, S., Arana, C., & Nagellen, T. (2006). The ECOLEAD ICT Infrastructure for

Collaborative Networked Organizations. In Network-centric collaboration and supporting frameworks

(Vol. 224, pp. 451–460). Springer.

Romero, J. R., Jaén, J. I., & Vallecillo, A. (2009). Realizing Correspondences in Multi-Viewpoint

Specifications. In EDOC ’09: IEEE International Enterprise Distributed Object Computing Conference

(pp. 163–172). IEEE.

Ruohomaa, S., & Kutvonen, L. (2008, March). Making multi-dimensional trust decisions on inter-enterprise

collaborations. In Proceedings of the Third International Conference on Availability, Security and

Reliability (ARES 2008) (pp. 873–880). IEEE Computer Society.

Ruohomaa, S., Viljanen, L., & Kutvonen, L. (2006, March). Guarding enterprise collaborations with trust

decisions — the TuBE approach. In Interoperability for enterprise software and applications. Proceedings

of the workshops and the doctoral symposium of the second IFAC/IFIP I-ESA International Conference:

EI2N, WSI, IS-TSPQ 2006 (pp. 237–248). ISTE Ltd.

Ruokolainen, T. (2009, June). Modelling framework for interoperability management in collaborative

computing environments (Tech. Rep. No. C-2009-9). Department of Computer Science, University of

Helsinki. (Licentiate’s thesis)

Ruokolainen, T., & Kutvonen, L. (2006, September). Addressing Autonomy and Interoperability in

Breeding Environments. In L. Camarinha-Matos, H. Afsarmanesh, & M. Ollus (Eds.), Network-Centric

Collaboration and Supporting Frameworks (Vol. 224, pp. 481–488). Helsinki, Finland: Springer.

Ruokolainen, T., & Kutvonen, L. (2007a, September). Managing non-functional properties of

inter-enterprise business service delivery. In Non functional properties and service level agreements in

service oriented computing workshop (NFPSLA-SOC) (co-located with the 5th international conference on

service oriented computing, ICSOC 2007).

31

Ruokolainen, T., & Kutvonen, L. (2007b, April). Service Typing in Collaborative Systems. In

G. Doumeingts, J. Müller, G. Morel, & B. Vallespir (Eds.), Enterprise Interoperability: New Challenges

and Approaches (pp. 343–354). Springer.

Salan, G., Bordeaux, L., & Schaerf, M. (2004). Describing and Reasoning on Web Services using Process

Algebra. In ICWS ’04: Proceedings of the IEEE International Conference on Web Services (p. 43).

Washington, DC, USA: IEEE Computer Society.

Simeon, J., & Wadler, P. (2003). The essence of XML. In POPL ’03: Proceedings of the 30th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (pp. 1–13). New York, NY,

USA: ACM Press.

Object Management Group. (2005, August) Unified Modeling Language: Superstructure.

The Eclipse Foundation. (2010a). Eclipse Modeling Framework website. Retrieved December 17, 2010,

from http://www.eclipse.org/modeling/emf/.

The Eclipse Foundation. (2010b) Xtext - Language Development Framework. Retrieved December 17,

2010, from http://www.eclipse.org/Xtext/.

Valatkaite, I., & Vasilecas, O. (2003, September). A Conceptual Graphs Approach for Business Rules

Modeling. In Advances in databases and information systems (Vol. 2798).

Web Services Architecture Working Group. (2004, February) Web Services Architecture. W3C Working

Group Note 11 February 2004. http://www.w3.org/TR/ws-arch/

Zhang, Y., & Xu, B. (2004). A survey of semantic description frameworks for programming languages.

SIGPLAN Notifications, 39(3), 14–30.

Zschaler, S., Kolovos, D., Drivalos, N., Paige, R., & Rashid, A. (2010). Domain-Specific Metamodelling

Languages for Software Language Engineering. In M. van den Brand, D. Gasevic, & J. Gray (Eds.),

SLE’10: Software Language Engineering (Vol. 5969, p. 334-353). Springer Berlin / Heidelberg.

i
 Amazon EC2: http://aws.amazon.com/ec2/

ii
 Nokia Ovi: http://www.ovi.com/

iii
 http://www.iso.org/iso/country_codes/iso_3166_code_lists.htm

