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ABSTRACT 
The recent increased use of Internet, social media, and networked business mark a development trend where 

software-based services flow to the open market for enabling service-oriented networked business. Our 

vision is that in future, organizations and individuals collaborate within open service ecosystems. An open 

service ecosystem is characterized especially by the autonomy of its entities, its evolution with respect to 

available services and collaboration types, and dynamic establishment of collaborations. For facilitating 

collaboration establishment in open service ecosystems features of services and cooperation facilities, and 

feature inter-dependencies need to be governed rigorously. Towards this purpose we have established a 

framework for unambiguous description of service ecosystem features. The framework comprises a 

conceptual model which provides especially a categorization of features, and a formalization of the 

conceptual model as a meta-model for service ecosystems. We show that the corresponding feature 

categories have their specific roles and semantics as part of different ecosystem elements and in different 

phases of service ecosystem processes. 

1. INTRODUCTION 

The recent increased use of Internet, social media, and networked business mark a development trend where 

software-based services flow to the open market. Technological approaches like SaaS, SOA, and Web 

Services present tools and architectures for this: they provide protocols for accessing remote functionality 

encapsulated to a business-relevant units, declared available though service registries and manifests of 

service functionality, requirements for messaging platform support, information representation and 

semantics, and choreography (protocol) for exchanges in utilising the service. 

However, this situation is uncontrolled and uncontrollable in several ways. First, the trustworthiness of 

the services marketed is unknown, as there is no guaranteed knowledge (facts) about their properties. The 

clientele is left to rely on declarations by the service providers. The declarations carry several risk aspects. 

The semantic of the declaration may be obscure due to the lack of shared vocabulary for describing service 

behaviour in functional and nonfunctional aspects exists. Furthermore, the declarations can be biased, as the 

cost of inaccurate declarations is not sufficient as an incentive. 

Second, the interoperability between independently developed services is immature, especially in terms 

of nonfunctional properties. There is no commonly accepted framework for functionality and selectable 

properties or property management for those functions. Middleware platforms have built-in support for 

various transparency properties (e.g., location and access, data representation, transactionality) and various 

security technologies (e.g., encryption, non-repudiation), but as the groupings of properties differ, the 

interworking challenges still exist. Furthermore, the concepts of nonfunctional properties commonly refer to 

platform services, but in modern social networking and inter-enterprise collaboration scenarios, business 
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and user oriented properties (such as policies for governing joint behaviour, pricing schemes, privacy 

preservation declarations) are relevant requirements. 

Third, the current platforms weakly support collaboration management or concepts required for it. 

Concepts of contracts, parties, authority and ownership, policies and breaches of contracts causing sanctions 

are necessary for the different kinds of networked collaborations. 

As a partial solution to these challenges, software ecosystems have become popular as a means for 

producing software applications more efficiently for heterogeneous clientele with varying requirements. A 

software ecosystem is typically based on a software platform provided by an organization. The platform is 

then used by internal and external developers for implementation of applications (Bosch & Bosch-Sijtsema, 

2010). Software ecosystem strategy is utilized by companies such as Amazon 
i
 or Nokia 

ii
 for establishing 

communities of developers and clientele over their own corresponding platforms. 

While the software ecosystem approach emphasises the software production challenges, the open use of 

services from the open marketplace is stressed by service ecosystem approaches. A service ecosystem is an 

environment for creating and managing service-based collaborations, such as virtual organizations or 

service mash-ups, from services provided by a community of service providers. Service ecosystems exist 

currently especially in form of platform provider specific Software-as-a-Service (SaaS) -environments. The 

typical service ecosystems available currently are closed, meaning that the methods and technologies used 

for providing new services are pre-determined by the hosting environment, and service compositions and 

collaboration networks are determined statically during service development. Such closed ecosystems can 

not be applied in domains where services are to be provided and managed by autonomous entities, or when 

service collaboration networks are to be established dynamically on demand. 

The challenge still remains to provide an environment where several service-oriented software 

engineering (SOSE) methodologies and distributed teams could produce services that easily can be 

organised into collaborations managed by dynamic contracts, because linkage between these two sides is 

missing. 

The main architecture design must address a more complex situation where the clientele and the 

ecosystem itself have potential conflicts of interest in details, but still, the members of the ecosystem have 

incentives for collaboration both at business network level and ecosystem introduction, control and 

evolution levels. 

Instead of considering nonfunctional features as a single, uniformly directed domain of research, there is 

definite need to address separately three levels: i) business collaboration aspects, ii) service properties, and 

iii) collaborative management of communication technology usage in specific cases. For the business 

collaboration aspects, the declaration of vocabulary and behaviour requirements is directed by companies 

and consortia focusing on issues including business processes, legal systems, business models. For service 

properties, the aspects to be managed will be implemented mainly as software – and thus design choices 

depend on the software engineering practices used – but the management of quality, business issues and user 

interaction aspects need to be aligned across the service ecosystem with the needs of the business 

collaboration level. Further, the communication technology needs to be governable though shared 

vocabulary with the level above, although the facilities are provided and designed by platform service 

producers. 

Our vision in the CINCO group (Collaborative and Interoperable Computing research group, 

http://cinco.cs.helsinki.fi) is that in future, organizations and individuals collaborate within open service 

ecosystems for enabling service-oriented networked business. An open service ecosystem is characterized 

especially by the autonomy of its entities, its evolution with respect to available services and collaboration 

types, and dynamic establishment of collaborations. In an open service ecosystem the service providers and 

clients are not bound to a shared development platform. Instead, each ecosystem member may utilize 

methods and technologies that suit best their own needs. A set of global infrastructure services are then used 

for service publication and discovery, as well as dynamic establishment of service-based collaboration 

networks (Kutvonen, Ruokolainen, Ruohomaa, & Metso, 2008). An open service ecosystem is based on the 

service-oriented architecture (SOA) architectural style with service brokering and dynamic binding 
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facilities, but requires more sophisticated infrastructure services for enabling interoperable service 

collaboration. 

The contribution of this Chapter is built up in steps. First we introduce the service ecosystem framework 

that merges the concepts for service-oriented software engineering and eContracting in such a way that 

ecosystem level evolution is facilitated. This provides the environment in which, as the second step, the 

enhanced concepts of ecosystem features can be connected to the relevant primary targets, i.e. service, 

collaboration and communication. Once the concepts are introduced, the third step provides the processes 

necessary for evolving the open service ecosystem understanding and usage of the features. This text 

provides insight for the Pilarcos ecosystem work, and as new contribution, introduces the feature 

management method within the Pilarcos ecosystem frame. Thus the text reflects the CINCO group vision 

that in future, individual users, enterprises or public organizations can easily compose new services from 

open service markets, or establish temporary collaborations with complex peer relationships. Furthermore, 

these contract-governed collaborations can be managed by all involved parties. All this is supported by a 

global infrastructure with facilities for interoperability control and contract-based community management 

(establishment, control and breach recovery) among autonomous organization; this infrastructure also takes 

responsibility of governing trust and privacy-preservation issues. The support environment is 

complemented with service-oriented software engineering practices that enable semantic and pragmatic 

interoperability management. 

Section 2 introduces the open service ecosystem, while Section 3 elaborates on the ecosystem spanning 

from technical platforms to business-oriented needs of managing inter-enterprise collaborations. Section 3 

demonstrates the conceptual model and its formalization as a meta-model hierarchy, and how the necessary 

concepts can be organised to achieve the goals of synchronous management of the three levels of issues 

described above. Section 4 proceeds then to discuss management of features in several service ecosystem 

processes: service ecosystem life-cycles, eContracting, and ecosystem evolution. Section 5 discusses the 

benefits of the framework, while conclusions are given in Section 6. 

 

2. OPEN SERVICE ECOSYSTEM 

We propose open service ecosystems as a coherent solution for the challenges of interoperability and 

collaboration management, met in the phases of service production and utilisation through collaborations, 

and innovation of new types of collaborations and services. Most of the challenges arise from the inherent 

and necessary independence of actors involved, including collaboration partners, parties engineering 

services, clients, and platform providers. 

In terms of operational time composability of services and facilities of inter-enterprise collaborations, a 

key point is sufficient, automated support for interoperability. Interoperability concept covers technical, 

semantic and pragmatic interoperability aspects. Technical interoperability is concerned with connectivity 

between the computational services, allowing messages to be transported from one application to another. 

Semantic interoperability means that the message content becomes understood in the same way by the 

senders and the receivers. This concerns both information representation and messaging sequences. 

Pragmatic interoperability captures the willingness of partners to perform the actions needed for the 

collaboration. This willingness to participate refers both to the capability of performing a requested action, 

and to policies dictating whether it is preferable for the enterprise to allow that action to take place. 

At the design and engineering time concerns include efficient production and maintenance of service 

software with clear, published interfaces and behaviour descriptions. While the direct production concern is 

how to extend model-based methodologies to distributed team environment, an even more pressing is the 

need of producing exploitable, composable services that can be managed in such a way that interoperability 

can be achieved at operational time. Behind these two problem areas remains the problem of changing 

business models and changing computing and communication platforms: both the production and 

operational systems should be tolerant for changes. 
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Against this background we define a service ecosystem as an environment for creating and managing 

service-based collaborations, such as virtual organizations or service mash-ups, from services provided by a 

community of autonomous entities. In future service-oriented networked business, organizations and 

individuals collaborate within service ecosystems. Currently there are several emerging service ecosystems 

in the domains of business and technology. Software ecosystems (Bosch & Bosch-Sijtsema, 2010) are 

utilized by enterprises for producing software applications more efficiently for heterogeneous clientele with 

varying requirements. Software ecosystems can be characterized as product centric service ecosystems. 

Different kinds of electronic business networking environments, such as eCommerce platforms, supply 

chains, and virtual organizations, can be considered as collaboration and process centric service ecosystems. 

Cloud computing platforms, such as provided by Amazon, Google, or Salesforce, are resource centric 

service ecosystems. Finally, community and individual centric service ecosystems are realized by social 

networking platforms such as Facebook, LinkedIn or MySpace. The maturity of these ecosystems vary from 

closed software systems to open collaboration systems with ad hoc collaboration models. 

For us, the open service ecosystem is characterized especially by its evolution with respect to available 

services and collaboration types, and dynamic establishment of collaborations. Indeed, the purpose of the 

ecosystem is to provide infrastructure, tools and vocabulary for independent entities (people, organisations, 

collaborations) to create new collaborations, utilising the already existing services from the ecosystem. This 

is in contrast to a common goal in related work (e.g., ECOLEAD (Rabelo, Gusmeroli, Arana, & Nagellen, 

2006), CrossWork (Mehandjiev & Grefen, 2010)) for creating a shared space with a shared incentives of the 

members. In open service ecosystems the initiators of collaborations each have their private incentives and 

conflicts of interest are to be expected, and resolution of such conflicts need to be supported. 

The open service ecosystems are defined by a conceptual framework and a set of life cycles:  

• The conceptual framework provides a vocabulary and an ontology for defining the properties of 

services, collaborations and entities in the ecosystem.  

• A service ecosystem life cycle declares which kinds of activities are expected from the ecosystem 

participants to support the operation of the ecosystem. Foundational ecosystem life cycles, which 

exist in every service ecosystem, include a service life cycle and a collaboration establishment life 

cycle. Additional life cycles can be associated with a service ecosystem depending on the 

requirements of the domain of interest, such as ecosystem evolution life-cycle.  

The service life cycle addresses steps of service innovation, modeling, production and utilisation. Therefore, 

the service-oriented software engineering methodologies and instruments must produce modules that 

exploit the facilities of the ecosystem infrastructure for efficient and dependable service delivery (i.e. 

service publication, discovery, selection, location and binding). The collaboration establishment life cycle 

relies on artifacts defining the content of contracts, and infrastructure mechanisms for dynamic 

establishment of safe, interoperable service collaborations taking qualitative requirements into 

consideration. The ecosystem evolution life-cycle allows the concept base and infrastructure service base to 

be enhanced and modified while the ecosystem is utilised. This evolution then allows existing SOSE 

methods and eContracting methods to facilitate the new innovations. 

The Pilarcos ecosystem illustrated in Figure 1 can be considered as a concretization of the ecosystem 

framework. The Pilarcos architecture views inter-enterprise collaboration as a loosely-coupled, dynamic 

constellation of business services. The constellation is governed by an eContract that captures the business 

network model describing the roles and interactions of the collaboration, the member services, and policies 

governing the joint behavior (Kutvonen, Metso, & Ruohomaa, 2007, Kutvonen, Ruokolainen, & Metso, 

2007). 

The Pilarcos architecture for the open service ecosystem comprises of 

1. the participating enterprises, with their public business service portfolios exported (Kutvonen, 

Ruokolainen, Ruohomaa, & Metso, 2008);  

2. business-domain governing consortia, with their public models of business scenarios and 

business models expressed as exported business network models (comprising a set of business 
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process descriptions and compulsory associations between roles in them, and governing policies 

about acceptable behavior)(Kutvonen, 2002);  

3. a joint ontology about vocabulary to be used for contract negotiation, commitment and 

control (Metso & Kutvonen, 2005, Ruokolainen & Kutvonen, 2006, 2007b);  

4. legislative rules to define acceptable contracts (Metso & Kutvonen, 2005);  

5. technical rules to define conformance rules over all categories of meta-information held as 

collaboration and interoperability knowledge (Ruokolainen, 2009, Ruokolainen & Kutvonen, 

2007a);  

6. infrastructure services to support partner discovery and selection, contract negotiation and 

commitment to new collaborations, monitoring of contracted behavior of partners, and breach 

detection and recovery services; these services especially include trust aspects in 

decision-making on commitment and breaches (Kutvonen, Metso, & Ruohomaa, 2007, 

Kutvonen, Ruokolainen, & Metso, 2007);  

7. reputation information flow, collected from past collaborations (Ruohomaa & Kutvonen, 2008, 

Ruohomaa, Viljanen, & Kutvonen, 2006).  

 

  

Figure 1: A schematic view of the Pilarcos service ecosystem life-cycles. 

Figure 1 illustrates the ecosystem life-cycles. On the left, meta-information repositories and flows are 

shown to be created by the publishing and exporting processes denoted above as items 1 and 2. The 

repositories in particular contain public information about the available business network models, available 

services and reputation information about the available services. This information is stored in globally 

federated repositories, applying strictly specified structuring and conformance rule (Kutvonen, 2004) 

created by the processes listed above as items 3, 4 and 5. The information is in turn utilized by the ecosystem 

infrastructure functions listed as item 6, e.g. service discovery and selection, eContracting functions, 
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monitoring of business services and reporting of experience on the services when a collaboration terminates. 

These functions are further described below. 

On the right, the life-cycle of independent collaborations is shown to flow from establishment to 

evaluation at the dissolution phase. The infrastructure functions provide support for the four phases of the 

collaboration: establishment, agreement, enactment and control, and evaluation. In the Pilarcos framework 

the collaboration establishment is a multi-lateral process involving a collaboration initiator and one or more 

service providers that have published their services in the service ecosystem.  

Service discovery and selection supports the collaboration establishment phase. It is based on public 

business network models describing the collaborations, and public service offers made by service 

providers (Kutvonen, Metso, & Ruohomaa, 2007, Ruokolainen & Kutvonen, 2007b). The business network 

models capture the best practices of a given field, and they are built from formally defined service types. 

The task of producing these models and types naturally falls to consortia and standardization bodies. 

Service selection includes automated static interoperability checking, which ensures that the service 

offers fit the model of the collaboration, and have terms that are compatible with other offers being selected 

into the proposed business network. As service discovery and selection is separate from contract 

negotiations, it can be done without access to sensitive information; this makes it possible to have this task 

implemented as a third-party service (Kutvonen, Metso, & Ruohomaa, 2007). 

Automated eContract establishment supports the agreement phase of the collaboration (Kutvonen, 

Metso, & Ruohomaa, 2007). The business network model and the proposed service offers to populate the 

roles in it are processed by an automated contract negotiation infrastructure, which is controlled locally by 

each collaboration partner. Contracts are based on templates specific to the collaboration model, and the 

terms of service provision given in service offers form the basis of negotiations. The negotiated eContract 

includes a model of the business process of the collaboration, as well as the finalized terms of service in the 

form of accepted service offers. 

Monitoring supports the enactment and control phase of the collaboration in particular (Kutvonen, 

Metso, & Ruokolainen, 2005). It is done by each collaborator to protect local resources, keep track of the 

progress of the collaboration, and to ensure that partners follow the collaboration model. The business 

network model and service provision terms set by the negotiated eContract form the specification of correct 

behavior in the collaboration, which becomes relatively straightforward to monitor. 

Experience reporting supports the evaluation phase of the collaboration, and connects to the monitoring 

service during the enactment of the collaboration (Ruohomaa & Kutvonen, 2008, Ruohomaa et al., 2006). 

Experience reporting forms the core of social control in the open service ecosystem. As contract violations 

are detected by monitors, they are published to other actors as well: it is important to create a direct 

reputation impact to privacy and data security violations in order to limit the damage that misbehaving 

actors can achieve in other collaborations. 

For evaluating the ecosystem approach, a set of prototype infrastructure services has been implemented 

in the Pilarcos interoperability middleware (Kutvonen et al., 2008). Systematic performance testing of the 

framework has been conducted in the context of the Pilarcos interoperability middleware. The results show 

that the approach is feasible performance-wise (Metso & Kutvonen, 2005). The conceptual framework and 

the corresponding metamodels has been scrutinized during their development with architectural analysis. 

For example, a threat analysis has been conducted with respect to privacy issues (Moen et al, 2010). 

As can be detected experimenting with the Pilarcos type of ecosystem, the ecosystem features have 

several roles within service ecosystems. They are used as qualitative service features, for example during 

service discovery and selection. During collaboration establishment they are considered as contractual 

artifacts that are negotiated between entities willing to establish service-based collaborations. Finally, they 

are deployable products, that is artifacts created by someone using a specific process, which are put into use 

during collaboration enactment. Furthermore, while the set of possible service ecosystem features is open 

and can not be predetermined or enumerated due to their context dependency and evolution of an open 

service ecosystem, their usage can be disciplined by deliberate management facilities. These facilities 

involve design and deployment of the features, as well the operational time facilities for governing their 

utilization. 
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3. FEATURES IN SERVICE ECOSYSTEMS 

Service ecosystem is a socio-technical complex systems where autonomic entities collaborate with each 

other over a service-oriented computing environment. The service-oriented computing environment 

provides infrastructure services for establishing interoperable collaborations. Collaborations are enabled by 

cooperation facilities, such as communication channels, that are set up during collaboration establishment 

for arbitrating activities and knowledge between ecosystem members. In service ecosystems the different 

features of entities and cooperation facilities affect the structure, behaviour and qualities of service-based 

collaborations. 

For facilitating collaboration establishment processes and other service ecosystem processes the features 

and their inter-dependencies need to be governed rigorously. Towards this purpose we have established a 

framework for unambiguous description of service ecosystem features. The framework comprises a 

conceptual model which provides especially a categorization of features, and a formalization of the 

conceptual model as a meta-model for service ecosystems. In the following we describe the categorization 

of service ecosystem features. As we will see, the categorization does not actually contain a notion of 

non-functional features. Different features in service ecosystems govern activities taken in different phases 

of ecosystem life-cycles: so-called cooperative features defining intensions of legal entities are used for 

decision making in the preparatory phases of collaboration establishment, whereas so-called 

extra-functional features declare qualitative features of interaction and communication. All service 

ecosystem features have active roles during collaboration establishment processes (e.g. virtual organization 

establishment). 

In this Section we discuss the characteristics of service ecosystem features and their management. We 

first define what we mean with feature management and discuss related problems, and activities. We then 

provide a categorization of service ecosystem entities and cooperation facilities that are utilized for enabling 

service-based collaborations. After that we define a categorization of ecosystem features. The 

categorization is derived from the identification of ecosystem entities and cooperation facilities, and 

requirements stemming from foundational ecosystem life-cycles, such as collaboration establishment 

life-cycles. The categorizations and the conceptual framework describing relationships between the kinds of 

ecosystem entities, cooperation facilities, and their features are formalized in a service ecosystem 

meta-model. UML class diagrams (Object Management Group, 2005) described in this Chapter illustrate 

parts of a larger modelling framework (Ruokolainen, 2009) for managing service ecosystem knowledge. 

Finally, we provide a discussion of the semantics for service ecosystem features. We perceive that each 

feature category is associated with a distinguishing semantic framework. 

 

Managing service ecosystem features 

Managing features of software systems is problematic: features may have complex dependencies with each 

other, they can be defined at different abstraction levels, and interpretation of their meaning or importance 

can be subjective. In addition to these generic problems, more specific challenges are introduced for feature 

management in open service ecosystems. In open service ecosystems new kinds of features emerge 

following the demands of the individual members and the domain of operation. This dynamism of the 

knowledge landscape must be addressed by mechanisms that allow extension of the feature ontologies. Due 

to the autonomy of ecosystem members feature management can not be centrally controlled. Instead, 

features should be managed using a federated approach where feature descriptions can be shared between 

ecosystem members and utilized efficiently in the local systems. Finally, for guaranteeing interoperability 

during dynamic collaboration establishment processes, features should be provided with rigorous and 

unambiguous semantics. 

Features can have several kinds of inter-dependencies. When addressing features at the same level of 

abstraction, features may have horizontal interactions with each other. Behavioural features of business 
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services can be affected by security features requiring key-exchange protocols, for example. Another 

example of horizontal feature interaction is the potential conflict between performance and security 

features: introduction of communication encryption may increase the response time of business service. 

Features at the same level of abstraction may require other features to function correctly: introducing 

message encryption feature on a communication endpoint is typically not valid without introducing an 

decryption feature on the other communication endpoint. Finally, features may have direct conflicts with 

each other (e.g. monitoring of communication vs. privacy preservation), be mutually exclusive (e.g. 

different message encryption schemes), or have some domain specific dependencies with each other. 

Features are defined in different levels of abstraction for decreasing the complexity of their description 

and for achieving loose coupling between business and technology. In this setting features defined at a 

higher level of abstraction are instantiated at a lower level of abstraction by a collection of more specific 

features. For example, at the business level a feature requirement for communication confidentiality is 

declared. This high-level feature can be implemented at a lower level of abstraction by an appropriate 

combination of features representing strong encryption and privacy. Further down the abstraction chain, the 

feature of strong encryption can be implemented by providing a feature that represents usage of RSA 

algorithm with 1024 bit key length, for example. 

Especially in open service ecosystems the subjectivity of interpretation of feature intensions has to be 

addressed carefully. Without a shared understanding about the meaning of ecosystem features, 

identification and selection of eligible features, and analysis of feature interoperability are impossible. For 

this purpose, means for categorizing service ecosystem features must be provided. The categorization is 

utilized for classifying available features such that features providing required characteristics of business 

services and communication can be efficiently identified. Such feature categorization provides a basis for an 

ontology of service ecosystem features. In addition to prescribing feature categories, such ontology should 

also provide means for defining horizontal and vertical feature dependencies. 

For increasing the elasticity and sustainability of the service ecosystem, an ontology describing service 

ecosystem features must be dynamically extensible. Especially, it should be possible to introduce new kinds 

of feature categories on demand. A modelling framework that is based on the powertype pattern (see 

e.g. (Gonzalez-Perez & Henderson-Sellers, 2006)) or some other means for dynamic type definition should 

be used. While it may be sufficient in other contexts to use ontologies for simply describing features, such as 

has been done for example in (Kabilan et al., 2007) or (Kassab, Ormandjieva, & Daneva, 2009), this is not 

sufficient in open service ecosystems. Instead, feature definitions need to be provided also with prescriptive 

definitions for reducing ambiguity in feature interpretation, and for enabling efficient feature 

implementation in ecosystem member organizations. Feature intensions in service ecosystem domain 

ontologies can be formalized as meta-models and models (Ruokolainen, 2009). 

However, even defining both the descriptive and prescriptive characteristics of features is not sufficient 

in open service ecosystems. While such an ontology provides some guidance especially for the selection and 

development of required features, from the interoperability management perspective these descriptions are 

incomplete. What is still missing from this setting is rigorous semantics providing unambiguous 

interpretation of feature intensions and dependencies. This deficiency can be approached with abstract 

platform thinking and by providing proper semantics for the different categories of features. 

An abstract platform represents the support that is assumed by platform-independent models of a 

distributed application (Almeida, Dijkman, Sinderen, & Pires, 2004). In open service ecosystems abstract 

platforms are made explicit by models that prescribe the characteristics of interaction and communication. 

From feature management perspective, these models provide a mechanism for prescribing the effects that 

certain features have on interaction and communication. More over, feature dependencies can be 

characterized with respect to abstract platform models, such as descriptions of communication channels. For 

example, it can be described that two specific features can not be bound simultaneously to a communication 

channel. 

Semantics for features in service ecosystems should be formalized by using proper, category specific 

semantics. Behavioural features of services can be formalized using Petri-nets, process algebra, or finite 

state automata, for example. Structural features of communicated information can be formalized based on 
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different type systems. Policies and business rules, which are kinds of non-functional features, can be 

formalized as temporal or deontic constraints over service behaviour. Different alternatives for formalizing 

feature semantics are discussed below, after introducing the feature categories of service ecosystems. 

 

Service ecosystem entities and cooperation facilities 

Features in service ecosystems specify the characteristics of ecosystem entities and abstract platform 

components. An entity has its own existence and has an identity (e.g. a unique identifier, address, name, or 

URI) which can be used for referring to and identifying the corresponding entity. Examples of service 

ecosystem entities are organizations, individuals, business services, and service endpoints. We consider 

entities and features as the primary artifacts in service ecosystems, and meaning of an entity is prescribed by 

the features it possesses. Abstract platform components are called in this framework as cooperation 

facilities, since they provide elements that are needed for realizing interaction and communication in service 

ecosystems. Denotation of a cooperation facility comprises a selection of features. 

A diagram illustrating the relationships between entity kinds and features, as well as the top-level 

categorization to functional and legal entity kinds is given in Figure 2. The notions of Concept and Intension 

are foundational parts of the service ecosystem meta-model which enable ontological and linguistic 

meta-modelling practices (Ruokolainen, 2009). 

 

  

Figure 2: Ecosystem entity kinds. 

Functional entities provide the essential activities, behaviour, and interactions for realizing collaboration in 

service ecosystems. Functional entities comprise endpoint, information, behavioural and service entity 

kinds, as illustrated in Figure 3. The intensions of functional entities are prescribed by functional features. 
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Figure 3: Functional entity kinds. 

Endpoint entities represent interaction endpoints in the system. Their features declare what kind of 

interaction semantics is to be used, e.g. remote procedure calls or publish-subscribe. Information entities 

represent information contents available in the system with the corresponding features describing business 

document structures, for example. Behavioural entities’ intensions compose behavioural patterns that are 

supported for realizing collaborations in the ecosystem. We may have behavioural entities that define 

simple message exchange patterns (MEPs) of the web services architecture (Web Services Architecture 

Working Group, 2004) or behavioural entities that declare more complex business protocols, as in the case 

of the Pilarcos service ecosystem (Kutvonen, Ruokolainen, et al., 2008, Ruokolainen & Kutvonen, 2007b). 

Finally, service entities represent the actual services available in the system. Service entities are further 

classified to two distinct categories: business services and infrastructure services. Business services are used 

in the business networks for realizing collaboration activities. Infrastructure services, such as business 

service discovery services or populators (Kutvonen, Ruokolainen, et al., 2008), are used for realizing 

service ecosystem life-cycle activities. 

Service providers, consumers, clientele and other real-life actors are represented in service ecosystems 

by the concept of legal entity. Legal entities are categorized to individuals and organizations, as illustrated 

in Figure 4. The intension of a legal entity kind is defined by a collection of cooperative features. A 

cooperative feature can prescribe policies a legal entity must conform to, or declare a reputation mechanism 

for evaluating the trustworthiness of a legal entity. 

 

  

Figure 4: Legal entity kinds. 

Cooperation facilities provide elements for describing the abstract platform of a service ecosystem. These 

abstractions provide representations for interaction and communication which are agnostic with respect to 

the actual technological platforms (e.g. web services or other middleware platform) used. The 

categorization of cooperation facilities is illustrated in Figure 5. Intensions of cooperation facilities are 

defined by a set of facility features. 
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Figure 5: Cooperation facilities. 

There are two categories of cooperation facilities: channel types and binding types. Binding types represent 

interaction relationships taking place between two or more service endpoints. A binding type provides an 

abstraction for declaring interaction characteristics, such as if interaction is to be taken in a one-to-one or 

one-to-many setting. Binding types provide especially an abstraction for interception mechanisms that can 

be utilized for adaptation (e.g. mappings in different representation formats), exogenous coordination (e.g. 

notifications about specific communication activities), or implementing enterprise integration patterns. 

Channel types are used for declaring abstract communication media and their features. A channel type 

comprises an ordered set of channel phases. Each phase represents an individual activity that must be taken 

for propagating the communication payload from one interaction endpoint to another. 

 

Categorization of service ecosystem features 

To facilitate interoperability management in service ecosystems it becomes essential to unambiguously 

specify ecosystem features. As was discussed above, a specification of ecosystem features must declare 

both descriptive (ontological) and prescriptive (engineering) characteristics of the features. In the following, 

we introduce a descriptive categorization of service ecosystem features. The categorization is based on 

definition of ecosystem entities and cooperation facilities. Especially, most of the feature categories are 

declared for providing intensions for the entities and cooperation facilities. In addition, qualitative features 

affecting the functionality of entities and cooperation facilities are provided with appropriate categories. 

The categorization of service ecosystem features identifies five different categories, namely 

1) functional features, 2) facility features, 3) cooperative features, 4) contractual features, and 

5) extra-functional features. The categorization is illustrated in Figure 6. Functional features declare 

intensions of functional entity kinds, while cooperative features are associated with legal entity kinds. 

Facility features provide meaning for the cooperation facilities. Cooperative, contractual and 

extra-functional features are qualitative features of legal entity kinds, business services and operations, and 

cooperation facilities, correspondingly. In the following we discuss the non-functional part of this 

categorization; features associated with semantics of functional entities such as business services, 

information or service endpoints are not discussed further in this Chapter. 
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Figure 6: Service ecosystem feature categories. 

Facility features define the characteristics of cooperation facilities and thus, the abstract platform. There are 

two categories of facility features, namely binding port types and channel phases, as illustrated in Figure 7. 

Binding port types are used for specifying the intensions of binding types. Each binding port type represents 

an endpoint of an interaction relationship. A binding port type can be associated with an endpoint entity kind 

(e.g. a service endpoint), or another binding port type. These different associations of binding port types 

provide representations for typical interaction and exogenous coordination patterns, correspondingly. The 

intension of a channel type is declared by an ordered set of channel phases. The ordering is provided by the 

predecessor-association inherited from the concept of Event. Each channel phase declared in a channel type 

is associated with a binding port type defined in a binding type. This effectively makes the set of channel 

phases a bipartite collection, each phase now belonging to a set associated with one of the two binding port 

types defined in a binding type. 

 

  

Figure 7: Facility features. 

Cooperative features represent a category of service ecosystem features that define the intensions of legal 

entities. Legal entities are characterized by the rules they must conform to, and means for judging their 

trustworthiness in a service ecosystem community. As illustrated in Figure 8, the characteristics are 

represented by the concepts of Policy and ReputationKind. Cooperative features are utilized in the decision 

making phase of collaboration establishment processes for evaluating the feasibility of a potential service 

provider. During the operation of a business network community the rules declared by cooperative features 

are monitored dynamically. Finally at the dissolution phase of a community the reputation of community 

members can be updated corresponding to the quality of their performance (Kutvonen, Metso, & 

Ruohomaa, 2007). 

 



13 

  

Figure 8: Cooperative features. 

Policies are further classified to legislation, policy frameworks and business models. Legislation comprises 

legal acts that must be obeyed by the corresponding kind of legal entities. Policy frameworks comprise 

operational policies, or practices, that are characteristic for a certain kind of organization or individual. 

Operational policies regulate the use of business functionality and knowledge provided by a legal entity, 

such as an enterprise. For example rules addressing accessibility, authorization, trust and privacy with 

respect to the provided business services and information are typical examples of organizational policies. 

Business models are collections of business rules, which are declarative statements defining or constraining 

some aspect of a business. Different kinds of reputation models or criteria, such as recommendations or 

ratings, can be categorized under the concept of ReputationKind. 

Cooperative features address the pragmatic interoperability issues, that is policies and methods of 

decision-making on collaborations, such as risk, business value, trust and reputation. Again, there is need to 

define policies that are commonly understandable but dependent on all business domains involved. 

Collaborative properties especially are subject to business service owners’ autonomic intentions. For 

collaborative properties to be truly usable within an open business service ecosystem, facilities for identity, 

trust and reputation management should also exist, since assertions of cooperative features can not usually 

be validated in advance. 

Contractual features represent qualitative characteristics of business services and their operations. 

Contractual features comprise availability constraints and different charging styles, in addition to different 

models for settling about the service usage, as illustrated in Figure 9. Contractual features are instantiated to 

contractual properties. A contractual property is a declaration of a concrete value or value constraint over 

some contractual feature. For example, response time can be considered as a temporal availability feature 

with values declared in milliseconds; now the corresponding property can be for example a declaration of 

constraint ―response time must be less than 200 ms‖. 
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Figure 9: Contractual features. 

Contractual features address especially the semantic interoperability concerns related to the qualitative 

characteristics of business services and operations. Contractual features are agreed upon during the 

negotiation phases of collaboration establishment life-cycles. The features and property values that have 

been agreed upon negotiations are used during the operational phase of the community as monitoring 

criteria. If the agreed qualities are not met, compensations or other mechanisms for recovering from the 

contract breach can be used. Contractual features are controllable by the business service provider and 

modifying these features requires business administrative authority over the service. More over, for 

enabling loosely coupled and dynamic business collaborations, contractual features should be dynamically 

configurable in the local systems. 

Extra-functional features represent qualitative characteristics of cooperation facilities. We identify two 

categories of extra-functional features: interaction features and communication features, as illustrated in 

Figure 10. Interaction features are bound to binding types and they represent interaction characteristics, 

such as functionality related to messaging and encoding. Communication features are bound to channel 

types and represent functionality such as encryption, decryption or monitoring of behaviour. 

Communication features must be introduced in certain order to be feasible, that is they can have mutual 

ordering dependencies: information monitoring must be executed before encryption, for example. 

 

  

Figure 10: Extra-functional features. 

Extra-functional features address semantic and technical interoperability issues relevant for managing the 

dependability of the underlying communication platform. These features are controllable by the service 

realisation provider by using the computational platform. Modifying these features requires technical 

administrative authority over the local communication platform, and they are closely intertwined with the 

computational services administered within administrative domains. Extra-functional features manifest 

static aspects of interaction and communication that are selectable during service binding and collaboration 

contract establishment. 
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Characteristics of service ecosystem features 

The feature categories presented above represent characteristics of distinctive ecosystem elements. From 

the set of categories we can identify two groups of categories: 1) intensional features and 2) qualitative 

features. Intensional features specify intensions of ecosystem entities and cooperation facilities. That is, the 

group of intensional features includes functional, facility and cooperative features. Rest of the feature 

categories, namely contractual and extra-functional features, can be characterized as qualitative features, 

since they are used for specifying qualitative features of business services and cooperation facilities. 

Especially, there is a difference in the usage of intensional features and qualitative features. Intensional 

features are declared statically over the corresponding subjects, that is entity kinds and cooperation 

facilities. By contrast, qualitative features are bound dynamically to their targets, such as business services 

or communication channels. Qualitative features are bound with a mechanism of property binding. A 

property binding is a relationship between a property subject (e.g. a business service) and a property 

declaration, as illustrated in Figure 11. 

A property object can be either a set-based constraint, such as PropSomeOf or PropNoneOf, a 

contractual property (applicable over business services or service operations) or an extra-functional feature 

(applicable over cooperation facilities). The set based constraints give means for declaring different 

property variations, such as different service pricing policies, for example. During the population phase of 

the eContracting life-cycle, the properties required by a business network are matched against those 

declared by service providers. The PropOneOf constraint means that any single one of the given properties 

must be same and supported by a provided services. Constraint PropSomeOf means that a number of the 

given values must be the same but not necessarily all. PropExactly means that all properties must be the 

same. PropNoneOf is an exclusive range and means that none of the given values are suitable. 

 

  

Figure 11: Property binding model. 

The categorization also constitutes a family of semantic domains: each feature category is associated with 

distinctive semantic frameworks. Functional features can be formalized by using a selection of semantic 

frameworks. For formalizing behavioural features, such as service conversations, formal methods based on 

Petri-nets (Hamadi & Benatallah, 2003), process algebras (Salan, Bordeaux, & Schaerf, 2004), or 

finite-state machines (Berardi, Calvanese, Giacomo, Lenzerini, & Mecella, 2003) can be used. Structural 

features, such as business document typing, can be formalized with appropriate typing schemes addressing 

XML (Simeon & Wadler, 2003, Hosoya, Vouillon, & Pierce, 2005), for example. 
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Facility features are used for specifying the semantics of binding types and channel types. In each 

service ecosystem there are some principles how communication channels can be constructed, for example. 

These rules can be provided with axiomatic semantics which ―involves rules for deducing assertions about 

the correctness or equivalence of programs and corresponding parts‖ (Zhang & Xu, 2004). Axiomatic 

semantics is a kind of semantic framework which is used especially for formalizing programming 

languages. In the context of service ecosystems the cooperation facilities are associated with 

domain-specific axiomatic semantics. The corresponding rules constrain the construction of channel types 

and binding types, and provide criteria for their correctness. 

Cooperative features are utilized for establishing feasible service provisioning relationships, and for 

governing the usage and operation of business services. Declarative business rules can be formalized with 

conceptual graphs (Valatkaite & Vasilecas, 2003) or defeasible logic (Antoniou & Arief, 2002), for 

example. Operational policies (e.g. privacy preservation) or other normative rules can be formalized, at least 

to some extent, with different modal logics. Modal logics, such as temporal, deontic or epistemic logics, are 

utilizable for declaring operational policies over business services, for specifying obligations and 

permissions over legal entities, and for defining privacy policies, for example (see e.g. (Lupu & Sloman, 

1999, Luo, Tan, & Dong, 2009, Benbernou, Meziane, & Hacid, 2007)). 

Contractual features are bound to business services and service operations for characterizing their 

business capabilities. This category includes features such as service availability (e.g. declarations that a 

service is available during business hours or within a geographical location), charging style (e.g. per 

business operation or intensity of use), and different models for settling about service use (e.g. rental or 

subscription). Contractual features are negotiated during eContract establishment; the negotiations are 

typically bilateral. The properties accepted in negotiations are put in service-level agreements. 

The distinguishing characteristics of contractual features is that they are instantiated to concrete values. 

These values are called contractual properties. A contractual feature is considered as a type definition 

which defines the acceptable value range for the corresponding kinds of properties. An simplified example 

of contractual feature instantiation is given in Figure 12. The example is illustrated as UML class 

diagram (Object Management Group, 2005) with instance specifications of the classes presented 

previously. 

In this example, AvailabilityInCountries is defined as a kind of a SpatialAvailability; this is declared 

with a conformsTo relationship. Contractual features define especially the acceptable value ranges for the 

corresponding properties. In this case, the acceptable values are lists of ISO standardized country codes 
iii
 

(this declaration is provided only as an informal comment in the example). The contractual property named 

MyServiceAvailability declares that a contractual subject, i.e. a business service or operation, is available in 

Finland, United Kingdom, Japan and United States. Finally, the contractual subject is bound with the 

PropertyBinding concept to a business service with the name of MyService. 
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Figure 12: Instantiating a contractual feature. 

In addition to contractual features, the extra-functional features are a category of qualitative features that 

can be bound dynamically. Extra-functional features are bound with the property binding mechanism to 

cooperation facilities, that is binding types and channel types. In distinction to contractual features that were 

instantiatable to contractual properties, extra-functional features do not have such a direct typing 

relationship. Instead, extra-functional features are made concrete by transformations between abstraction 

levels, e.g. from business level requirements to technology level artifacts.  

In this framework, the semantics of extra-functional features are given as model transformations. The 

model transformations take as an input a cooperation facility and produce a cooperation facility with the 

required feature implemented by appropriate channel phases, for example. We clarify the characteristics of 

extra-functional features with a simple example. In this example an extra-functional feature for secure 

communication is addressed. Within the knowledge base of the service ecosystem exists a declaration for an 

extra-functional feature named SecureCommunication; this is illustrated in Figure 13. More over, a model 

transformation has been published, named SCTrans, which is declared as a representation of (Favre, 2004) 

the SecureCommunication feature. 

 

  

Figure 13: Example of representing an extra-functional feature with model transformation. 

In this example we assume that the intensions of cooperation facilities are modeled using a meta-model 

described in Figure 14. The meta-model is a simplified and streamlined version of the meta-models defined 

in (Ruokolainen, 2009). The meta-model is an Ecore meta-model of the Eclipse Modeling Framework (The 

Eclipse Foundation, 2010a) declared in XText-based (The Eclipse Foundation, 2010b) concrete textual 

syntax. The metamodel defines seven classes with appropriate properties for describing cooperation 

facilities. 
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Figure 14: A simplified Eclipse Ecore meta-model prescribing intensions of cooperation facilities. 

The SCTrans model transformation can be defined using the QVT model transformation language (Meta 

Object Facility (MOF) 2.0 Query/View/Transformation Specification, 2005), for example. Such description 

of the model transformation is given in Figure 15. The model transformation effectively adds encryption 

and decryption phases to the channel phase sequences contained in any channel type conforming to the 

meta-model defined in Figure 14. Encryption phases are introduced before every initial phase of channel 

sequences induced by the predecessor reference. Decryption phases are introduced after each final phase of 

channel sequences. 
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Figure 15: SCTrans model transformation defined in QVT language. 

Extra-functional features may induce a series of model transformations, or transformation chains. In this 

setting, the application order of the transformation is essential, since the corresponding features can have 

mutual dependencies that have to be respected, or there are several abstraction levels in use. 

 

4. MANAGING FEATURES IN SERVICE ECOSYSTEM PROCESSES 

Service ecosystems involve several processes where feature management activities take place. The 

ecosystem processes include those of service-oriented software engineering processes, ecosystem 

evolution, service ecosystem life-cycles. Service-oriented software engineering processes utilize 
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domain-specific methodologies suitable for producing service artifacts. The artifacts include service 

implementation components and models defining different features of services, service collaborations and 

cooperation facilities. By ecosystem evolution we mean the ―meta-life-cycle‖ of service ecosystems from 

their design and initiation to operation, and their progressive development, especially with respect to 

available features, during their operation. Finally, ecosystem life-cycles are processes which prescribe 

especially processes for collaboration establishment. Service delivery or product life-cycles, among others, 

could be prescribed in as service ecosystem life-cycles depending on the domain and objectives of the 

corresponding ecosystem. 

Feature management activities in the preceding processes can be characterized as comprising of a) 

feature identification and selection, b) feature concretization, c) feature introduction, and d) feature 

coordination. These activities are enacted in different phases of the ecosystem processes and have their 

distinguishing interpretations. Manifestations of feature management activities in service-oriented software 

engineering, eContracting and ecosystem evolution processes are illustrated in Table 1.  

 

 SOSE eContracting Evolution 

IDENTIFICATION Requirements 

engineering 

Population Domain analysis 

CONCRETIZATION Feature specification Negotiation Ecosystem modeling 

INTRODUCTION Feature 

implementation 

Binding Feature publication 

COORDINATION Deployment & 

configuration 

Monitoring Knowledge 

management 

Table 1: Feature management activities in service ecosystem processes. 

The actors and the visibility of produced artifacts are different in each of the processes illustrated in Table 1. 

In service-oriented software engineering processes ecosystem members act typically as individuals for 

producing local, private artifacts such as implementation components. In service ecosystem life-cycles, 

such as the eContracting process, a collection of ecosystem members constitute a community which shares 

knowledge about the characteristics, i.e. features, of the collaboration. Finally, in ecosystem evolution the 

members of the ecosystem introduce new, public and globally available knowledge into the service 

ecosystem; this knowledge includes especially features and their categories. 

In service-oriented software engineering processes feature identification is provided by requirements 

engineering activities. Identified features are made concrete by feature specifications which define the 

descriptive (i.e. ontological) and prescriptive (i.e. engineering) characteristics of the features. The set of 

identified features can then be formalized with a service ecosystem modeling language (Ruokolainen, 

2009). New ecosystem features are introduced locally by implementing them in platform specific 

technologies. Finally, ecosystem features are coordinated by deployment and configuration activities which 

weave feature implementations with provided business services, communication components, or other 

feature implementation components. 

In ecosystem evolution the fundamental features and their categories are identified by a domain analysis. 

The domain analysis is executed during the initial design of the service ecosystem. Domain analysis is 

―process by which information used in developing software systems is identified, captured and organized 

with the purpose of making it reusable when creating new systems‖ (Prieto-Díaz, 1990). When this 

definition of domain analysis is put into the context of service ecosystems, ―software systems‖ are 
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considered as service collaborations, and ―creation of new systems‖ means establishment of new service 

collaborations.  

During the design of a new service ecosystem the foundational features, the abstract platform, and their 

inter-dependencies are identified during a domain analysis process. The results of the domain analysis are 

used for modeling the features of the service ecosystem. Feature concretization is implemented thus during 

ecosystem modeling. During the operation of service ecosystem new features can be introduced by 

ecosystem members by publishing feature models. Infrastructure services providing knowledge 

management functionality are used for such model publication. Ecosystem specific knowledge base, which 

includes especially the feature models, is coordinated by knowledge management activities enacted by 

infrastructure services. These activities maintain the knowledge base consistency needs for enabling 

establishment of interoperable service collaborations. 

In the following, we describe more thoroughly the role of feature management activities in collaboration 

establishment life-cycles, taking the eContracting process of the Pilarcos service ecosystem (Kutvonen, 

Ruokolainen, et al., 2008, Kutvonen, Metso, & Ruohomaa, 2007) as an example. 

 

eContracting 

Service ecosystems are provided with a collaboration establishment life-cycle. A collaboration 

establishment life-cycle defines a process for preparing necessary agreements and facilities required for 

service-based cooperation between community members. In the context of the Pilarcos 

framework (Kutvonen, Ruokolainen, et al., 2008, Kutvonen, Metso, & Ruohomaa, 2007) this process is 

known as eContracting. During eContracting processes features are managed during population, 

negotiation, configuration, operation and dissolution phases, as illustrated in Figure 16. Phase specific 

activities, such as service discovery in the population phase or monitoring in the operation phase, are taken 

for managing business network and service features; the activities are enacted in cooperation by legal 

entities and infrastructure services. Each phase is also associated with a collection of business services 

which is refined or utilized in the corresponding eContracting phase. 

 

  

Figure 16: Phases in an eContracting life-cycle. 

An eContracting life-cycle starts with a population phase where a business network model is filled with 

services matching the criteria of the selected business network and those set by the initiator of the 

population phase (Kutvonen, Metso, & Ruohomaa, 2007). Population phase utilizes infrastructure services 

available in a service ecosystem for realizing necessary activities; the population activities themselves are 

enacted by a infrastructure services known as a populator (Kutvonen, Ruokolainen, et al., 2008). Service 

discovery mechanisms provided by the infrastructure services are first used for identifying services that can 
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be potentially accepted for a specific business network. The primary criteria for service discovery is the 

functional features associated with services, e.g. behaviour and structure. 

Service discovery activity provides a set of services that are technically compatible with the 

corresponding business network model. The primary purpose of the service selection activity is to guarantee 

technical and semantic interoperability. Each service passing the service selection criteria should be at least 

technologically and behaviourally compatible with the given form of collaboration. In addition to 

interoperability criteria, both collaboration itself and its initiator may require certain level of initial trust and 

reputation from corresponding service providers. Infrastructure service providing trust and reputation 

management mechanisms (Kutvonen, Metso, & Ruohomaa, 2007), are utilized for this purpose. 

In the population phase a set of collaboration proposals are established from a selection of services and 

and a business network model that characterizes the structure and requirements of the 

collaboration (Kutvonen, Ruokolainen, & Metso, 2007a, Kutvonen, Metso, & Ruohomaa, 2007). Semantic 

interoperability is addressed further by the population phase especially with respect to the non-functional 

features of the services and requirements set by the collaboration. Compatibility between different features 

are matched; for this purpose, constraint satisfaction algorithms can be used (Kutvonen, Metso, & 

Ruohomaa, 2007). As a final outcome of the population phase, a set of collaboration contract proposals is 

provided. The services included in the proposals are guaranteed to be interoperable with each other. 

While the population phase addresses technical and semantic concerns of interoperability, negotiation 

phase is utilized especially for addressing the pragmatic interoperability aspects. As an example of 

pragmatic interoperability aspects, expression of the entities’ willingness to collaborate, are considered 

during the negotiation phase. Cooperative features are utilized especially for such decision making. First of 

all, the policies associated with the kinds of legal entities are used as the principal criteria for selecting 

members for business networks to be established. Secondly, reputation of legal entities is used for further 

judging the eligibility of an entity as a member in the business network. 

The negotiation phase enables autonomic ecosystem members to resolve and bargain about the 

contractual features of the collaboration. The negotiations result in formulation of a collaboration contract 

which states the responsibilities for each participating entity, the structure of the collaboration, and features 

expected from the corresponding cooperation facilities, such as communication channels. The collaboration 

contract is then used for managing the operation of the collaboration (Kutvonen, Ruohomaa, & Metso, 

2008, Metso & Kutvonen, 2005). 

In service binding the features agreed upon during the preceding negotiations are introduced as more 

concrete, usually technology specific, declarations. Especially, cooperation facilities are refined with the 

required extra-functional features; more over, features in higher abstraction levels are instantiated to lower 

abstraction levels using model transformations, for example. 

After a successful binding service providers are equipped with declarations that can be used locally for 

configuring the technological platforms. Models of the cooperation facilities declared during service 

binding can be utilized for configuring systems in local administration domains. Models of extra-functional 

features can be used for generating appropriate implementation components, such as communication 

interceptors or adapters. More over, models representing cooperative features can be utilized for feeding the 

local business rule engines with appropriate rules.  

During the operation phase the use of features is coordinated with monitoring mechanisms. Especially, 

contractual properties are used for service-level monitoring of both external (e.g. detecting contract 

breaches) and internal services. Finally, in the dissolution phase especially the reputation features of legal 

entities are coordinated. The reputation of entities are updated in accordance to the corresponding kind of 

reputation system. 

5. DISCUSSING THE FRAMEWORK 

Due to the dynamism of the environment and autonomy of entities special emphasis must be imposed on 

controlling and maintaining interoperability knowledge in open service ecosystems. During collaboration 

establishment processes information is required especially about the features of ecosystem members, 
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provided services, and available cooperation facilities. In the previous Sections we have described a 

framework for enabling management of service ecosystem features. In this Section, we discuss impacts of 

this work on the management of non-functional features in open service ecosystems. After that we introduce 

a selection of related work with comparison to our framework and a brief analysis on future research 

directions in the area of model-driven management of service ecosystem features. 

 

Impacts on the management of service ecosystem features 
 

The framework presented in this Chapter provides a well-defined classification of service ecosystem 

features. We have shown that the corresponding feature categories have their specific roles, as part of 

different ecosystem elements and in different phases of service ecosystem processes. We have intentionally 

avoided the use of term ―non-functional feature‖. First of all, the meaning of a non-functional feature or 

property is ambigous. It’s definition as ―any other feature than functional‖ does not get us too far in their 

management. In this framework, we have first analyzed the components that act in service ecosystems and 

then defined the features in accordance to the categorization of entities and cooperation 

facilities (Ruokolainen, 2009). Secondly, features in service ecosystem are all functional in a sense that they 

are used for decision making, negotiation, or supporting service interactions in the different phases of 

service ecosystem processes. 

Based on the categorization of the foundational entities, a feature categorization has been defined. The 

characteristics of the corresponding categories are summarized in Table 2. In this characterization two 

groups of features are distinguished. The three feature categories on the top of the table (functional, facility 

and cooperative features) can be considered as intensional feature categories, since they are used for 

specifying the intensions of service ecosystem entities and cooperation facilities. Two remaining categories, 

contractual and extra-functional, specify qualities of provided business services and the abstract platform. 

Categories are first characterized with respect to the target of the feature definitions in the corresponding 

category. Secondly, the kind of semantics utilizable for formalizing the features is given. Finally, some 

characteristic examples of concrete feature definitions are provided for each of the categories. 

 

 TARGET SEMANTICS EXAMPLES 

FUNCTIONAL 
FEATURES 

Functional entity 
intension 

Various frameworks 
(e.g. for operational or 

structural features) 

Service behaviour; 
business document 

structures 

FACILITY FEATURES Cooperation facility 
intension 

Axiomatic One-to-one interaction; 
communication 

monitoring 

COOPERATIVE 
FEATURES 

Legal entity intension Various logics (e.g. 
temporal, deontic, 
epistemic logics) 

Corporate form 
definitions; domain 

specific business rules; 
information privacy laws 

CONTRACTUAL 
FEATURES 

Business service and 
operation qualities 

Denotational Availability of business 
services; price per 

operation call 

EXTRA-FUNCTIONAL 
FEATURES 

Interaction and 
communication qualities 

Translational 
(transformations over 
cooperation facilities) 

WS-* / REST –style 
messaging; 

communication security 
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Table 2: Overview of the service ecosystem features. 

The framework discussed in this chapter is based on a conceptualization of service ecosystem elements and 

formalization of the corresponding concepts with a formal meta-model (Ruokolainen, 2009). The 

meta-model can be considered as a domain specific meta-modeling language (Zschaler, Kolovos, Drivalos, 

Paige, & Rashid, 2010) for service ecosystems. The corresponding meta-modeling language is used for 

defining the fundamental elements of a service ecosystem prescribing life-cycles, entities and features. 

Additional domain specific concepts are also included in the resulting service ecosystem models. A service 

ecosystem model is then utilized for generating service ecosystem specific engineering artifacts. The set of 

artifacts includes meta-models for describing concept intentions; one such meta-model describing 

cooperation facilities was illustrated in context of the example given in Section 4. The set of meta-models 

generated from a service ecosystem model actually constitutes a family of domain specific languages 

(DSLs). In addition to DSLs, skeletons for ecosystem specific infrastructure services can be generated from 

the ecosystem model; these include especially model repositories for maintaining information about 

entities, cooperation facilities and their features. 

This work provides facilities for enhancing interoperability management and software engineering 

support in service ecosystems. For enhancing interoperability management in service ecosystems, this work 

formalizes a top-level ontology for declaring service ecosystem specific features. Such interoperability 

knowledge is utilized in service ecosystem life cycles for guaranteeing interoperable operation of 

service-based collaborations. Interoperability knowledge includes information about features and their 

mutual dependencies, and their applicability with respect to different models of collaboration, for example. 

From the software engineering support perspective this work provides a comprehensive definition of the 

entities and features identifiable from service ecosystems. Thus, a unifying framework for defining 

vocabularies enabling engineering knowledge exchange about service artifacts is provided. Knowledge 

repositories based on a unified ecosystem model and maintaining corresponding feature information can 

then be utilized by developers for sharing information and enabling global software engineering practices. 

Especially, formalization of service ecosystem concepts as models and meta-models makes it possible for 

enabling development tool interoperability by integration of software engineering processes and domain 

specific languages through the ecosystem models and knowledge repositories. 

We can analyze the impacts of this work by considering different actors in service ecosystems and what 

level of support is provided for their activities. First of all, the framework discussed in this Chapter enables 

efficient development of domain specific service ecosystems. The domain specific meta-modeling language 

behind this framework is used for modeling the service ecosystem. Service ecosystem modeling can be 

utilized by information system providers in requirements gathering and design processes in cooperation 

with their clients. After an appropriate service ecosystem model has been designed, the resulting model is 

utilizable for producing ecosystem specific meta-models, corresponding DSLs and model repositories. 

Model-driven engineering principles are exploited for efficient generation of these artifacts. 

Secondly, the framework provides means for individual service providers to join selected service 

ecosystems in a more flexible manner. The collection of tools, methods and modeling languages are 

typically specific for individual service providers based on their expertise, experience and practice. When 

joining a new service ecosystem, a service provider must possibly adopt new kinds of methods, tools or 

languages to provide services in conformance with the ecosystem. Such an intrusive adoption of new 

practices and expertise makes joining new service ecosystems an expensive process. However, explicit 

service ecosystem models, such as provided by this framework, can provide more efficient means for such 

adaptation by conceptual unification: organization specific languages (and tools) can be mapped to the ones 

used by the ecosystem. Such mappings can be formalized as weaving models (Bézivin et al., 2005) and 

further utilized for efficient implementation of model integration (Jossic et al., 2007). 

Finally, the framework presented in this Chapter can be exploited by modeling and software engineering 

tool providers. The domain specific meta-modeling language for service ecosystems provides means for 

developing coherent families of domain-specific languages, or DSLs. Traditionally DSLs are developed one 

language at a time. However, in service ecosystems several languages need to be used in conjunction to 
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describe the different viewpoints (e.g. legal entities vs. functional entities) in the service ecosystem. In the 

single-language-at-a-time model the correspondences between languages and consistency between 

viewpoints may become hard to handle due to complex dependencies between features. In this framework 

these complexities can be handled more efficiently, since the correspondences are formalized in the service 

ecosystem model. The model can be used for generating the abstract syntaxes of the individual DSLs in the 

corresponding language family, and especially, for creating explicit correspondence descriptions between 

the elements of the DSLs. Correspondences between individual viewpoint languages can be formalized with 

use of QVT, for example (Romero, Jaén, & Vallecillo, 2009). 

 

Research issues in model-driven management of service ecosystem features 
 
The framework presented in this paper utilizes model-driven engineering principles for modeling and 

managing features in open services ecosystems. Similar approaches have been introduced before for 

example in (Jonkers et al., 2005). The authors introduce a method for integrating functional models with 

non-functional ones in the context of model-based service development processes. In their work, the authors 

make a distinction between two modeling spaces for non-functional features, namely design and analysis 

space. Design space comprises modeling languages and tools for describing non-functional features. 

Analysis space consists of specification languages and notations which are applicable for formalizing the 

semantics of the non-functional features of interest. Horizontal transformations are then used for propating 

information between a design space and a corresponding analysis phase. Vertical model transformations are 

used for model refinement within the modelling spaces in the traditional model-driven engineering sense. 

Similarly, (Köllmann et al., 2007) presents an approach for managing several Quality of Service (QoS) 

dependability dimensions. This approach applies model-driven development and aspect-oriented techniques 

for detaching the QoS aspects from software specifications. Graph transformations are then utilized for 

weaving the QoS aspects to QoS independent models. The approach of (Jonkers et al., 2005) for attaching 

domain-specific semantics for non-functional features can be utilized in the framework presented in this 

Chapter. Also, the approach of (Köllmann et al., 2007) for providing translational semantics for 

non-functional features can be used. Our approach is more specific in a sense that it is targeted for open 

service ecosystems. Especially, our approach formalizes the inter-dependencies and roles between different 

―non-functional‖ and functional features in service ecosystems. We have, to a certain degree, fixed the 

semantic for different features in service ecosystems. We see that such constraints over the feature 

categories, their definitions and usage are needed for enabling feature management in various service 

ecosystems.  

   In (Ameller, Cabot & Franch, 2010) the authors report current state of model-driven engineering 

approaches for managing non-functional requirements in software engineering processes. They make a 

remark based on a literature survey that in general non-functional requirements are not addressed in 

model-driven engineering methods. Towards enhancing the situation they envision a general framework 

that integrates non-functional requirements management into model-driven software engineering process, 

and identify research issues related to their framework. In their framework proposal the authors utilize a 

platform-independent model (PIM) for representing the functionality and non-functional requirements of a 

system. This PIM is then analysed against a knowledge base containing information about available 

non-functional, architectural and technological features and solutions. Based on this analysis a model 

transformation is created which transforms the PIM to an architectural model. The architectural model 

describes an architecture that implements all the functionality of the system in a way that satisfies the 

non-functional requirements whose satisfaction depends on the decisions made at the architectural level 

(Amellers, Cabot & Franch, 2010). The architectural model is then analyzed againts the knowledge base and 

a second model transformation is applied. The model transformations takes the architectural model as an 

input and produces a platform-specific model (PSM). The PSM follows the architectural guidelines 

expressed in the architectural model but also takes into account non-functional requirements depending on 

technological choises. Finally, a model to text transformation can be applied for generating technology 

specific code from the PSM. The approach proposed by Amellers, Cabot & Franch (Amellers, Cabot & 
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Franch, 2010) can be aligned with our approach. In our framework the knowledge about service ecosystem 

features is available in specific knowledge repositories. This knowledge is based on the categorization of the 

features and the corresponding metamodels presented in this Chapter. The metamodels introduced in this 

Chapter are part of a larger metamodel which formalizes the foundational elements of service ecosystems 

(Ruokolainen, 2009). This service ecosystem metamodel can be considered as a model for architectural 

models in the sense of (Amellers, Cabot & Franch, 2010). It is used as a basis for defining 

platform-independent models that specify all requirements of service-based collaborations and their 

elements. In addition to architectural issues, the service ecosystem metamodel includes technology-oriented 

knowledge in form of cooperation facility features and extra-functional features, as discussed in the 

previous sections. 

   More generally the framework behind the work presented in this Chapter is related to research conducted 

in the areas of large-scale SOA systems, their modeling and corresponding service-based middleware 

platforms. There are a few European research initiatives and projects that have similar goals with this 

respect. NESSI (Networked European Software & Services Initiative) is a European Technology Platform 

dedicated to software and services (Lizcano et al., 2010). As part of its research activities, the NESSI 

consortium is developing the NESSI Open Service Framework (NEXOF) which is described as ―a coherent 

and consistent open service framework leveraging research in the area of service-based systems‖ (NESSI 

Consortium, 2009). In comparison to the reference architecture developed as part of the NEXOF, our 

service ecosystem framework is more focused on the knowledge management side of service ecosystems, 

and explicitly provides means for extending domain models of specific ecosystems with new concepts.  

   The SeCSE (Service Centric System Engineering) is an EU Integrated Project of the 6
th
 Framework 

Program that aims for developing processes, methods and tools to develop service-oriented systems 

(Colombo et al., 2005). The SeCSE project provides a conceptual model for service oriented systems 

describing actors, entities and activities relevant to the service domain, and relationships between them.  

While the conceptual model of SeCSE addresses the various steps (e.g. publication, discovery, composition 

and monitoring) of the service-centric system creation process, the primary purpose of the model is to 

provide a common understanding for human readers about the main concepts involved (Colombo et al., 

2005). The primary purpose of our framework and the corresponding conceptual model is to facilitate the 

infrastructure services and tools needed for instrumenting service ecosystems. 

   The framework presented in this Chapter includes several topics for further research; a selection of these 

are discussed below. The framework implicitly proposes an approach for modeling service-oriented systems 

with a family of feature-specific languages. Each of the are used for defining different aspects of the system, 

and the overall model defining the service ecosystem is utilized for guaranteeing coherency of the language 

family and consistency between different languages. Utilizing such a language family for operating in a 

service ecosystem necessitates appropriate modeling tools and methodologies. From modeling tools 

perspective, several notations have been developed for describing different kinds of features in software 

systems (e.g. Object Management Group, 2005; Amellers, Cabot & Franch, 2010). However, simply 

providing a notation for feature modeling is not sufficient. What is still lacking from most of the modeling 

tools is the capability analyze feature interactions and effects of introducing cross-cutting concerns in 

system models. Towards this purpose, research should be conducted especially in the areas of analysing 

viewpoint correspondences and consistency based on semantics frameworks defined for corresponding 

domain-specific languages. Feature interactions are likely to introduce interactions between the different 

semantics frameworks (e.g. between operational semantics of business processes and declarative semantics 

of business rules); this is a research topic that should be investigated more in the future. From the 

methodological viewpoint, engineering processes and methols should be developed that are applicable for 

distributed development taking place in open service ecosystems and that utilize multi-viewpoint modeling 

practices. Knowledge sharing facilities provided by shared, global knowledge repositories should be also 

integrated to corresponding software engineering tools. 

   Modeling of service ecosystem features is only the first phase in their application. Especially in open 

service ecosystems models are utilized for configuring, adapting and governing the operation of the system. 

Such a models-at-runtime –approach (e.g. Blair, Bencomo, & France, 2009) involves in itself several new 
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research challenges, the most foundational one being that of maintaining the causal relationship  between 

the model and the running system. Maintaining the causal relationship becomes problematic especially in 

open service ecosystems, where individual services are maintained by autonomous service providers and 

access to the underlying technological systems are restricted due to security related and competitive reasons. 

In the Pilarcos framework (Kutvonen et al., 2008) we have especially covered issues related to maintaining 

a coherent view over the service collaborations between autonomous partners. 

6. CONCLUSION 

Open service ecosystems present means to solve many collaboration management and interoperability 

control problems. Indeed, the ecosystem concept reveals that there is notably different interest domains 

within the feature concept family: business control needs, service control needs, and configuration needs on 

communication channels between services. Although the presently arising software and service ecosystems 

forward the business domain significantly, there are still severe problems to be solved: 

• trustworthiness of service offers,  

• interoperability control automation, and  

• collaborative, systematic methods for dynamic collaboration management.  

These issues cannot be resolved unless the open service ecosystems are able to bind together  

• the service-oriented software engineering methodologies that are responsible of providing business 

network models serving as eContract templates and thus providing evaluated rules for detecting 

illegal, unwanted, or low quality services;  

• operational time collaboration management, including service selection advised with trustworthiness 

predictions, eContract forming, monitoring of contract breaches, and feedback on the experiences 

gained.  

This Chapter has shown how a consistent knowledge base for maintaining features in open service 

ecosystems can be provided, thus creating a life link between the engineering and operational environments. 

Furthermore, the knowledge base structure must allow for declaration of new concepts and new 

relationships between concepts, thus facilitating further evolution of the ecosystem without disturbance in 

the already existing collaborations. The framework allows multiple different kind of ecosystems to be 

established, and controlled either as isolated, or federated, for cases of competing or collaborating 

ecosystems. 
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