Path	Planning	in	Face	of I	Uncer	taintv
1 4411	T 101111111		I ucc	UI 1		territe y

Potkuri-group

Helsinki December 12, 2008 Software Engineering Project UNIVERSITY OF HELSINKI Department of Computer Science

Course

581260 Software Engineering Project (6 cr)

Project Group

Veera Hoppula

Mikko Kuusinen

Jesse Paakkari

Tobias Rask

Timo Tonteri

Eero Vehmanen

Client

Valentin Polishchuk

Project Masters

Sampo Lehtinen

Homepage

http://www.cs.helsinki.fi/group/potkuri

Change Log

Version	Date	Modifications
1.0	29.10.2008	Many spelling mistakes fixed
0.5	16.10.2008	Added risk
0.4	29.9.2008	Added risk, fixed spelling mistakes, moved vocabulary to common
0.3	22.9.2008	Fixed spelling mistakes. Altered size/cost expenses
0.2	16.9.2008	Updated the project plan
0.1	5.9.2008	First draft

Contents

1	Introduction	1					
2	Vocabulary	2					
3	Project Organization	3					
	3.1 Members and roles	. 3					
	3.2 Instructor	. 3					
	3.3 Customer	. 3					
4	Risk Analysis	4					
	4.1 Risks	. 4					
5	Hardware and software requirements	8					
6	Size (and cost) estimates						
7	Distribution of work	10					
8	Project Schedule						
	8.1 General timetable - Important dates	. 11					
	8.2 Detail project schedule	. 11					
	8.3 Gantt chart	. 12					
9	Follow-up and reporting methods	13					

1 Introduction

There's a need to design a program to help air traffic management guide multiple airplains safely to ground in presence of hazardous weather systems. The purpose of the project is to produce program which can be used to simulate airplane landings with real or simulated forecasts.

Calculating the routes will be a challenge since the routes must be planned ahead and there is a certain probability involved with different forecasts which must be taken into account. In the core of the program is the "Shortest path problem"-calculation for the planes moving from one merge point to the other before landing the plane. The goal is to avoid the different hazardous weather systems.

This project will also give hands-on experience to the project group. The purpose of the course is to learn about project work and learning about different roles present in the software project. The project group will do all the work involved in software project as assigned by the project manager. Weekly meetings will be held twice a week controlling and checking the schedule and resources of the project.

2 Vocabulary

Airport Airport is where arrival tree begins, in the middle of the map.

Arc Arcs are circles at a determined radius distance of the airport. The merge points are located into these arcs.

Arrival tree A binary tree consisting of paths. Has a root at the airport.

Checkstyle Java code review for Eclipse.

dbZ dBZ stands for decibels of Z. It is a meteorological measure of equivalent reflectivity (Z) of a radar signal reflected off a remote object.

EclEmma Java Code Coverage for Eclipse.

Flight plan Every plane has a flight plan which describes its path.

FMI Finnish Meteorological Institute.

Integration Testing Integration testing purpose is to assure that integrated classes do all those services they are planned to do in requirement document.

Java2D Display and print 2D graphics in Java programs.

JAR Runnable Java archive, which based on the ZIP file format.

JUnit JUnit testing framework.

Map A map from somewhere in the world used in this product.

Merge point A point on the map where two paths merge into one path.

nmi nautical mile (=1,8520km)

Path A route to the airport that should avoid storms.

PGM Portable Gray Map, a graphics file format.

Plane An airplane that tries to land at an airport along a path avoiding storms.

PMD Java code review for Eclipse.

Storm A set of pixels with a dBZ-value over a certain threshold (that is a parameter) close each other on the map. Indicated with red color on the map.

System testing System testing purpose is to assure that software corresponds it?s requirements.

User A person using the product to watch animations on aircrafts landing at an airport in presence of hazardous weather systems.

Unit testing Unit testing purpose is to assure that certain class or unit do all those services it is planned to do in requirement document.

3 Project Organization

3.1 Members and roles

Jesse Paakkari Project manager

Mikko Kuusinen Requirements manager

Timo Juhani Tonteri Design manager
Veera Hoppula Document manager
Eero Antero Vehmanen Code manager
Tobias Matias rask Testing manager

3.2 Instructor

Sampo Lehtinen works as project instructor

3.3 Customer

Valentin Polishchuk from the University of Helsinki Computer Science Department.

4 Risk Analysis

The purpose of risk analysis is to foresee possible threats about the development of the product, wheather the question is about personal, project, complexity of the program or some other external risks.

Risk probability is measured with the scale of 1 - 3. 1 having the least risk. The severity of the risk is measured with the scale of 1 - 3 as well. 1 having the least impact to the project schedule and to functioning of the program itself.

4.1 Risks

Sickness of person

Probability 2 Severity 2

Impact The work will be halted for the period of sick-

ness

Preventive measures Eat C-vitamin

Corrective action The person being sick must notify project

group about the situation. The work must be divided and reassigned, if the sickness will last a long time. Project schedule or requirements must be adjusted in the worst case

Lose of interest

Probability 1 Severity 3

Impact The work will be halted

Preventive measures Keep in ouch with the project personell

Corrective action Motivate the person in question to continue to

work

People will run out of time

Probability 2 Severity 3

Impact The work will be halted or at least delayed Preventive measures Follow the agreed schedule and inform

project group of any delays. Reserve enough time in project to different tasks. Schedule all

exams and vacations beforehand

Corrective action Check the individual schedules and find the

spirit of teamwork again. Remember that this

project will over just in few weeks

Somebody will quit the project

Probability 1
Severity 3
Impact Fatal

Preventive measures Have good spirit and team effort, help each

other and have distinct work assignments. Leave space for innovation and personal ideas

Corrective action Rearrange project responsibilities

Narrow area of expertise

Probability 1 Severity 2

Impact Work cannot continue because there is no

knowledge how to proceed

Preventive measures Allow asking of questions, helping each

other. Have meaningful meetings where all the problems will be notified and handled

Corrective action More communication. Search for experts

Customer does not know or cannot describe what he/she wants

Probability 1 Severity 2

Impact The end result will not satisfy the customer Preventive measures Meet with the customer and review the

progress of the work. Simulate the program

and its user interface to customer

Corrective action Communicate more with the customer

Failure in documentation

Probability 2 Severity 3

Impact The program will not be something the cus-

tomer has wanted

Preventive measures Document everything in orderly manner.

Have regular time to inspect the work which

has been done

Corrective action Correct the documentation

Resources of the equipment is insufficient

Probability 1 Severity 3

Impact The program will not be able to run in real-

time

Preventive measures Stress test the equipment with the program as

early as possible

Corrective action Faster computer, more memory, close other

programs

All the material gets lost

Probability 1
Severity 3
Impact Fatal

copies of the work. Make backups regularly

Corrective action Begin to follow preventive measures if not

doing so already

Some phase of work will take longer that anticipated

Probability 3 Severity 2

Impact The project will not be final in time

Preventive measures Closely follow the work in progress and reach

after agreed delay

Corrective action Several project members will help to solve

the problem

The project is too large to be completed in time

Probability 2 Severity 2

Impact The project will not get finalized

Preventive measures Consider all the resources carefully, being a

bit pessimistic

Corrective action Project plan must be reevaluated and

changed, contact the customer and project

management

Real-Time weather data service, Helsinki testbed, will no longer be available

Probability 3 Severity 1

Impact Practically none

Preventive measures Real-Time weather data is not used in project

Corrective action None

CVS will mess up binary files

Probability 1
Severity 2
Impact Great

Preventive measures Learn to use CVS and how it handles binary

files. Make separate backups regularly.

Corrective action Fix CVS wrapper information.

5 Hardware and software requirements

The program will be run on the customers personal computer using Java-language. There will be connection to the data source using TCP/IP (Weather information). Eclipse is used to develop the program. The source code, as well as the documentation, will be stored in version control system.

6 Size (and cost) estimates

There will be no direct expenses nor salary involved for the project group. Salaries of the other persons involved in the project (as well as the customers) are not accounted for in the calculations.

The program has 4 major parts (Weather data, plane position, calculation and graphics displayed) and some general functions (eg. setting the starting values, handling messages...). The size estimate for each is as follows:

Part Estimated lines of code

Graphics 1500
Fetching the weather data 500
Plane position 1000
Calculation 2000
General 500

Estimates are based on experience and guesswork. The estimates have been exaggerated so that project can be finalized by the agreed time and so that any surprises are not fatal to the project schedule.

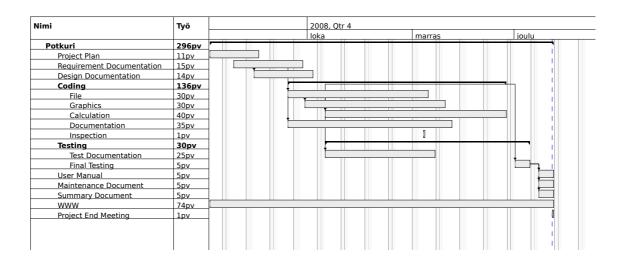
7 Distribution of work

All the members have assigned responsibilities. As a team effort all the members of the project will participate in all the phases of the project. At the minimum commenting of the work done, is the least any one can do. In coding the program has been divided into different classes and objects. In project plan each member has been assigned to one of the different sections of the program but the code manager has the main responsibility.

Project manager will conduct all the general meetings and in case of any specific meetings or inspections, the person responsible will conduct the meeting in question.

8 Project Schedule

In the project we will have general inspections for the Requirements, Design and Test plan documents. Inspections will be held one week before the document is due and documents will be frozen one week after the due date. There will be one formal inspection of code in schedule.


8.1 General timetable - Important dates

Project start	2.9.2008
Preliminary project plan	8.9.2008
Requirements document start	9.9.2008
Requirements document inspection	29.9.2008
Design document starts	15.9.2008
Requirements document frozen	29.9.2008
Design document inspection	6.10.2008
Design document frozen	9.10.2008
Coding begins	10.10.2008
1st code testing	9.11.2008
Formal inspection of code	13.11.2008
Coding ends	10.12.2008
All documents are ready excl. summary	11.12.2008
Summary document	12.12.2008
Project end meeting	12.12.2008

8.2 Detail project schedule

WBS	Nimi	Aloitus	Päättyminen	Työ	Kesto	Liikkumavara	Kulut	Annettu tehtäväks
1	Potkuri	2. syyskuuta	12. joulukuuta	296pv	74pv		0	
1.1	Project Plan	2. syyskuuta	16. syyskuuta	11pv	11pv	63pv	0	
1.2	Requirement Documentation	9. syyskuuta	29. syyskuuta	15pv	15pv		0	
1.3	Design Documentation	15. syyskuuta	2. lokakuuta	14pv	14pv	51pv	0	
1.4	Coding	25. syyskuuta	28. marraskuuta	136pv	47pv		0	
1.4.1	File	25. syyskuuta	5. marraskuuta	30pv	30pv		0	
1.4.2	Graphics	30. syyskuuta	10. marraskuuta	30pv	30pv		0	
1.4.3	Calculation	6. lokakuuta	28. marraskuuta	40pv	40pv		0	
1.4.4	Documentation	25. syyskuuta	12. marraskuuta	35pv	35pv		0	
1.4.5	Inspection	4. marraskuuta	4. marraskuuta	1pv	1pv		0	
1.5	Testing	6. lokakuuta	5. joulukuuta	30pv	45pv	5pv	0	
1.5.1	Test Documentation	6. lokakuuta	7. marraskuuta	25pv	25pv	25pv	0	
1.5.2	Final Testing	1. joulukuuta	5. joulukuuta	5pv	5pv		0	
1.6	User Manual	8. joulukuuta	12. joulukuuta	5pv	5pv		0	
1.7	Maintenance Document	8. joulukuuta	12. joulukuuta	5pv	5pv		0	
1.8	Summary Document	8. joulukuuta	12. joulukuuta	5pv	5pv		0	
1.9	www	2. syyskuuta	12. joulukuuta	74pv	74pv		0	
1.10	Project End Meeting	12. joulukuuta	12. ioulukuuta	1pv	1pv		0	

8.3 Gantt chart

9 Follow-up and reporting methods

All the work of the project group will be individually entered in to the system maintained by the University of Helsinki Computer Science Department. All the information has to be entered by the end of the week so it can be reviewed by project manager prior to the first weekly meeting.

Project schedule will be checked every week on Monday.

Bugs reports and other reports should be kept in a spreadsheet and include date, reporting person, responsible person, error / notes, severity of the item, what and if something was done.