
Test Plan

Potkuri-group

Helsinki December 12, 2008

Software Engineering Project

UNIVERSITY OF HELSINKI
Department of Computer Science

Course
581260 Software Engineering Project (6 cr)

Project Group
Veera Hoppula
Mikko Kuusinen
Jesse Paakkari
Tobias Rask
Timo Tonteri
Eero Vehmanen

Client
Valentin Polishchuk

Project Masters
Sampo Lehtinen

Homepage
http://www.cs.helsinki.fi/group/potkuri

Change Log
Version Date Modifications
1.0 13.11.2008 1st draft

i

Contents

1 Introduction 1

1.1 Document Purpose . 1

2 System testing 1

2.1 Test Plan . 1

2.2 Test Design Specification .1

2.3 Test Case Specification . 1

2.3.1 Buttons . 1

2.3.2 Parameters . 1

2.3.3 User Requirements . 2

2.4 Functional Requirements .2

2.4.1 Non-Functional Requirements 3

2.5 Environment . 3

2.6 Test Summary Report . 3

1

1 Introduction

1.1 Document Purpose

The purpose of this document is to describe the different tests the group Potkuri will have
to perform to ensure that our software will work with the least bugs possible.

The only important section in this document is the System testing. Unit tests and integra-
tion tests are rather well commented, and the descriptions can be found from program’s
javadoc.

2 System testing

2.1 Test Plan

System testing purpose is to assure that software corresponds it’s requirements. Every
member of group must attend to System test- event. Then groupmembers test all use
cases and go through non functional requirements, quality requirements and confines.
Group will then write test-report, which reveal tested requirements and results.

Functional requirements are tested through user interface.

2.2 Test Design Specification

Requirement document’s non-functional requirements, quality requirements and confines
are validated or justify, if requirement can’t be validate.

2.3 Test Case Specification

2.3.1 Buttons

Program should terminate when pressing Close-button or X-button - Ok.

Program should pause when pressing Pause-button - Ok.

Program should continue running when pressing Run-button -Ok.

2.3.2 Parameters

Program should take settings from ini-file, if it is defined inparameters - Ok.

Program should override only settings which are defined in ini-file - Ok.

Program should use default settings, if ini file doesn’t exists - Ok.

2

2.3.3 User Requirements

Plane Planes don’t slow down speed when approaching airport. Thiswas optional and
ok. Planes slow down their speed when they are too close each others, but this is not
sufficient condition to prevent plane crashes. This problemmay be solved in future by
control planes speed on the grounds of arriving time to mergepoint.

Weather This section is Ok.

Map This section is Ok.

Airport This section is Ok.

Algorithm Algorithm section is ok, but group Potkuri put forward that the tree should be
re-calculated regulary when the time passed by.

Arrival tree This section is Ok.

Merge pointsThis section is Ok.

GeneralThis section is ok. Group accentuate that the program doesn’t calculate the safest
path but rather the optimal path with defined safety distance.

2.4 Functional Requirements

F1 - Planes have a location at certain time on mapStatus: Ok

F2 - Planes never fly over intense stormIn some situations plane may fly over storm.
Basically there are two reasons: user has set too small valuefor StormSafetyDistance -
parameter, or the strom suddenly appear from nowhere. The main point is that the current
arrival tree never perch over the storm.

F3 - Arrival tree’s branches never crossStatus: Ok

F4 - Weather data is acquired from fileStatus: Ok.

F5 - The program shows visually planes, arrival tree and stormsStatus: Ok

F6 - Parameters for program are in text fileStatus: Ok

F7 - User can create weather conditionsStatus: Ok

F8 - Map can be zoomedStatus: This feature is not implemented.

F9 - User is able to give amount and arriving place of the planes Status: OK

F10 - Wind has direction and speedStatus: This feature is not implemented.

F11 - Weather data is generated randomlyStatus: This feature is not implemented.

F12 - User is able to give storm centers, their intensity and wind speedStatus: This
feature is not implemented.

F13 - Weather data is acquired from TestbedStatus: Ok

F14 - Program stores every weather data picture from Testbedto hard drive Status:
This feature is not implemented.

3

2.4.1 Non-Functional Requirements

N1 - Program works Status: Ok. Refresh rate can be adjust so that calculating frame is
smooth.

N2 - Program is highly visual Status: Ok.

2.5 Environment

E1 - Program runs on relatively modern laptop computerStatus: Ok. This feature is
tested on Windows, Linux and Mac Os platforms.

2.6 Test Summary Report

System testing date: 28.11.2008 10.15 Place: The Department of Computer Science at
the University of Helsinki.

