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Abstract. Location-awareness is an important concept in pervasive
computing. Using programmable mobile phones we can equip users with
software that tracks cell transitions in a GSM network. With this lo-
cation data and other context variables we can determine places that
are important to the user, and make predictions about the next loca-
tion when the user is moving. The predictions and location data can be
made available to others, in a form of a presence service. The learning
algorithms work solely on the user’s personal phone and do not need any
external server infrastructure. Because the user is in control of the move-
ment data, we avoid otherwise problematic privacy issues. This paper
describes the task of learning routes and predicting future locations by
maintaining a database of physical routes. Route predictions are based
on approximate string matching techniques. When a confident prediction
cannot be made, we attempt to predict at least the general direction of
movement by finding places where different routes fork.

1 Introduction

Location awareness plays a large role in ubiquitous computing. Several applica-
tions have been proposed that rely on knowing or predicting the location of the
user. Not merely reacting to a known location, but trying to accurately predict
human movement is a very ambitious research problem.

We present an algorithm for predicting movement from cell-based location
data. Such location data consists of transitions between cells, with no regard to
physical locations or topology. Given this apparently scant data, we are still able
to learn, on user’s personal mobile device, places that are personally important
to that user, and to make predictions about the place the user is moving to. Such
predictions are useful in, e.g., a presence service, which makes the whereabouts
of the user available to other people. Many other proactive applications also
become possible if we know the semantic associations of a location or a future
location.

Existing approaches to learning important locations and predicting routes
often rely on coordinate data such as GPS [4,2]. However, GPS can be problem-
atic in urban areas due to signal shadowing. Another issue is that of privacy.
By storing location information on the user’s own phone, we avoid the inherent
privacy issues of some external agent constantly collecting and processing our
whereabouts.



This paper works with the conceptual model presented in Laasonen et al. [3].
The contribution of the present paper is an enhanced algorithm for predicting
routes. The algorithm analyzes whole paths using string processing techniques,
instead of relying on the short path fragments of the earlier paper. This method
both conserves memory and offers better prediction accuracy.

Section 2 describes the prediction problem and the general approach in more
detail. The actual route prediction algorithm is presented in Section 3. The per-
formance of the method is evaluated in Section 4, which is followed by concluding
remarks.

2 Problem Description

2.1 Locations and Bases

A GSM phone communicates over the air with a base station. In any given
location there may be several base stations whose radio signal reaches the phone.
The phone chooses one of them, and switches transparently over to a new base
station as needed. A cell is the area covered by a single base station; when we
say the phone is in some cell, we mean that the phone is in the area of the
corresponding base station.

In addition to overlapping each other, there are several properties to cells that
makes for challenging data analysis. Cells vary widely in size, and signal shad-
owing can make cells appear non-contiguous. Finally, a certain physical location
does not have one-to-one correspondence to cells because of radio interference,
phone network load and various other issues. On the other hand, GSM phones
are ubiquitous and cellular networks are present almost everywhere. Since no
operators or external service infrastructure are involved, data gathering is easy
and inexpensive.

The software records each cell transition. At the lowest level each cell is
represented by an opaque numeric identifier (e.g., “Sonera.3286.15754”), so our
location data is a time-stamped sequence of such identifiers. We can visualize the
data by making a graph where the vertices are the observed cells, and there is
an edge (ci, cj) if (and only if) a transition occurred from ci to cj . A fragment of
such graph is shown in Fig. 1. This graph shows both the author’s daily commute
from home (“Vuosaari”) to work and trips from home to downtown Helsinki. It
does not include transitions in the opposite direction. The names in this graph
were supplied manually, although some cellular operators have now begun to
offer location services.

If overlapping cells have approximately equal signal strength, the phone may
hop between cells even when the user is not moving. We handle this oscillation
by clustering cells. Intuitively, a cell cluster is a group of nearby cells where most
transitions happen within the cluster. For a precise definition of cell clusters and
an algorithm for forming them on-line, see [3].

A location is either a cell cluster or a single cell. Locations are identifiable
in the sense that we can reliably detect the user entering and leaving them.
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Mäkelänkatu

Metro Siilitie
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Itäkeskus

Rautatientori

Metro Itäkeskus
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Sörnäinen

Metro Hakaniemi

Metro Herttoniemi

Metro Rastila

Kulosaari
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Fig. 1. A partial cell transition graph for routes from “Vuosaari” to either “Work” or
“Downtown.”Unlabeled dots represent cells that have not been named. The data comes
from 69 separate trips.

Finally, locations that are important to the user are known as bases. A location
is promoted to a base when the time spent there as a portion of the total time
the software has been run goes above a certain threshold. The set of bases can
change over time, as new places become important or old ones are not visited as
often. The problem of determining bases is covered in [3]; we work with a set of
known bases.

2.2 Route Prediction

Perhaps the the most important consequence of using cell-based location data
is that we lack the physical topology of the cell network. This includes the
correspondence between cells and physical locations, and also all indications of
direction. Seeing cell sequence ABA could mean that the user visited B and
came back. Or then cell A was just briefly shadowed by B. Looking only at the
immediate context is all but useless. We have make inferences from larger base
of context information.

There are two basic approaches to the problem. The first is to examine the
local context of recent cells [3]. Suppose we are in cell c and the previous cells
have been h1, h2, . . . . The idea is to prepare strings hkhk−1 . . . h1c, for varying
values of k. These strings are matched against a database of previously stored
fragments. Based on the matches found, and the bases reached from c, we get
probabilities for the next base. We begin with, say, k = 4. For larger values of
k we are wasting storage space, because most longer sequences are seen rarely.
With smaller k we will get more matches, but at the same time lose the essential
context information that we need to establish direction. This method can be
augmented with the use of time distribution, which can help us to distinguish
between similar routes.
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Fig. 2. The most frequent composite routes from “Vuosaari” to “Work” (thin line) or
to “Downtown” (dashed line). Edges appearing on both routes are shown with a heavy
line. Unnamed cells have numeric identifiers only.

The second approach, and the topic of this paper, is more global. Instead of
using the local context, we look at entire routes between two bases. We attempt
to learn all different physical routes as strings of cell identifiers. Whenever the
user completes a route r between bases a and b, we determine if an existing
route between a and b is similar to r. If such a route is found, the two routes are
merged together. To make a prediction, we proceed as follows. Since we know
the user has left base a, we have a set of possible routes and their destinations b.
We now use a recent history h of cells and find the route that exhibits the largest
similarity to h.

Figure 2 shows the effect of applying route clustering to the data of Fig. 1.
There are five different physical routes; the two most frequently traveled are
shown in the figure. The graph is obviously vastly simpler, and furthermore
corresponds quite closely to the routes actually traveled in the physical world.

Treating routes as a whole enables a number of features not possible with
the fragment method. First, we can detect fork points. A fork point is a place
where overlapping paths diverge, such as “Sörnäinen” in Fig. 2. When there are
several good similarity matches, we can offer a fork prediction as an insurance
against the actual base prediction going amiss. From the point of a presence
service, a high-confidence prediction of the fork is probably more useful than
several low-confidence base predictions.

We can also detect backtracking, which happens when the user physically
goes some place that is not a base, and comes back. By looking at the entire
path, it is not difficult to see if its suffix resembles some earlier subpath, but in
reverse. Finally, loop routes, which return to the base from which they started,
are rather common. An interesting future research problem is to reliably detect
the turning point on such routes. A much more useful prediction would then
result from subdividing the route at the turning point and adjusting predictions
accordingly.



3 Prediction Algorithm

The problem of route prediction is to predict the next actual base b∗, given that
the user’s last base was a and since then we have seen a cell sequence c1, . . . , ck.
There are three phases in the algorithm. First, each time the user leaves a base,
that is, enters a cell c not part of the current base, the system prepares for a
new route prediction task. At each cell transition, we make a prediction, which
is a set of pairs (b, p), where b is a possible future base and p the probability
of the user going there. Finally, when the user arrives at a base, the entire
route a, c1, . . . , cn, b∗ is used to make better subsequent predictions.

3.1 Route Composition

For each pair of bases a and b we maintain a set of routes Rab. When making
predictions, we need to match the cell history against the routes Rab for all pos-
sible b. Instead of storing every encountered path in full, we aim to keep only
“typical” paths. Not only does this decrease the memory requirements substan-
tially, but it also proves crucial in estimating the relevance of a given route.

A new route t = ac1 . . . cnb is added to the database when the user arrives
at base b. Suppose now that the maximum similarity of t against all r ∈ Rab

occurs with some r = rmax and is greater than a threshold value σ. Then t is
merged with route rmax. If, however, the similarity falls below σ for all existing
routes, we add t to Rab, the set of (distinct) routes between a and b. This process
resembles incremental clustering, where each route acts as a cluster, attracting
similar routes. The similarity function sim(r, t) is described below in section 3.2.

The merging of two paths tries to produce a composite path that retains
the features of both (similar) participants. We treat the paths as simple strings
of cell identifiers, or just “letters.” First the two path strings are aligned by
adding empty elements (“spaces”) to both. As far as possible, identical letters will
appear in the same position in both aligned strings. Computing an alignment
of strings s1 and s2 is similar to finding their edit distance, which gives the
number of editing operations needed to transform s1 into s2. Both of these can
be computed with a well-known dynamic programming algorithm [1].

Next we give each letter in both strings a position (or value) in the range [0, 1].
If the string is x1 . . . xn, the initial value assignment to ith letter is simply v(xi) =
(i − 1)/(n − 1). Now the merged position of letter x is the average position of
all nearby occurrences of x in both strings. This averaging is only performed
within a small window in order to handle cyclic paths (which begin and end
at the same location) correctly. The merged string results from arranging the
letters in ascending order by merged position. If two or more letters have the
same merged position, their ordering is undefined. In subsequent merging letters
with undefined positions receive identical position values.

For example, suppose we are merging strings “twirls” and “tries”. The
optimal alignment is

t w i r l  s

t r i   e s



The value v of the first letters is 0, the value of the second letters (‘w’ and ‘r’)
is 1/6, and so on. Computing the average value we find that

v(t) = 0,

v(l) = 2

3
,

v(w) = 1

6
,

v(e) = 5

6
,

v(i) = v(r) = 1

3
,

v(s) = 1.

The merged string is thus “tw(ir)les”, where the parentheses indicate that ‘i’
and ‘r’ share the same position. It has turned out important to know that some
cells do not necessarily have fixed order to them.

The procedure described so far produces a complete merging of the two
routes. A composite route is a merged route which does not include cells seen
significantly fewer times than the average. When the user leaves base a, we ob-
tain the possible destinations S = {b1, . . . } and the composite routes to all of
these destinations.

3.2 Route Similarity

The similarity function sim(r, t) between two routes is used by the prediction
algorithm in two cases. In both cases r is a composite route between two bases.
The other parameter t can be a complete path, as above, when the similarity
determines the clustering of routes; alternatively, it can be a history of cells
(about 10 most recently seen cells), and we want to find the route that most
closely resembles the history.

To estimate the similarity of event sequences, Moen [5] describes a scheme
which uses the edit distance coupled with event-level similarity. Events are con-
sidered similar if they appear in similar contexts. Substitution among similar
events carries very small cost. The problem with this approach is that event
similarity matrix takes quadratic time and space; typical phone memories would
fill up in a few months of operation.

To find a simpler heuristic method, we start from the Jaccard measure J =
nrt/(nr + nt − nrt), where nr and nt are the number of elements in r and t,
respectively, and nrt is the number that is in both. The measure J is symmetric,
but unfortunately ignores direction, so a string is equivalent to its reverse.

An inclusion similarity I is similar to J , but asymmetric: strings r and t
are considered equivalent if every element in t appears in r in the same order.
This asymmetry derives from the fact that a composite route typically contains
more cells than there are in any actual instance of that route. We thus let
I(r, t) = T/|t|, where T is the number of elements in t that are found, in-order,
in r. For example, I(abcdef, acbdg) = 3/5; letters ‘a’ and ‘c’ are in order, but
‘b’ and ‘c’ have been exchanged. The letter ‘d’ is again in proper order with
respect to ‘c’. In cyclic paths there is at least one cell x which appears in r
more than once. For any such x we choose the instance that yields the largest
similarity for the entire string. Experimentation shows that the function I fulfills
the desired property of yielding results that are virtually indistinguishable from
those produced by the much more involved event sequence methods.



3.3 Making Predictions

We are now ready to make a prediction based on the previous base a and the
already seen cell path c1c2 . . . ck. The entire path is used only to detect back-
tracking; for route matching, a history h = ck−m . . . ck of the most recent is used
instead. The reason not to use the entire path is twofold: we can detect faster
that the user is stepping outside any known path, and using shorter strings is in
general more efficient.

Route matching has produced a set S of possible reachable bases when start-
ing from base a. Making a prediction entails computing for each candidate
base b ∈ S the similarity

σb = max
{

sim(r, h)
∣

∣ r ∈ Rab

}

.

In other words, σb is the largest similarity of the cell history against all routes
leading to b. A very simple prediction system would stop here, and predict that
the next base is the b that maximizes σb. If we recognize we are on certain path,
it is logical to surmise that this path will be followed to its destination. However,
several routes can have nearly equal similarities. We can choose between by using
additional context variables. Another option is to instead find a fork point, as
discussed in the next section.

The context variables that are present in the data are time of day, weekday
and cell frequency. The basic idea is that we can store for each encountered
cell its frequency and time distribution. The previous base a is used as addi-
tional context, so that the context database C appears as a set of associations
(a, c) →

(

b, n, T (c)
)

. Such entries mean that at cell c, having started from base a,
we have ended up n times at b. We use T (c) to denote the time distribution pa-
rameters at location c. Although this scheme is already quite conservative in
its consumption of memory, it is possible to still reduce the memory usage by
ignoring all intermediate cells. Intuitively, if we know the distribution of times
at the previous base, knowledge of these at each c does not offer much additional
information. In this reduced model we have a database C ′ where the associations
take the form a →

(

b, n, T (a)
)

. In both cases the context database is updated
when we arrive at a new base.

From the context database we get another set of bases, defined as R =
{

b
∣

∣ 〈(a, c) → (b, . . . )〉 ∈ C } for the full database C (the case C ′ is defined
analogously). Now the probability of going to base b when located at c at time t
can be written as

pb = P (b | a, c, t, D) ∝ P (b, t | a, c, D) = P (t | a, b, c, D)P (b | a, c, D)

∝ nP (t | a, b, c, D),

where D represents all the data we have seen on previous trips. The remaining
task is to find the probability of being on the given route at time t. It is assumed
that time of day td follows normal distribution, so we need to store in T (c) the
sum s and the square sum q of the previous event times. Then td is normally
distributed with mean µ = s/n and variance σ2 = q/n−µ2. For the weekday tw
the normality assumption works less well, so the frequency is used instead.



If td and tw were assumed to be independent, we could simply write pb ∝
nP (td)P (tw). We can compute P (td) directly from the normal distribution func-
tion, normalizing the probabilities in the end. In reality, this assumption does
not hold; instead, we should compute P (tw ∩ td) = P (tw)P (td|tw). This can be
handled by maintaining a separate normal distribution for each weekday. Since
this increases the memory requirements substantially, it was implemented only
for the initial-time context C ′.

The process just described yields a probability pb for all bases b ∈ R. To
complete the prediction is to examine bases b ∈ R∩S. Each such b gets a weight
σbpb, where σb is the route similarity computed for all b ∈ S; the base with the
largest weight will be our prediction. If S = ∅ or contains nothing but very
low-similarity bases, only R is used; conversely, if R is empty, we try again to
construct R with the second or third most recent cell in history. Only if this
process fails a few times do we resort solely to bases in S.

3.4 Finding Fork Points

Finding fork points depends on the assumption that each possible candidate
path corresponds to a different physical route. Unless the path merging is done
carefully, we can end up with composite routes with bits and pieces from many
separate trips. Let P = {r1, r2, . . . } be the set of candidate paths, where each ri

begins at the current cell and thus includes only possible future cells. Now the
fork cell f must be some cell that appears on all the routes; otherwise the user
could choose some path rj with f /∈ rj . Then find a cell sequence f1, . . . , fn such
that every fi ∈

⋂

j rj and let f = fn. In other words, the fork point is the last
cell that appears on every candidate path. (The ordering can be computed by
taking from each ri only the cells in the intersection and merging the resulting
paths, as described in section 3.1.)

4 Evaluation

The algorithms were evaluated on dataset presented in [3]. The data was collected
for six months in 2003 with an early version of the ContextPhone software [6]
running on a Nokia 7650 phone. The movements of the three volunteer users
were tracked both at work and at leisure. The movement patterns range from
very simple (daily commute, some weekend and holiday trips) to moderately
complex.

The baseline algorithm is the fragment-based method [3], which was tested
with several window sizes k. Since the algorithms are intended for small devices,
their memory consumption is also investigated. To simplify the evaluation, both
algorithms were tested with offline bases, that is, the bases are given at the
beginning of the simulation.

The algorithms were implemented as simulations that received cell transition
events one at a time and were requested to give a prediction for the next base.
The resulting prediction was then compared to the actual base, which was known
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Fig. 3. Route recognition accuracy for various prediction methods.

only to the driver code. Again following [3, sect 4.4], we exclude cases when the
user is apparently not moving (stationary), or when the next base has not been
seen earlier.

Figure 3 shows how the different methods compare. There are three graphs,
one for each test person. Each graph shows how the various prediction algorithms
performed. The F2 and F4 are the fragment method with a window size of 2 and
4, respectively. The symbol C denotes the route prediction using the normal
context database, which maintains a time distribution for all intermediate route
cells; the reduced model C ′ has a time distribution only for the starting times.

A prediction is correct if it matches the actual next base and the probability
of the given prediction is larger than u = 0.3. A low correct prediction is one that
is correct, but probability is less than u, or the second-best prediction is correct
with nearly equal probability (e.g., p1 = 0.55 and p2 = 0.44), or the fork point
was predicted correctly. A low fail prediction was wrong, but the probability
was also low. Finally, a fail -type prediction was a high-confidence prediction
that went wrong, or no prediction at all.

For all persons, the route-based method supplied more predictions that suc-
ceeded. Taking into account also the low-confidence correct predictions, however,
we see more moderate improvements. The conclusion is that the route-based
method is an improvement on the fragment method when it comes to prediction
accuracy. However, it is not known which level of accuracy is attainable for an
automatic prediction mechanism. Almost certainly this level varies with different
people.

It is interesting to note that although models C and C ′ are very similar in
their prediction accuracy, the latter uses much less memory, as shown in Fig. 4.
But even model C consumes less memory than any fragment-based method.
For the latter, memory use consists of the fragments themselves and the associ-
ated storage for context predictors. The route-based method needs less predictor
memory, preferring compact route descriptions. The number of separate routes
varies widely, from 107 of Person 2 to 1254 of Person 3. (The dataset contained
414 and 4290 trips between two bases, respectively.)
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Because the proposed algorithm is a combination of two separate predictors,
it is fairly oblivious to parameter changes. Setting the similarity threshold σ to a
low value uses less memory, because more routes will considered equivalent. This
weakens the prediction based on route similarity, but the change is offset by the
time-based predictor. The same effect occurs by setting the history length m to
a very low value. The tests were run with σ = 0.7 and m = 12, which provide a
good compromise between quality and efficiency.

5 Conclusion

We have presented a method for predicting user movement from cellular data
gathered with user’s own mobile phone. The algorithm tackles the problem by
attempting to recognize physical routes traveled by the user. Later predictions
are based on matching the current cell history against known routes. The current
time is used to aid prediction.

The method is an improvement over the previous one both in prediction
quality and memory usage. It works very well for people having fairly simple
patterns of movement, but the results are not optimal for more people traveling
a lot. The learning model is still very simple; better methods are needed to decide
when time-of-day inferences help and when they do not.
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