
Clustering and Prediction of Mobile User

Routes from Cellular Data

Kari Laasonen

Basic Research Unit, Helsinki Institute for Information Technology
Department of Computer Science, University of Helsinki

Kari.Laasonen@cs.Helsinki.FI

Abstract. Location-awareness and prediction of future locations is an
important problem in pervasive and mobile computing. In cellular sys-
tems (e.g., GSM) the serving cell is easily available as an indication of the
user location, without any additional hardware or network services. With
this location data and other context variables we can determine places
that are important to the user, such as work and home. We devise online
algorithms that learn routes between important locations and predict
the next location when the user is moving. We incrementally build clus-
ters of cell sequences to represent physical routes. Predictions are based
on destination probabilities derived from these clusters. Other context
variables such as the current time can be integrated into the model. We
evaluate the model with real location data, and show that it achieves
good prediction accuracy with relatively little memory, making the algo-
rithms suitable for online use in mobile environments.

1 Introduction

Location awareness has a large role in ubiquitous computing. Several applications
have been proposed that rely on knowing or predicting the location of the user. In
this paper we present an algorithm for predicting user movement with respect
to cell-based location data. Such location data consists of a sequence of cells,
with no regard to physical locations or topology. With this data the task is to
learn, on user’s personal mobile device, places that are personally important to
that user, and to make predictions about the place the user is moving to. Such
predictions are useful in, e.g., a presence service, which makes the whereabouts
of the user available to other people. Many other proactive applications, such as
early-reminder systems [1,2] and traffic planning [3] become possible if we know
the future location of the user.

This paper works with the conceptual model presented in Laasonen et al.

[4]. The contribution of the present paper is a novel algorithm for predicting
routes. The algorithm analyzes whole paths using clustering techniques, instead
of relying on the short path fragments of the earlier paper. This both conserves
memory and offers better prediction accuracy. The presented approach also re-
spects users’ privacy by doing all processing on the mobile phone.

Most previous work on determining user locations and routes uses GPS co-
ordinate data [1,2,3]. However, GPS can be problematic in urban areas due
to signal shadowing. GPS receivers are also nowhere as ubiquitous as mobile
phones. Ashbrook and Starner [1] cluster coordinate data to infer locations, but
movement times can be used as well [5]. Alternative methods of prediction of
future locations include first or second-order Markov models [1], and Bayes clas-
sifiers [2,6].

Our data takes the form of a sequence of cell identifiers. An interesting ap-
proach to clustering sequences is with probabilistic suffix trees [7]. Such methods
unfortunately require too much memory and processing capacity to be useful in
mobile phones.

2 Problem Setting

A GSM phone communicates over the air with a base station. In any given
location there may be several base stations whose radio signal reaches the phone.
The phone chooses one of them, and switches transparently over to a new base
station as needed. A cell is the area covered by a single base station; when we
say the phone is in some cell, we mean that the phone is in the area of the
corresponding base station.

In this paper we work with GSM cell data, for a number of reasons. Mobile
phones are ubiquitous and cellular networks are present almost everywhere. Since
no operators or external service infrastructure are involved, data gathering is easy
and inexpensive. On the other hand, cells may overlap, they vary widely in size,
and signal shadowing can make cells appear non-contiguous. Finally, a certain
physical location does not have one-to-one correspondence to cells because of
radio interference, phone network load and various other issues.

The data consists of cell transitions. At the lowest level each cell is represented
by an opaque numeric identifier (e.g., “Sonera.3286.15754”). Our location data
is a time-stamped sequence of such identifiers. We can visualize the data by a
graph where the vertices are the observed cells, and there is an edge (ci, cj) if
(and only if) a transition occurred from cell ci to cj . A fragment of such a graph
is shown in Fig. 1. This graph shows both the author’s daily commute from
home (“Vuosaari”) to work and trips from home to downtown Helsinki. It does
not include transitions in the opposite direction. (For illustrative purposes, some
of the cells have been named.)

From our earlier work we will be building on the concepts of cell clusters and
bases. If overlapping cells have approximately equal signal strength, the phone
may hop between cells even when the user is not moving. This oscillation is
handled by clustering cells with our earlier method [4]. Intuitively, a cell cluster
is a group of nearby cells where most transitions happen within the cluster.

A location is either a cell cluster or a single cell. Locations are identifiable in
the sense that we can reliably detect the user entering and leaving them. Finally,
locations that are important to the user are called bases. A location is considered
to be a base when the time spent there as a portion of the total time the software

Rastila

Kalasatama

Sturenkatu

Herttoniemi

Mäkelänkatu

Kaisaniemi

Elimäenkatu

Downtown

Hakaniemi

Sörnäinen

Metro Kaisaniemi

Vuosaari

Mäkelänkatu

Metro Siilitie

Itäkeskus

Vartiokyläntie

Rastila

Itäkeskus

Rautatientori

Metro Itäkeskus

Hauki

Kulosaari

Metro Puotila
Metro Sörnäinen

Itäkeskus

Herttoniemi

Sörnäinen

Metro Hakaniemi

Metro Herttoniemi

Metro Rastila

Kulosaari

Hämeentie

Metro Itäkeskus

Sörnäinen

Work

Teollisuuskatu

Kaisaniemenkatu

Fig. 1. A partial cell transition graph for routes from “Vuosaari” to either “Work” or
“Downtown.”Unlabeled dots represent cells that have not been named. The data comes
from 69 separate trips.

has been run goes above a certain threshold. The set of bases can change over
time, as new places become important or old ones are visited less often. The
problem of determining bases is covered in [4]; in this paper we work with a set
of known bases. In an actual implementation, learning bases and routes occurs
in parallel.

We can now define the problem of route prediction as follows: when the user
is not in a base, what is the most probable next base? A secondary task is to give
some useful characterization of the direction of movement. Furthermore, because
the prediction software is run on a mobile phone, there will be tight constraints
on the amount of memory and processing power that is available.

Perhaps the most important consequence of using cell-based location data
is that we lack the physical topology of the cell network. This includes both
the correspondence between cells and physical locations, and all indications of
direction. The approach of the present paper is to look at entire routes between
two bases, and attempt to learn all different physical routes as strings of cell
identifiers. Whenever the user completes a route r between bases a and b, we
determine if an existing route between a and b is similar to r. If such a route
is found, the two routes are clustered together. Figure 2 shows the effect of
applying such route clustering to the data of Fig. 1. There are five different
physical routes; the two most frequently traveled are shown in the figure. The
graph is obviously much simpler, and furthermore corresponds quite closely to
the routes actually traveled in the real world.

Using entire paths makes it also possible to detect fork points, which are
places where overlapping paths diverge, such as “Sörnäinen” in Fig. 2. When
there are several good similarity matches, we can offer a fork prediction as an
insurance against the actual base prediction going amiss. From the point of a
presence service, a high-confidence prediction of the fork is probably more useful
than several low-confidence base predictions.

Vuosaari Work

3188.20995

Rastila

Metro Puotila

Itäkeskus

Metro Siilitie

Metro Herttoniemi

Kalasatama

Teollisuuskatu

Metro Sörnäinen

Metro Kaisaniemi

Downtown

3188.21091

3188.20979

Metro Rastila

Metro Itäkeskus

3188.20652

Herttoniemi

Kulosaari

Sörnäinen

Sturenkatu

3188.20973

Metro Hakaniemi

Rautatientori

Fig. 2. The most frequent composite routes from “Vuosaari” to “Work” (thin line) or
to “Downtown” (dashed line). Edges appearing on both routes are shown with a heavy
line. Unnamed cells have numeric identifiers only.

3 Prediction Algorithm

The goal is to predict the next actual base b∗, given that the user’s last base
was a and since then we have seen a cell sequence c1, . . . , ck. When the user is
not in any base, at each cell transition we make a prediction, which is a set of
pairs (b, p), where b is a possible future base and p the probability of the user
going there. When the user arrives at base b∗, the entire route a, c1, . . . , cn, b∗ is
used to make better subsequent predictions.

3.1 Route Clustering

A route is simply a string of cell identifiers. For each pair (a, b) of bases we
maintain a set of routes Rab. Instead of storing in Rab all cell paths between
a and b, we aim to keep only “typical” paths. Not only does this decrease the
memory requirements substantially, but it also proves crucial in estimating the
relevance of a given route.

A new route p = ac1 . . . cnb is added to the database when the user arrives
at base b, using incremental clustering (Algorithm 1). First p is processed so
that only unique cells remain: nearby duplicate cells are collapsed into one. Next
(line 3) we determine the similarity of the new path against the existing routes
in Rab. If p is similar enough with some route r∗, it is merged with it; otherwise
we add p as a new distinct route between a and b.

The similarity function sim(r, p) aims to approximate the scheme described
by Mannila and Moen [8]. They use edit distance coupled with item-level simi-
larity. Our version is a lightweight heuristic that resembles the Jaccard measure
|r∩p|/|r∪p|, but enforces ordering for the items. That is, strings r and p are con-
sidered equivalent if every element in p appears in r in the same order. Elements
in r but not in p are ignored. This asymmetry derives from the fact that a route
cluster typically contains more cells than there are in any actual instance of that
route. (Algorithm for computing sim(r, p) is omitted due to space constraints.)

The merging of two paths aims to produce a composite path that retains
the features of both (similar) participants. We first find the optimal alignment
of the two path strings (line 4). Computing the alignment of two strings inserts

Add-Route(p)
Input : Cell sequence p = a, c1, . . . , cn, b, routes Rab between a and b

1 Collapse nearby duplicate cells in p
2 r∗ = argmax

˘

sim(r, p)
˛

˛ r ∈ Rab

¯

3 if sim(r∗, p) > σ
4 then r1, p1 ← align(r∗, p) � Merge p with r∗ (see text)
5 X ← set of letters in r1 ∪ p1

6 for each x ∈ X do v(x)← average position of x in r1 and p1

7 Replace r∗ with an ordering of all xi ∈ X such that v(xi) ≤ v(xi+1)
8 else Rab ← Rab ∪ {p} � Add a new distinct route

Algorithm 1. Clustering routes.

empty elements (“spaces”) into both strings so that identical elements will ap-
pear, as much as possible, in the same positions [9]. For example, the alignment
of “timers”and“tries”yields “t imers”and“tri e s”. Finally, the merging is
completed by ordering all cell identifiers in ascending order by average position
in the aligned strings (lines 5–7).

3.2 Making Predictions

Predictions are computed by Algorithm 2, using the previous base a and a his-
tory h of m most recently encountered cells. We start by finding S, a set of
candidate bases. If b ∈ S, a trip a → b has been observed. For each b, line 3
computes the similarity of the history h against all possible routes leading to b. A
simple prediction system would stop here, and predict that the next base is the
b that maximizes sb. However, several routes can have nearly equal similarities
and still lead to different destinations.

Predict-Base(h, a, A, C, R)
Input : Recent history h, previous base a, context A, context model C, routes R

1 S = { b | Rab 6= ∅ } � Set of candidate bases
2 for each b ∈ S
3 do sb = max

˘

sim(r, h)
˛

˛ r ∈ Rab

¯

4 Given a and b, find past context data Cab ∈ C
5 Compute pb = sbP (b | a, A, Cab) � See text
6 b = argmax

b∈S
pb

7 return (b, pb/
P

k∈S
pk) � Return the prediction and its probability

Algorithm 2. Prediction of the next base b.

We can choose between destinations by conditioning on additional context
variables, such as time of day, weekday and route frequency. We maintain a
context database C that stores information from past instances of trips between

pairs of bases. In the most straightforward model we set Cab =
〈

n, Td(a), Tw(a)
〉

;
this means that for each base pair (a, b) we store n, the number of trips, followed
by Td(a) and Tw(a), distributions of time of day and weekday when the trip
started (user left base a). In this case the current context A in algorithm 2 is
simply the current time t = (td, tw). We have

P (b | a, t, Cab) ∝ P (b, t | a, Cab) = P (t | a, b, Cab)P (b | a, Cab)

∝ P (t | a, b, Cab) · n,

by the definition of conditional probability and the chain rule.
The remaining task is to find the probability of being on the given route

at time t. A simple assumption is that the time of day td of any given route
follows a normal distribution, so we need to store in Td(a) the sum s and the
square sum q of the previous event times. This allows for later reconstruction of
the distribution. For the weekday tw the normality assumption works less well,
so the frequency is used instead. Since td and tw are not really independent,
we maintain a separate normal distribution for each weekday, and in the end
compute P (tw, td) = P (tw)P (td|tw).

4 Evaluation

The algorithms were evaluated on the real dataset presented in [4]. The data was
collected during six months in 2003 with an early version of the ContextPhone
software [10] running on a Nokia 7650 phone. The movements of three volunteers
were tracked both at work and at leisure. The movement patterns range from
very simple (daily commute, weekend and holiday trips) to moderately complex.

The baseline algorithm is the fragment-based method [4], which was tested
with several window sizes k. Since the algorithms are intended for small devices,
their memory consumption is also investigated. To simplify the evaluation, both
algorithms were tested with offline given bases, i.e., we did not try to learn both
bases and routes at the same time. The algorithms received cell transition events
one at a time, supplying a ranked set of predictions for the next base. The top-
ranked prediction was then compared to the actual base. Following [4, sect 4.4],
we exclude cases when the user is apparently not moving (stationary).

Figure 3 shows how the different methods compare. Each graph shows how
the various prediction algorithms performed. The F2 and F4 are the fragment
method with a window size of 2 and 4, respectively. The symbol C denotes the
route prediction algorithm described in Section 3.2. The model C ′ additionally
includes all intermediate cells and their time distributions. Finally, the bar C3

shows what happens when the algorithm is allowed to learn each route for the
first two times it was seen: prediction results for these instances are not included
in the score.

A prediction is correct if it matches the actual next base and the probability
of the given prediction is larger than u = 0.3. A low correct prediction is one
that is correct, but probability is less than u, or the second-best prediction is

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

p
ro

p
o
rt

io
n

F2 F4 C ′ C C3

Person 1

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

F2 F4 C ′ C C3

Person 2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

F2 F4 C ′ C C3

Person 3

Correct

Low

correct

Low fail

Fail

Fig. 3. Route recognition accuracy. Methods F2 and F4 are fragment-based. Method
C′ augments C with intermediate cells; C3 ignores first two trips between bases.

(a)

0.6

0.7

0.8

0.9

0 2 4 6

Person 1

Person 2

Person 3

(b)
0

50

100

150

200

250

M
e
m

o
ry

si
z
e
,
in

1
0
3

w
o
rd

s

C C ′ F2 F3 F4

Person 1

Person 2

Person 3

Fig. 4. (a) Prediction accuracy as function of number of learning trips. (b) Comparison
of the memory consumption of the algorithms.

correct with nearly equal probability (e.g., p1 = 0.55 and p2 = 0.44), or the fork
point was predicted correctly. A low fail prediction was wrong, but with a low
probability value. Finally, a fail -type prediction was a high-confidence prediction
that went wrong, or no prediction at all.

For all persons, the route-based method yielded more predictions that suc-
ceeded. Taking into account also the low-confidence correct predictions, however,
we see more moderate improvements. However, the results so far do not allow for
learning. As the last (C3) case of Fig. 3 shows, the prediction quality improves
if the algorithm is given time to learn each route. The score is tallied when the
pair (a, b) has been seen at least q = 3 times. As Fig. 4(a) shows, accuracy im-
proves rapidly with increasing q. The conclusion is that the route-based method
is a clear improvement on the fragment method when it comes to prediction
accuracy.

Although models C and C ′ are very similar in their prediction accuracy, the
former uses much less memory, as shown in Fig. 4(b). But even model C ′ con-
sumes less memory than any fragment-based method. For the latter, memory
use consists of the fragments themselves and the associated storage for context
predictors. The route-based method needs less predictor memory, preferring com-
pact route descriptions.

Because the proposed algorithm is a combination of two separate predictors,
it is fairly oblivious to parameter changes. The tests were run with σ = 0.7 and
m = 12, which provide a good compromise between quality and efficient use of
memory.

5 Conclusion

We have presented a method for predicting user movement from cellular data
gathered with user’s own mobile phone. The algorithm tackles the problem by
attempting to recognize physical routes traveled by the user. The idea is that
distinct physical routes correspond to clusters of cell sequences. Later predictions
are based on matching the current cell history against known routes. The current
time provides additional context to aid prediction. Evaluation of the method with
real dataset shows that the method is able to learn and predict routes with good
accuracy, while still consuming little memory.

References

1. Ashbrook, D., Starner, T.: Using GPS to learn significant locations and predict
movement across multiple users. Personal and Ubiquitous Computing 7 (2003)
275–286

2. Marmasse, N., Schmandt, C.: A user-centered location model. Personal and Ubiq-
uitous Computing 6 (2002) 318–321

3. Harrington, A., Cahill, V.: Route profiling: putting context to work. In: Proceed-
ings of the 2004 ACM symposium on Applied computing (SAC’04), New York,
NY, USA, ACM Press (2004) 1567–1573

4. Laasonen, K., Raento, M., Toivonen, H.: Adaptive on-device location recognition.
In: Pervasive Computing: Second International Conference. Volume 3001 of LNCS.,
Springer Verlag (2004) 287–304

5. Kang, J.H., Welbourne, W., Stewart, B., Borriello, G.: Extracting places from
traces of locations. In: WMASH’04: Proceedings of the 2nd ACM international
workshop on Wireless mobile applications and services on WLAN hotspots, New
York, NY, USA, ACM Press (2004) 110–118

6. Patterson, D.J., Liao, L., Fox, D., Kautz, H.: Inferring high-level behavior from
low-level sensors. In: UbiComp 2003. Volume 2864 of LNCS., Springer Verlag
(2003) 73–89

7. Yang, J., Wang, W.: CLUSEQ: efficient and effective sequence clustering. In: Pro-
ceedings of the 19th International Conference on Data Engineering, IEEE Com-
puter Society (2003) 101–112

8. Mannila, H., Moen, P.: Similarity between event types in sequences. In: Data
Warehousing and Knowledge Discovery: First International Conference. Volume
1676 of LNCS., Springer Verlag (1999) 271–280

9. Gusfield, D.: Algorithms on strings, trees, and sequences. Cambridge University
Press (1997)

10. Raento, M., Oulasvirta, A., Petit, R., Toivonen, H.: ContextPhone: a prototyping
platform for context-aware mobile applications. IEEE Pervasive Computing 4

(2005) 51–59

