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1 Introduction

Nature has devised innumerable ways to endow individual organisms with adaptive
behavior. Many of these processes can be classified as being part of evolution, changes
in the genome that alter inborn behavior; or learning, changes in an individual’s
behavior as a result of interactions with its environment. Researchers in the fields
of genetic algorithms and artificial neural networks use caricatures of evolution and
learning to solve difficult optimization problems.

The behavior of most real organisms is a consequence of learning and evolution
in concert, so it is natural to assume that there is computational advantage in their
combination. However, the formidable complexity of the two processes is multiplied
when we consider their interactions.

This paper addresses the issue of how computational versions of learning and evo-
lution have been made to interact in simulated systems. It examines various benefits
of such combinations and details how supervised learning, reinforcement learning, and
unsupervised learning can be adapted to fit into an evolutionary framework.

2 Evolution and Learning

We'll use a simple simulation framework for examining computational analogues of
evolution and learning. At the top level is a genetic algorithm (GA) [9, 7] that main-
tains a population of individuals specified by their genomes (fixed-length bit strings).
The genetic algorithm collects fitness values for individual genomes by evaluating
them according to some prespecified function and then selectively replicates and re-
combines genomes on the basis of this fitness. This constitutes the “evolutionary”
level.
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Figure 1: The generic associative eater environment.

“Learning” takes place during the fitness evaluation of the genomes. The bits
of the gene string are used to generate a neural network, which then undergoes a
series of interactions with a simulated environment. These interactions may result
in changes to the weights of the individual’s network according to a prespecified
learning algorithm. The interactions constitute the lifetime of the individual and last
some fixed number of steps. The network learns insofar as the behavioral mapping
it specifies changes over time. The fitness of the genome is then determined by
some measure of performance of the individual over its entire lifetime. Although an
individual’s network might change a great deal during its lifetime, these changes are
not incorporated back into the genome but instead “die” with the individual.

As a running example, we consider a family of environments based on Todd and
Miller’s associative eater environment [17]. The scenario is depicted in Figure 1 and
can be imagined as an underwater realm in which individual offspring are born into
feeding patches, where they live out their entire lives. Feeding consists of deciding
whether to consume substances that float past; these substances come in two forms,
food and poison, and two colors, red and green. The association between color and
substance is a function of the individual’s feeding patch which cannot be known
directly. On each step, each individual is presented with a substance (food or poison,
red or green) and must decide, on the basis of sensory cues and experience alone,
whether to consume the substance or to let it pass. Fitness is computed as the
amount of food consumed minus the amount of poison consumed over a fixed lifetime
of ¢ steps. Since half of the substances are food, and half are poison, fitness scores
vary between —¢/2 and +//2.

As described here, no feedback is given to individuals that could be used to dis-
ambiguate between food and poison. In later sections, within-lifetime feedback about
the consequences of eating food and poison will be the main way that the problem is
manipulated to illustrate different types of learning.

The motivation for describing this model is simple—it is one of the simplest mod-
els that has been proposed that includes both evolution and learning components.
Throughout the paper it is used to illustrate different approaches to studying how
learning and evolution can interact.



2.1 Evolution finds optimal behavior

The behavior of each individual is controlled by a simple neural network encoded in
the individual’s genes. If it were the case that poison was red and food green in all
feeding patches, it is easy to imagine that individuals would evolve with a simple
network such as the one shown in the right half of Figure 1. The behavior of this
network is to consume any green objects that float by (the filled-in arrow denotes a
positive connection) and to ignore all red objects (the empty arrow denotes a negative
connection: the eating unit will not activate).

Given the assumption that the substance to color mapping is constant, evolution
can find networks that display optimal behavior. An experiment supporting this
claim is provided in Todd and Miller’s paper (their noise-free case).

2.2 Learning finds optimal behavior

In a slightly different scenario, individuals are born into one of two feeding patches
uniformly at random. In patch A, food is green and poison red. In patch B it is
the reverse. Individuals remain in the patch in which they were born, so for a single
individual, the colors associated with food and poison are constant for its lifetime.
A population of individuals with networks such as the one shown in the right half of
Figure 1 that exhibit fixed behavior will not be optimal, since half of all individuals
will be born into patch A and receive a fitness score of +/£/2 and the other half will
be born into patch B and receive —¢/2 for an average fitness of 0.

Individuals that learn have the possibility of recognizing and exploiting structure
in their surroundings and thus receiving fitness scores above 0 regardless of which
feeding patch they are born into. However, the environment as described in Section 2
offers no opportunity for learning since it is impossible for an individual to distinguish
food from poison. The environment must provide additional input for learning to be
possible.

The machine learning community has identified three broad classes of learning:
supervised, reinforcement, and unsupervised. They are distinguished by the amount
and type of feedback information given to the learner. In supervised learning, the
environment is assumed to provide the individual with direct and perfect information
as to how it ought to behave in the situations it experiences (i.e., the right answer).
The feedback signal in reinforcement learning is somewhat weaker in that the envi-
ronment provides a single number, called a reinforcement signal, indicating the fitness
consequence of performing the most recent action in the current situation. Unlike su-
pervised learning, the individual must then experiment to find high fitness actions. In
unsupervised learning, the feedback is weaker still and consists of latent structure in
the input patterns themselves. Unsupervised learning algorithms can identify certain
classes of structure which can then be used to make decisions.

Given any of these kinds of feedback, learning algorithms exist that can alter the
weights of a neural network to find optimal behavior (e.g., backpropagation [14] for
supervised learning, CRBP [2] for reinforcement learning, and Kohonen networks [10]
for unsupervised learning) independent of the individual’s feeding patch. These ref-



erences indicate that, given the correct network structure and feedback, learning is
sufficient for finding optimal behavior.

2.3 Combination speeds adaptation

Although either process is capable of solving difficult behavioral optimization prob-
lems, combining evolution and learning can lead to faster adaptation than either
alone.

As an extreme example, Hinton and Nowlan [8] showed that a problem that was
extremely difficult for a simulated evolution system alone was solved fairly easily by a
system that contained elements of both evolution and learning. The mechanism they
examined is known as the Baldwin Effect [3, 15], the essence of which is that learning
alters the search space in which evolution operates by smoothing spikes in the fitness
landscape, thus speeding evolution.

The interaction between evolution and learning hinges on the structure of Hinton
and Nowlan’s simulation [8]. There, some aspects of the individual are genetically
fixed while others are filled in by a random search process they call “learning.” An
individual lives for a fixed number of steps, and learning ceases whenever the optimal
behavior is discovered. An individual’s fitness is the amount of time during which
it displays optimal behavior. In this framework, learning guides evolution by mak-
ing near-perfect individuals receive high fitness scores since such individuals quickly
adapt, via learning, to exhibit optimal behavior. Evolution accelerates learning by
making individuals nearly perfect to start with.

Fitness is measured “online”; that is, what matters is not just the individual’s
final behavior but also how quickly it begins behaving well; thus, faster learning
means higher fitness. This means that any genetically specified aspects of the learn-
ing process have the potential of serving as a source of guidance between the two
processes, e.g., the initial weights of the neural network, the number of hidden units,
and settings for learning rate and momentum parameters [4].

2.4 Combination solves more general problems

The preceding section described how the combination of evolution and learning can
make for quicker adaptation. However, the sort of straightforward combination used
in these cases can only be applied when either evolution or learning alone is sufficient
to solve the problem. This section describes other ways of combining evolution and
learning that can make it possible to relax this requirement and thus solve problems
that neither process can solve alone.

For evolution alone to find optimal behavior, the objective should not change
radically from generation to generation. For learning alone to find optimal behavior,
individuals need a feedback signal. Both of these assumptions are violated in Todd
and Miller’s original associative eater problem, as each individual is born into one of
two feeding patches at random and no direct feedback is given to individuals during
their lifetimes.
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Figure 2: A supervised learning associative eater environment.

Todd and Miller show how to structure the simulation so that evolution can iden-
tify and take advantage of slowly changing, base-level properties of the environment
while learning fills in the individual-specific details. This permits a hybrid system to
solve a problem that neither evolution nor learning could solve alone.

3 Architectures for learning

One fundamental question must be answered before evolution and learning can be
combined in a single system: from where does the feedback for learning come? In
supervised learning and reinforcement learning, the feedback must be provided by
the environment. In unsupervised learning, there is no direct feedback from the en-
vironment and instead the learner must exploit regularities in the structure of the
environment to improve its behavior. Heuristic feedback methods, such as evolution-
ary reinforcement learning [1], and auto-teaching [12] are somewhat different as they
involve learning via feedback signals, but the signals are tailored by evolution.

3.1 Supervised learning

Supervisory signals have been used in simulations that combine evolution and learn-
ing [4]. In supervised learning, the environment provides a training signal that informs
the individual of the precise action that it should have performed in each circumstance.
In the associative eater environment, a supervised learner must discover which at-
tributes of the environment are needed to implement the correct mapping from color
to action by providing the correct action output (eat/ignore) for each color input
(green/red). In Figure 2, we show a network architecture for this type of simulation
(dashed lines indicate connections that are changed by learning).

This kind of information-rich feedback ought to be sufficient for learning alone to
find optimal behavior. As described in Section 2.3, however, evolution can speed the
process along in principle by generating networks that can learn quickly.
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Figure 3: A reinforcement learning associative eater environment.

3.2 Reinforcement learning

Reinforcement signals provide less guidance than supervisory signals. Instead of giv-
ing the individual information as to the best action for each situation, in reinforcement
learning only a single number is given which indicates how good the individual’s last
action was from the standpoint of achieving optimal fitness. By choosing actions
that maximize the reinforcement signal, individuals can learn to behave optimally. In
Figure 3, we summarize an associative eater environment in which a reinforcement
signal is available.

For a behavioral repertoire consisting of two actions, reinforcement signals are
practically identical to supervisory signals: being told that one of two actions is bad
is the same as being told the correct action. When more actions are available, this type
of feedback becomes weaker and weaker with respect to supervision. Nevertheless,
in principle it is still sufficient for allowing any individual to learn optimal behavior
given enough time (see, e.g., [2]).

3.3 Unsupervised learning

The learning methods described above use feedback signals that come directly from
the definition of optimal behavior. That is, if the feedback signal says you did some-
thing wrong, you did something wrong. This sort of learning is implausible in natural
systems since the only truly unambiguous signal is death. Other signals are simply
correlated with good or bad behavior to some degree. For instance, because of regu-
larities in the natural environment, the smell of food might be considered a hint that
an individual’s recent actions constitute successful behavior. Unsupervised learning
methods allow the individual to learn and exploit this type of association.

In an unsupervised learning framework, individuals receive no direct guidance
from the environment as to which actions are better than others. Instead, they must
distinguish between good and bad behavior using associations between sensory cues.

Todd and Miller [17] described a simple scenario for the evolution of unsupervised
learning, which they simulated to demonstrate its computational plausibility. Con-
sider a version of the associative eater environment in which a second sensory input,
smell, distinguishes food from poison consistently across food patches but with some
probability of being misperceived. In particular, imagine food always smells sweet
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Figure 4: An unsupervised learning associative eater environment indicating correla-
tions between color, smells, and object types.

and poison sour but on any given step, “turbulence in the water” might cause a smell
to be improperly recognized with 25% probability. This information is summarized
in Figure 4.

How can an individual maximize its fitness in this environment? Eating anything
that smells sweet is a reasonable strategy and an individual with this fixed strategy

can expect a fitness score of:
3 (1L I AN
4\2) 4\2) 4

Recall that ¢ represents the number of decisions an individual makes during its life-
time. Such an individual does not use its color sensors at all and makes every decision
based on its smell sense.

However, if an individual can keep statistics on which color tends to be identified
with which smell (in patch A, green substances smell sweet three quarters of the
time, for instance), then it can reliably identify a substance as food or poison by its
color and earn a fitness score of (£ — k)/2 where k is the number of trials before the
individual has learned the association between color and substance. If k is small with
respect to £ (less than £/2) this strategy is an improvement.

Todd and Miller [17] describe an elegant network architecture that is capable of
supporting this form of learning. The genome specifies a set of connections from sensor
units to an eating unit. The left half of Figure 5 illustrates a simple network that
eats anything that smells sweet. The right half of Figure 5 illustrates a feedforward
network that can learn to eat substances of the proper color. The dashed line is
a “changeable” connection that is strengthened if the green unit is correlated with
eating and weakened if it is anticorrelated (i.e., it is a Hebbian connection). Consider
the network’s behavior in patch A (the argument is symmetrical for patch B). Since
the eating unit has a direct connection from the sweet smell unit, the activity in these
units will be correlated 75% of the time initially. After some number of trials that
depends on the initial network weights, the dashed connection is strengthened to the
point that the eating unit will fire on the basis of the green unit alone. Thus, the
network learns the association between color and behavior and then begins to behave
optimally using only sensory cues and no direct feedback.



Example non-learning network Example learning network

sweet sour
eat B eat
red green @/ -

Genotype specifies unit types, initial connection weights, learning parameters,
and which connections are altered by learning

Learning changes selected (dashed) weights to correlate their inputs and outputs
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Figure 6: An evolutionary reinforcement learning associative eater environment.

Since the smell unit is positively correlated with whichever color predicts food, an
unsupervised learning method can be used. However, it is the responsibility of evolu-
tion to recognize this relationship and to construct the proper network for exploiting
it. Without the learning mechanism, individuals could not adapt to their food patch.
Without evolution, the proper adaptation scheme could not be recognized. This is
why a system that combines evolution and learning is able to achieve greater levels
of fitness than one using either learning or evolution alone.

3.4 Evolutionary reinforcement learning

The unsupervised learning method described in the previous section uses a cross-
generationally consistent input, namely sweet or sour smell, to determine which other
input, namely red or green color, is a reliable indicator of appropriate behavior. As
such, the smell units are being interpreted as a source of heuristic, though noisy,
feedback. It is up to evolution to select how the sensory units will be used to generate
these feedback signals.

Evolutionary reinforcement learning [1] uses the same fundamental insight. To
apply this model of learning, we need to assume that an individual has an extended
interaction with its environment and that it can perceive the effects of its own actions.
Further, assume there is a reliable way of mapping the resulting sensations to the
utility of the previous action. An environment that satisfies these assumptions can be
called a “constant utility” environment [11] and evolutionary reinforcement learning
can be used to find optimal behavior.

To illustrate this idea, here is another example modeled after the associative eater
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(see Figure 6). An additional input, labeled “queasy,” is activated each time the
individual consumes poison. The mapping from sensations and actions to resulting
sensations i1s not constant between individuals since eating something red produces
queasiness in patch A but not patch B. However, the mapping from resulting sensa-
tions to utility or fitness is constant since queasiness at time ¢ always means that the
action at time ¢ — 1 was inappropriate. If the individual could map sensations to a
feedback signal for the previous action, this could be used as a guide to learning.

A network architecture for this problem is illustrated in Figure 7. The behavior
network (right) maps sensations to action, and the evaluation network (left) maps
sensations to heuristic feedback signals. When the evaluation network gives a positive
signal, a reinforcement learning algorithm [2] is used to modify the behavior network
to make the previous action more likely given its previous inputs. Similarly, negative
signals from the evaluation network make the previous action less likely. Littman and
Ackley [11] studied a conceptually similar problem using this architecture and found
that it worked quite effectively.

The primary influence of evolution here is in the specification of the fixed evalu-
ation network, which generates the individual’s heuristic feedback. Since individuals
with good evaluation networks will tend to learn appropriate behaviors and earn high
fitness, natural selection will create evaluation functions that do a good job of extract-
ing the fitness consequences of actions. Evolution alone cannot solve this problem
since individuals need to adapt to their own feeding patch. Learning alone is also
inadequate because the connection between the “queasy” unit and fitness can only
be detected across generations. Once again, evolution and learning can be made to
work together to solve a problem that neither could solve alone.

4 Conclusion

From a computer science perspective, evolution and learning are two approaches to
the problem of generating adaptive behavior. Nature gives us an indication that there
is some advantage to combining the two and, indeed, simulation results have been
consistent with this observation.

This paper provides two computational arguments that the combination of evo-
lution and learning is superior to either alone. For problems where evolution and



learning are both capable of finding solutions independently, the combination can
speed adaptation through the Baldwin Effect. For other problems, it is sometimes
possible to combine evolution with unsupervised or heuristic learning methods to
solve problems that neither learning nor evolution could be applied to alone.

Although the simulations reviewed in this paper suggest that there has been a
great deal of work in the last few years combining evolution and learning in the form
of genetic algorithms and neural networks, it seems we have barely scratched the
surface. For example, Dennett [6] describes a powerful combination of evolution and
learning in which an evolved “inner environment” is used to help generate individual
behavior by imagined trial-and-error learning. Implementations of this idea have
begun to appear in the last few years [16, 13] but not yet in an evolutionary setting.

Animals successfully employ forms of learning such as imprinting and imitation
to develop survival skills. Individuals in our simulated worlds might also benefit from
this form of learning, if honed properly by evolution. An even more exciting prospect
is that, with the large number of types of learning that are possible, perhaps we should
take a hint from natural evolution and let evolution choose the learning architecture
as well (see, e.g., [5]).

One thing is certain. Each simulation extends our understanding of how intelligent
behavior can arise from the interaction of “unintelligent” processes and also reinforces
the idea that we have only begun to explore the question of how evolution and learning
can be combined.
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