
581286-6 Three concepts: Information

http://www.cs.helsinki.fi/u/ttonteri/information

Henry Tirri Complex Systems Computation Group Helsinki Institute for Information Technology http://www.hiit.fihenry.tirri

Why information theory?

- "Educational argument"✓ general background
- "Employment argument"
 - ✓information theory is **the** theory of data (tele)communication
- "Intelligent systems argument"
 - ✓information theoretical concepts are deeply related to learning and adaptation

Three Concepts: Information '02 ©He

©Henry Tirri 2002

Information theory for Intelligent systems?

- Many problems are the same
 - √ data compression and error correcting codes are based on modeling and inference
 - ✓ "reliable communication over unreliable channels" vs. "reliable computation with unreliable hardware" (e.g., neural networks)
 - ✓ working with probability distributions in high dimensional spaces

Three Concepts: Information '02

©Henry Tirri 2002

What do we learn?

- Central results by Shannon and their consequences
 - \checkmark the source coding theorem
 - √ the noisy channel coding theorem
- "The legend of Minimum Description Length (MDL) Principle"

Three Concepts: Information '02

©Henry Tirri 2002

What is Information theory?

Claude Shannon, "A mathematical Theory of Communication". Bell Syst. Tech. Journal, 27: 379-423,623-656, 1948.

Simply put

- The problem of representing the source alphabet symbols s in terms of another system of symbols (0,1)
 - ✓ Channel encoding: how to represent the source symbols so that their representations are far apart in some suitable sense ("error-correction")
 - ✓ Source encoding: How to represent the source symbols in a minimal form for purposes of efficiency ("compression")

Three Concepts: Information '02

©Henry Tirri 2002

The course focus

- we will address source encoding as it has deep relationship to modeling
- (by the end of the course) abstract from actual codes to code lengths
- discuss information-theoretic principles that can be used as a foundation of statistical modeling

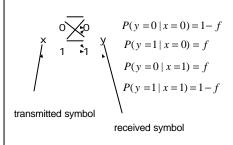
Three Concepts: Information '02

©Henry Tirri 2002

What we will NOT discuss

Three Concents: Information '0'

©Henry Tirri 200

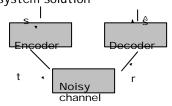

Noisy communication channels

- An analogue telephone line used by modems (to transmit digital information)
- the radio communication link from Galileo to earth
- a disk drive

Three Concepts: Information '02

©Henry Tirri 2002

Binary symmetric channel



Three Concepts: Information '02

©Henry Tirri 2002

How to reach error probabilities of order 10⁻¹⁵?

- The physical solution
- The system solution

Three Concepts: Information '02

©Henry Tirri 2002

"To be more precise"

- Information theory answers questions about the theoretical limitations of such systems
- Coding theory discusses how to build practical encoding and decoding systems

Three Concepts: Information '02

©Henry Tirri 2002

Three Concepts: Information '02

©Henry Tirri 2002

Think!

What is the error probability for the previous repetition code for a binary symmetric channel with noise level f?

Three Concepts: Information '02

Henry Tirri 2002

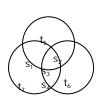
Some analysis

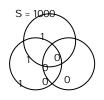
- For f =0.1 the error probability p_b = 0.03
- What did we loose?
 - ✓information transmission rate reduced by factor of three!
- Good?

✓assume we want a probability of error close to 10-15. What would be the rate of the repetition code? (~1/60)

Three Concepts: Information '02

©Henry Tirri 2002

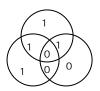

Block codes

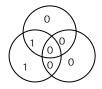

- Goal: (very) small probability of error and a good transmission rate
- I dea: add redundancy to blocks instead of encoding one bit at a time (the origin of "parity")
- Solution: (N,K) block code adds (N-K) redundant bits to the end of the sequence of K source bits

Three Concepts: Information '02

©Henry Tirri 2002

(7,4) Hamming encoding


Rule: parity in each circle is even


Three Concepts: Information '02

©Henry Tirri 2002

3

(7,4) Hamming decoding

Rule: for the received vector check that the parity in each circle is even; identify the most likely cause

Three Concepts: Information '02

©Henry Tirri 2002

Performance of the best codes

- We want
 - ✓small error probability p_b
 - ✓large (transmission) rate R
- What points in the (p_b,R)-plane are achievable?
- A good guess: boundary passes through the origin (0,0)

Three Concepts: Information '02

©Henry Tirri 2002

Wrong!

(The noisy channel theorem)

- Shannon proved that for any given channel, the boundary meets the R axis at a non-zero value R=C
- This channel capacity C for binary symmetric channel is

$$C(f) = 1 - \left[f \log_2 \frac{1}{f} + (1 - f) \log_2 \frac{1}{1 - f} \right]$$

Three Concepts: Information '0

©Henry Tirri 2002

So how many disks?

- For f = 0.1 we have $C \cong 0.53$
- Repetition code gave us R=1/3 with p_b=0.03 (3 noisy gigabyte disk drives)
- To reach p_b=10⁻¹⁵ we needed 60 noisy gigabyte disk drives
- Shannon says:
 - √ to reach p_b=10⁻¹⁵ you can achieve with 2 disk drives (2 > 1/0.53)
 - ✓ and to reach p_b=10⁻²⁴ you still need only 2 disk

Three Concepts: Information '02

©Henry Tirri 2002