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How much can we compress? 
- Shannon’s Source Coding 

Theorem

On Probability and Entropy
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Probability 

§ An ensemble X is a random variable x 
with a set of possible outcomes Ax with
probabilities Px

§ Probability of a subset T of Ax 

∑
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§ A joint ensemble XY is an ensemble for 
which the outcomes are ordered pairs 
x,y where x ∈ Ax and y ∈ Ay
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Probability continued
§ Marginal probability (from the joint 

probability P(x,y)) 

∑
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§ Conditional probability
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Probability continued

§ Product rule
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§ Sum rule

)|(),|(               

)|,()|(

HyPHyxP

HyxPHxP

y

y

∑

∑

=

=

Three Concepts: Information ‘02 ©Henry Tirri 2002 28

Bayes’s theorem
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Bayesian view of probability!
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Entropy

§ The entropy of X is a measure of the 
information content or “uncertainty” of 
x
üH(X) ≥ 0 (= iff pi=1 for one i)
üH(X) ≤ log (|X|) (= iff pi=1 /|X| for all i)
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Binary entropy

∑≡
i i

i p
pXH 1log)( 2 Information measure?
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Information content  
§ First attempt: number of possible outcomes 

|Ax|
ünot additive: for xy we have |Ax||Ay|

§ Perfect information content

üadditive, but no probabilistic element

||log)( 20 XAXH =
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Shannon information

§ looking for an information content of 
the event x=ai
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Example: letter distribution
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Entropy continued

§ The joint entropy of X,Y

∑
∈

≡
YX AAxy yxP

yxPYXH
),(

1
log),(),(

§ The conditional entropy of X given Y

)|(
1

log),(                

)|(
1

log)|()()|(

yxP
yxP

yxP
yxPyPYXH

YX

Y X

AAxy

Ay Ax

∑

∑ ∑

∈

∈ ∈

=












≡

“A
ve

ra
ge

 u
nc

er
ta

in
ty

 th
at

 r
em

ai
ns

 a
bo

ut
 x

w
he

n 
y 

is
 k

no
w

n”
 



3

Three Concepts: Information ‘02 ©Henry Tirri 2002 35

Entropy continued

§ Chain rule for entropy
H(X,Y) = H(X) + H(Y|X) = H(Y) + H(X|Y)
§ Mutual information

H(X;Y) ≡ H(X) - H(X|Y)
§ Entropy distance

DH(X,Y) ≡ H(X,Y) - H(X;Y)

“Average reduction in uncertainty
of x  when learning the value of y
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Entropy relationships

H(X,Y)

H(X)

H(Y)

H(X|Y) H(X;Y) H(Y|X)
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Kullback-Leibler divergence

§ Also known as “relative entropy”
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§ Not strictly a “distance”
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Weighting problem
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Idea
§ Some symbols have a smaller probability
§ gamble that the rare symbols won’t 

occur
§ encode the observations in a smaller 

code (alphabet) CX

§ measure log2|CX|
§ the larger the risk, the smaller the 

alphabet
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Formalize the idea

T

Ax

x x

δ<∉ )( TxP

Essential information

{ }δδ −≥∈⊆= 1)(,|:|minlog)( 2 TxPATTXH X

Smallest T s.t.
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Example
x = (x1,…,xN), x = {0,1} with probabilities p0 = .9, p1 = .1
Let r(x) be the number of 1’s in x

Probability of string x
)(

1
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AEP and source coding

Asymptotic Equipartition Principle: for N i.i.d. random
variables XN = {X1,…,XN}, with N sufficiently large, the
outcome x = {x1,…,xN} is almost certain to belong to
a subset of Ax

N having only2NH(X) members all having 
probability close to 2-NH(X)

The Revenge of a Student -
Symbol Codes
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Symbol codes

§ Notation: {0,1}+={0,1,00,01,10,11,000,…}
§ A symbol code C is a mapping from Ax to

{0,1}+

Ax

a i c(a i)
C

c+(x1x2x3...xN) = c(x1)c(x2)c(x3)... c(xN)

l(x) = |x|
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Decoding of symbol codes

§ A code C(X) is uniquely decodable if
)()(,, yxyxyx +++ ≠⇒≠∈∀ ccAX

§ A code C(X) is a prefix code if no 
codeword is a prefix of any other 
codeword
§ The expected length L(C,X) of a symbol 

code C for ensemble X is

∑
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Example

Ax = {1,2,3,4}, PX = {1/2,1/4,1/8,1/8}

C: c(1) = 0, c(2) = 10, c(3) = 110, c(4) = 111

The entropy of X is 1.75 bits: L(C,X) is also 1.75 bits

i
l

iii ppl −== 2),/1(log2

Obs!
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Kraft inequality
§ Given a list of integer {li}, does there exist a 

uniquely decodable code with {li}?
§ “Market model”: total budget 1; cost per 

codeword of length l is 2-l. 

Kraft inequality: For any uniquely decodeable code C 
over the binary alphabet {0,1}, the codeword lengths must
satisfy:

Conversely, given a set of codeword lengths that satisfy
this inequality, there exists a uniquely decodable prefix 
code with these codelengths.
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Limits of unique decodeability
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What can we hope for?
Lower bound on expected length: The expected length
L(C,X) of a uniquely decodable code is bounded below 
by H(X).

Compression limit of symbol codes: For an ensemble 
X there exists a prefix code

H(X) ≤ L(C,X) < H(X) + 1.
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“Proof-map” of the lower bound

∑ −− =≡
'

'2  where,2 Define /

i

lzl
i

ii zq

zql ii log/1log  Thus −=

By the definition
of log

zqplpXCL
i

ii
i

ii log/1log),( −== ∑∑

Substitution

∑ −≥
i

ii zpp log/1log

Gibbs inequality

Kraft
inequality

0≥

)( XH≥

Three Concepts: Information ‘02 ©Henry Tirri 2002 51

(What happens if we use the 
“wrong” code?)

Assume the “true probability distribution” is {p i}. If we 
use a complete code with lengths l i, they define a
probabilistic model q i = 2 -li. The average length is

ii
i

i qppXHXCL /log)(),( ∑+=

Kullback-Leibler divergence DKL(p||q)
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“Optimal” symbol code: Huffman 
coding

§ Take two least probable symbols in the 
alphabet as defined by {pi}.
§ Combine these symbols into a single 

symbol, pnew = p1 + p2. Repeat (until one 
symbol)
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Huffman in practice

1 2 3 4 5

0.25 0.25 0.2 0.15 0.15

0.25 0.25 0.2 0.3
0 1

0.25 0.45 0.31
0

0.55 0.45 1
0

1.0 1
0 3 ~ 11
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Huffman for the Linux manual

L(C,X) = 4.15 bits

H(X) = 4.11 bits
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Why is this not the end of the 
story?
§ Adaptation: what if the ensemble X 

changes? (as it does…)
ücalculate probabilities in one pass
ücommunicate code + the Huffman-coded 

message
§ “The extra bit”: what if H(X) ~1 bit?
üGroup symbols to blocks and design a 

“Huffman block code”


