The Revenge of a Student Symbol Codes

Symbolcodes

- Notation: $\{0,1\}^{+}=\{0,1,00,01,10,11,000, .$.
- A symbol code \mathcal{C} is a mapping from \mathbf{A}_{x} to $\{0,1\}^{+}$
$c^{+}\left(x_{1} x_{2} x_{3} \ldots x_{N}\right)=c\left(x_{1}\right) c\left(x_{2}\right) c\left(x_{3}\right) \ldots c\left(x_{N}\right)$

Decoding of symbol codes

- A code $C(X)$ is uniquely decodable if $\forall \mathbf{x}, \mathbf{y} \in A_{X}^{+}, \mathbf{x} \neq \mathbf{y} \Rightarrow c^{+}(\mathbf{x}) \neq c^{+}(\mathbf{y})$
- A code $C(X)$ is a prefix code if no codeword is a prefix of any other codeword
- The expected length $\mathcal{L}(C, X)$ of a symbol code C for ensemble X is

$$
L(C, X)=\sum_{x \in A_{x}} P(x) l(x)
$$

Three Concepts: Information 02 ©Henry Tirri 2002 47

Example
$A_{x}=\{1,2,3,4\}, P_{x}=\{1 / 2,1 / 4,1 / 8,1 / 8\}$
$C: c(1)=0, c(2)=10, c(3)=110, c(4)=111$
The entropy of X is 1.75 bits: $L(C, X)$ is also 1.75 bits Obs!
$l_{i}=\log _{2}\left(1 / p_{i}\right), p_{i}=2^{-l_{i}}$

Three Concepts: Information '02 ©Henry Tirri 2002 48

Sraft ine quality

- Given a list of integer $\left\{C_{i}\right\}$, does there exist a uniquely decodable code with $\left\{l_{i}\right\}$?
- "Market model": total budget 1; cost per codeword of length lis $2 \cdot l$.

Kraft inequality: For any uniquely decodeable code C over the binary alphabet $\{0,1\}$, the codeword lengths must satisfy:

$$
\sum 2^{-l_{i}} \leq 1
$$

Conversely, given a set of codeword lengths that satisfy this inequality, there exists a uniquely decodable prefix code with these codelengths.
Three Concepts: Information '02 ©Henry Tirri 2002

Limits of unique decodeability

[^0]What can we hope for?
Lower bound on expected length: The expected length $L(C, X)$ of a uniquely decodable code is bounded below by $H(X)$.

Compression limit of symbol codes: For an ensemble X there exists a prefix code
$\mathrm{H}(\mathrm{X}) \leq \mathrm{L}(\mathrm{C}, \mathrm{X})<\mathrm{H}(\mathrm{X})+1$.

"Optimal" symbol code: Huffman coding

- Take two le ast probable symbols in the alphabet as defined $b y\left\{p_{i}\right\}$.
- Combine these symbols into a single symbol, $p_{\text {new }}=p_{1}+p_{2}$. Repeat (untilone symbol)

Three Concepts: Information © 02 ©Henry Tirri 2002 54
(What happens if we use the "wrong" code?)

Assume the "true probability distribution" is $\left\{p_{i}\right\}$. If we use a complete code with lengths I_{i}, they define a probabilistic model $q_{i}=2^{-i}$. The average length is

Three Concepts: Information 02 @Henry Tirri 2002 53 ,

Huffman for the Linux manual
$L(C, X)=4.15$ bits
$H(X)=4.11$ bits

Three Concepts: Information 02
OHenry Tirri 2002

\square

Why is this not the end of the story?

- Adaptation: what if the ensemble X changes? (as it does..)
\checkmark calculate probabilities in one pass
\checkmark communicate code + the \mathcal{H} uffman-coded message
- "The extra 6it": what if $\mathcal{H}(X) \sim 1$ bit? \checkmark Group symbols to 6 locks and design a "Huffman block code"

[^0]: Three Concepts: Information '02 ©Henry Tirri 2002

