How much can we compress? - Shannon's Source Coding Theorem

On Probability and Entropy

Probability

- An ensemble X is a random variable x with a set of possible outcomes A_x with probabilities P_x
- Probability of a subset T of A_x $P(T) = \sum P(x = a_1)$

$$P(T) = \sum_{a_i \in T} P(x = a_i)$$

 A joint ensemble XY is an ensemble for which the outcomes are ordered pairs
 x,y where x ∈ A_x and y ∈ A_y

Probability continued

 Marginal probability (from the joint probability P(x,y))

$$P(y) = \sum_{x \in A_x} P(x, y)$$

Conditional probability

$$P(x = a_i | y = b_j) \equiv \frac{P(x = a_i, y = b_j)}{P(y = b_j)}$$

Probability continued

Product rule

 $P(x, y \mid H) = P(x \mid y, H)P(y \mid H)$

Sum rule

$$P(x \mid H) = \sum_{y} P(x, y \mid H)$$
$$= \sum_{y} P(x \mid y, H) P(y \mid H)$$

$$P(y | x, H) = \frac{P(x | y, H)P(y | H)}{P(x | H)}$$

= $\frac{P(x | y, H)P(y | H)}{\sum_{y'} P(x | y', H)P(y' | H)}$

Bayesian view of probability!

Entropy

 The entropy of X is a measure of the information content or "uncertainty" of x

✓ H(X) ≥ 0 (= iff p_i =1 for one i)
✓ H(X) ≤ log (|X|) (= iff p_i =1 /|X| for all i)

$$H(X) \equiv \sum_{x \in A_x} P(x) \log \frac{1}{P(x)}$$

Binary entropy $H(X) \equiv \sum_{i} p_i \log_2 \frac{1}{p_i}$

Information measure?

Information content

- First attempt: number of possible outcomes $|\mathbf{A}_{\mathbf{x}}|$ \checkmark not additive: for xy we have $|\mathbf{A}_{\mathbf{x}}| |\mathbf{A}_{\mathbf{y}}|$
- Perfect information content

✓ additive, but no probabilistic element

$$H_0(X) = \log_2 |A_X|$$

Shannon information

 looking for an information content of the event x=a_i

$$h(x) = \log_2 \frac{1}{p_i}$$

Example: letter distribution

i	a_i	p_i	$\log_2 \frac{1}{p_i}$	i	a_i	p_i	$\log_2 \frac{1}{p_i}$	i	a_i	p_i	$\log_2 \frac{1}{p_i}$
1	a	0.06	4.1	10	j	0.00	10.7	19	s	0.06	4.1
2	ъ	0.01	6.3	11	k	0.01	6.9	20	t	0.07	3.8
3	С	0.03	5.2	12	1	0.04	4.9	21	u	0.03	4.9
4	d	0.03	5.1	13	m	0.02	5.4	22	v	0.01	7.2
5	е	0.09	3.5	14	n	0.06	4.1	23	W	0.01	6.4
6	f	0.02	5.9	15	0	0.07	3.9	24	x	0.01	7.1
7	g	0.01	6.2	16	P	0.02	5.7	25	у	0.02	5.9
8	h	0.03	5.0	17	q	0.01	10.3	26	z	0.00	10.4
9	i	0.06	4.1	18	r	0.05	4.3	27	-	0.19	2.4
								\sum_{i}	p_i lo	$pg_2 \frac{1}{p_i}$	4.11
				-	•	-					
		a	bcdef	ghij	k 1	mno	pqrst	uvwy	c y z	s -	
12		010 2010 10 10 10 10 10 10 10 10 10 10 10 10			10021	a seria de cara de seria. El te					2 0002020

Figure 1.16. Probability distribution over the 27 outcomes for a randomly selected letter in an English language document (estimated from *The frequently asked questions manual for Linux*). The picture shows the probabilities by the sizes of white squares.

Entropy continued

The joint entropy of X,Y

$$H(X,Y) \equiv \sum_{xy \in A_x A_y} P(x,y) \log \frac{1}{P(x,y)}$$

tainty that remains about _X The conditional entropy of X given Y $H(X \mid Y) \equiv \sum_{y \in A_{Y}} P(y) \left[\sum_{x \in A_{Y}} P(x \mid y) \log \frac{1}{P(x \mid y)} \right]$ $= \sum_{xy \in A_x A_y} P(x, y) \log \frac{1}{P(x \mid y)}$

Entropy continued

- Chain rule for entropy H(X,Y) = H(X) + H(Y|X) = H(Y) + H(X|Y)
- Mutual information
 H(X;Y) = H(X) H(X|Y)
 "Average reduction in uncertainty of x when learning the value of y
- Entropy distance $D_H(X,Y) \equiv H(X,Y) - H(X;Y)$

Entropy relationships

Kullback-Leibler divergence

Also known as "relative entropy"

$$D_{KL}(P \parallel Q) = \sum_{x} P(x) \log \frac{P(x)}{Q(x)}$$

Not strictly a "distance"

Weighting problem

Three Concepts: Information '02

I dea

- Some symbols have a smaller probability
- gamble that the rare symbols won't occur
- encode the observations in a smaller code (alphabet) C_x
- measure log₂|C_X|
- the larger the risk, the smaller the alphabet

Formalize the idea

 $H_{\boldsymbol{d}}(X) = \log_2 \min\{|T|: T \subseteq A_X, P(x \in T) \ge 1 - \boldsymbol{d}\}$

Example

 $\mathbf{x} = (x_1, \dots, x_N), x = \{0, 1\}$ with probabilities $p_0 = .9, p_1 = .1$ Let $r(\mathbf{x})$ be the number of 1's in \mathbf{x}

Probability of string **x**

$$P(\mathbf{x} \mid p_0, p_1) = p_0^{N - r(\mathbf{x})} p_1^{r(\mathbf{x})}$$

AEP and source coding

Asymptotic Equipartition Principle: for N i.i.d. random variables $X^N = \{X_1, ..., X_N\}$, with N sufficiently large, the outcome $\mathbf{x} = \{x_1, ..., x_N\}$ is almost certain to belong to a subset of \mathbf{A}_x^N having only $2^{NH(X)}$ members all having probability close to $2^{-NH(X)}$

The Revenge of a Student -Symbol Codes

Symbol codes

- Notation: {0,1}+={0,1,00,01,10,11,000,...}
- A symbol code C is a mapping from A_x to {0,1}⁺

$$C^{+}(X_{1}X_{2}X_{3}...X_{N}) = C(X_{1})C(X_{2})C(X_{3})...C(X_{N})$$

Decoding of symbol codes

A code C(X) is uniquely decodable if

 $\forall \mathbf{x}, \mathbf{y} \in A_X^+, \mathbf{x} \neq \mathbf{y} \Rightarrow c^+(\mathbf{x}) \neq c^+(\mathbf{y})$

- A code C(X) is a prefix code if no codeword is a prefix of any other codeword
- The expected length L(C,X) of a symbol code C for ensemble X is

$$L(C,X) = \sum_{x \in A_x} P(x)l(x)$$

Three Concepts: Information '02

Example

 $A_x = \{1,2,3,4\}, P_X = \{1/2,1/4,1/8,1/8\}$ C: c(1) = 0, c(2) = 10, c(3) = 110, c(4) = 111 The entropy of X is 1.75 bits: L(C,X) is also 1.75 bits

Obs!

$$l_i = \log_2(1/p_i), p_i = 2^{-l_i}$$

Kraft inequality

- Given a list of integer {I_i}, does there exist a uniquely decodable code with {I_i}?
- "Market model": total budget 1; cost per codeword of length *I* is 2⁻¹.

Kraft inequality: For any uniquely decodeable code C over the binary alphabet {0,1}, the codeword lengths must satisfy: $\sum 2^{-l_i} \le 1$

Conversely, given a set of codeword lengths that satisfy this inequality, there exists a uniquely decodable prefix code with these codelengths.

Limits of unique decodeability

		000	0000	
	00	000	0001	
	00	004	0010	
		001	0011	
0		040	0100	5.
	01	010	0101	Total "budget"
		244	0110	
		011	0111	pn
	10	100	1000	
			1001	ota
		101	1010	ΗĔ
			1011	
1	11	110	1100	
			1101	
			1110	
		111	1111	

Three Concepts: Information '02

What can we hope for?

Lower bound on expected length: The expected length L(C,X) of a uniquely decodable code is bounded below by H(X).

Compression limit of symbol codes: For an ensemble X there exists a prefix code $H(X) \le L(C,X) < H(X) + 1.$

"Proof-map" of the lower bound

(What happens if we use the "wrong" code?)

Assume the "true probability distribution" is $\{p_i\}$. If we use a complete code with lengths I_i , they define a probabilistic model $q_i = 2^{-li}$. The average length is

$$L(C,X) = H(X) + \sum_{i} p_i \log p_i / q_i$$

Kullback-Leibler divergence D_{KL}(p||q)

"Optimal" symbol code: Huffman coding

- Take two least probable symbols in the alphabet as defined by {p_i}.
- Combine these symbols into a single symbol, p_{new} = p₁ + p₂. Repeat (until one symbol)

Huffman in practice

Huffman for the Linux manual

L(C,X) = 4.15 bits H(X) = 4.11 bits

a,	p_i	$\log_2 \frac{1}{p_i}$	l_i	$c(a_i)$
a	0.0575	4.1	4	0000
b	0.0128	6.3	6	001000
c	0.0263	5.2	5	00101
ď	0.0285	5.1	5	10000
е	0.0913	3.5	4	1100
f	0.0173	5.9	6	111000
g	0.0133	6.2	6	001001
h	0.0313	5.0	5	10001
i	0.0599	4.1	4	1001
j	0.0006	10.7	10	110100000
k		6.9	7	1010000
1	0.0335	4.9	5	11101
m	0.0235	5.4	6	110101
n	0.0596	4.1	4	0001
0	0.0689	3.9	4	1011
P	0.0192	5.7	6	111001
q	0.0008	10.3	9	110100001
r	0.0508	4.3	5	11011
s	0.0567	4.1	4	0011
t	0.0706	3.8	4	1111
u	0.0334	4.9	5	10101
v	0.0069	7.2	8	11010001
w	0.0119	6.4	7	1101001
x	0.0073	7.1	7	1010001
у	0.0164	5.9	6	101001
z	0.0007	10.4	10	1101000001
-	0.1928	2.4	2	01

Figure 3.3. Huffman code for the English language ensemble introduced in figure 1.16.

Why is this not the end of the story?

- Adaptation: what if the ensemble X changes? (as it does...)
 - ✓ calculate probabilities in one pass
 - ✓ communicate code + the Huffman-coded
 message
- "The extra bit": what if H(X) ~1 bit?
 Group symbols to blocks and design a "Huffman block code"