How much can we compress? - Shannon's Source Coding Theorem

On Probability and Entropy

Probability

- An ensemble X is a random variable x with a set of possible outcomes \mathbf{A}_{x} with probabilities \mathbf{P}_{x}
- Probability of a subset \mathcal{T} of \mathbf{A}_{x}

$$
P(T)=\sum_{a_{i} \in T} P\left(x=a_{i}\right)
$$

- A joint ensemble XY is an ensemble for which the outcomes are ordered pairs x, y where $x \in \mathbf{A}_{x}$ and $y \in \mathbf{A}_{y}$

Probability continued

- Marginal probability (from the joint probability $\mathcal{P}(x, y)$)

$$
P(y)=\sum_{x \in A_{x}} P(x, y)
$$

- Conditional probability

$$
P\left(x=a_{i} \mid y=b_{j}\right) \equiv \frac{P\left(x=a_{i}, y=b_{j}\right)}{P\left(y=b_{j}\right)}
$$

Probability continued

- Product rule

$$
P(x, y \mid H)=P(x \mid y, H) P(y \mid H)
$$

- Sum rule

$$
\begin{aligned}
P(x \mid H) & =\sum_{y} P(x, y \mid H) \\
& =\sum_{y} P(x \mid y, H) P(y \mid H)
\end{aligned}
$$

Bayes's theorem

$$
\begin{aligned}
P(y \mid x, H) & =\frac{P(x \mid y, H) P(y \mid H)}{P(x \mid H)} \\
& =\frac{P(x \mid y, H) P(y \mid H)}{\sum_{y^{\prime}} P\left(x \mid y^{\prime}, H\right) P\left(y^{\prime} \mid H\right)}
\end{aligned}
$$

Bayesian view of probability!

Entropy

- The entropy of X is a measure of the information content or "uncertainty" of才

$$
\begin{aligned}
& \checkmark \mathcal{H}(X) \geq 0 \quad\left(=\text { iff } p_{i}=1 \text { for one } i\right) \\
& \checkmark \mathcal{H}(X) \leq \log (|X|)\left(=\text { iff } p_{i}=1 /|X|\right. \text { for all i) }
\end{aligned}
$$

$$
H(X) \equiv \sum_{x \in A_{x}} P(x) \log \frac{1}{P(x)}
$$

Binary entropy

$$
H(X) \equiv \sum_{i} p_{i} \log _{2} \frac{1}{p_{i}}
$$

Information measure?

Figure 2.1. The binary entropy function $H_{2}(p)=H(p, 1-p)=p \log _{2} \frac{1}{p}+(1-p) \log _{2} \frac{1}{(1-p)}$ as a function of p.

Information content

- First attempt: number of possible outcomes $\left|\mathbf{A}_{\chi}\right|$
\checkmark not additive: for $x y$ we have $\left|\mathbf{A}_{x}\right|\left|\mathbf{A}_{y}\right|$
- Perfect information content
\checkmark additive, 6 ut no probabilistic element

$$
H_{0}(X)=\log _{2}\left|A_{X}\right|
$$

Sfannon information

- looking for an information content of the event $\chi=a_{i}$

$$
h(x)=\log _{2} \frac{1}{p_{i}}
$$

Example: le tor distribution

i	a_{i}	p_{i}	$\log _{2} \frac{1}{p_{i}}$	i	a_{i}	p_{i}	$\log _{2} \frac{1}{p_{i}}$	i	a_{i}	p_{i}	$\log _{2} \frac{1}{p_{i}}$
1	a	0.06	4.1	10	j	0.00	10.7	19	S	0.06	4.1
2	b	0.01	6.3	11	k	0.01	6.9	20	t	0.07	3.8
3	c	0.03	5.2	12	1	0.04	4.9	21	u	0.03	4.9
4	d	0.03	5.1	13	m	0.02	5.4	22	v	0.01	7.2
5	e	0.09	3.5	14	n	0.06	4.1	23	w	0.01	6.4
6	f	0.02	5.9	15	-	0.07	3.9	24	x	0.01	7.1
7	g	0.01	6.2	16	p	0.02	5.7	25	y	0.02	5.9
8	h	0.03	5.0	17	q	0.01	10.3	26	z	0.00	10.4
9	i	0.06	4.1	18	r	0.05	4.3	27	-	0.19	2.4
								$\sum_{i} p_{i} \log _{2} \frac{1}{p_{i}}$			4.11

Figure 1.16. Probability distribution over the 27 outcomes for a randomly selected letter in an English language document (estimated from The frequently asked questions manual for Linux). The picture shows the probabilities by the sizes of white squares.

Entropy continued

- The joint entropy of x, \mathcal{Y}

$$
H(X, Y) \equiv \sum_{x y \in A_{x} A_{r}} P(x, y) \log \frac{1}{P(x, y)}
$$

- The conditional entropy of X given \mathcal{Y}

$$
\begin{aligned}
H(X \mid Y) & \equiv \sum_{y \in A_{y}} P(y)\left[\sum_{x \in A_{x}} P(x \mid y) \log \frac{1}{P(x \mid y)}\right] \\
& =\sum_{x y \in A_{x} A_{y}} P(x, y) \log \frac{1}{P(x \mid y)}
\end{aligned}
$$

Entropy continued

- Chain rule for entropy
$\mathcal{H}(X, \mathcal{Y})=\mathcal{H}(X)+\mathcal{H}(\mathcal{Y} \mid X)=\mathcal{H}(\mathcal{Y})+\mathcal{H}(X \mid \mathcal{Y})$
- Mutual information "Average reduction in uncertainty of x when learning the value of y

$$
\mathcal{H}(X ; \mathcal{Y}) \equiv \mathcal{H}(X)-\mathcal{H}(X \mid \mathcal{Y})
$$

- Entropy distance

$$
\mathcal{D}_{\mathcal{H}}(X, \mathcal{Y}) \equiv \mathcal{H}(X, \mathcal{Y})-\mathcal{H}(X ; \mathcal{Y})
$$

Entropy relationsfips

$\mathrm{H}(\mathrm{X}, \mathrm{Y})$

$H(X)$
$\mathrm{H}(\mathrm{Y})$
$\mathrm{H}(\mathrm{X} \mid \mathrm{Y})$
$\mathrm{H}(\mathrm{X} ; \mathrm{Y})$
$\mathrm{H}(\mathrm{Y} \mid \mathrm{X})$

Kullback-Leibler divergence

- Also Known as "relative entropy"

$$
D_{K L}(P \| Q)=\sum_{x} P(x) \log \frac{P(x)}{Q(x)}
$$

- Not strictly a "distance"

Weighting problem

Idea

- Some symbols have a smaller probability
- gamble that the rare symbols wont occur
- encode the observations in a smaller code (alphabet) C_{x}
- measure $\log _{2}\left|C_{x}\right|$
- the larger the risk, the smaller the alphabet

Formalize the idea

$$
H_{\delta}(X)=\log _{2} \min \left\{|T|: T \subseteq A_{X}, P(x \in T) \geq 1-\delta\right\}
$$

Example
$\mathbf{x}=\left(x_{1}, \ldots, x_{N}\right), x=\{0,1\}$ with probabilities $p_{0}=.9, p_{1}=.1$
Let $r(\mathbf{x})$ be the number of 1 's in \mathbf{x}
Probability of string \mathbf{x}

$$
P\left(\mathbf{x} \mid p_{0}, p_{1}\right)=p_{0}^{N-r(\mathbf{x})} p_{1}^{r(\mathbf{x})}
$$

$\mathcal{A E P}$ and source coding

Asymptotic Equipartition Principle: for N i.i.d. random variables $X^{N}=\left\{X_{1}, \ldots, X_{N}\right\}$, with N sufficiently large, the outcome $\mathbf{x}=\left\{x_{1}, \ldots, x_{N}\right\}$ is almost certain to belong to a subset of $\mathbf{A}_{\mathbf{x}}{ }^{\mathbf{N}}$ having only $2^{\mathrm{NH}(\mathrm{X})}$ members all having probability close to $2^{-\mathrm{NH}(\mathrm{X})}$

The Revenge of a Student Symbol Codes

Symbolcodes

- Notation: $\{0,1\}^{+}=\{0,1,00,01,10,11,000, .$.
- A symbolcode C is a mapping from \mathbf{A}_{χ} to $\{0,1\}^{+}$

$$
c^{+}\left(x_{1} x_{2} x_{3} \ldots x_{N}\right)=c\left(x_{1}\right) c\left(x_{2}\right) c\left(x_{3}\right) \ldots c\left(x_{N}\right)
$$

A_{x}

$$
1(x)=|x|
$$

Decoding of symbol codes

- A code $C(X)$ is uniquely decodable if $\forall \mathbf{x}, \mathbf{y} \in A_{X}^{+}, \mathbf{x} \neq \mathbf{y} \Rightarrow c^{+}(\mathbf{x}) \neq c^{+}(\mathbf{y})$
- A code $C(X)$ is a prefix code if no codeword is a prefix of any other codeword
- The expected length $\mathcal{L}(\mathcal{C}, X)$ of a symbol code C for ensemble X is

$$
L(C, X)=\sum_{x \in A_{x}} P(x) l(x)
$$

Example

$A_{x}=\{1,2,3,4\}, P_{x}=\{1 / 2,1 / 4,1 / 8,1 / 8\}$
$C: c(1)=0, c(2)=10, c(3)=110, c(4)=111$
The entropy of X is 1.75 bits: $\mathrm{L}(\mathrm{C}, \mathrm{X})$ is also 1.75 bits
Obs!
$l_{i}=\log _{2}\left(1 / p_{i}\right), p_{i}=2^{-l_{i}}$

Kraft inequality

- Given a list of integer $\left\{\mathcal{l}_{i}\right\}$, does there exist a unique $\left\{y\right.$ decodable code with $\left\{\mathcal{l}_{i}\right\}$?
- "Market model": total budget 1; cost per codeword of length [is 2^{-l}.

Kraft inequality: For any uniquely decodeable code C over the binary alphabet $\{0,1\}$, the codeword lengths must satisfy:

$$
\sum_{i} 2^{-l_{i}} \leq 1
$$

Conversely, given a set of codeword lengths that satisfy this inequality, there exists a uniquely decodable prefix code with these codelengths.

Limits of unique decodeability

	00	000	0000	¢000000000
0			0001	
		001	0010	
			0011	
	01	010	0100	
			0101	
		011	0110	
			0111	
1	10	100	1000	
			1001	
		101	1010	
			1011	
	11	110	1100	
			1101	
		111	1110	
			1111	

What can we hope for?

Lower bound on expected length: The expected length $L(C, X)$ of a uniquely decodable code is bounded below by $\mathrm{H}(\mathrm{X})$.

Compression limit of symbol codes: For an ensemble X there exists a prefix code

$$
\mathrm{H}(\mathrm{X}) \leq \mathrm{L}(\mathrm{C}, \mathrm{X})<\mathrm{H}(\mathrm{X})+1 .
$$

"Proof-map" of the lower bound

Define $q_{i} \equiv 2^{-l_{i} / z}$, where $z=\sum_{i} 2^{-l_{i}}$

By the definition of log

Thus $l_{i}=\log 1 / q_{i}-\log z$
$L(C, X)=\sum_{i} p_{i} l_{i}=\sum_{i} p_{i} \log 1 / q_{i}-\log z$

$\underbrace{0^{0^{0}}}_{\text {Gibbs inequality }} \geq \sum_{i} p_{i}$ lo

(What happens if we use the

 "wrong" code?)Assume the "true probability distribution" is $\left\{p_{i}\right\}$. If we use a complete code with lengths l_{i}, they define a probabilistic model $q_{i}=2^{-i i}$. The average length is

$$
L(C, X)=H(X)+\sum_{i} p_{i} \log p_{i} / q_{i}
$$

Kullback-Leibler divergence $D_{k L}(p \mid q)$

"Optimal" symbolcode: Huffman coding

- Take two le ast probable symbols in the a\{phabet as defined $6 y\left\{\mathrm{p}_{\mathrm{i}}\right\}$.
- Combine the se symbols into a single symbol, $p_{\text {new }}=p_{1}+p_{2}$. Repeat (untilone symbol)

Huffman in practice

Huffman for the Linux manual

$L(C, X)=4.15$ bits

$H(X)=4.11$ bits

a_{i}	p_{i}	$\log _{2} \frac{1}{p_{i}}$	l_{i}	$c\left(a_{i}\right)$
a	0.0575	4.1	4	0000
b	0.0128	6.3	6	001000
c	0.0263	5.2	5	00101
d	0.0285	5.1	5	10000
e	0.0913	3.5	4	1100
f	0.0173	5.9	6	111000
g	0.0133	6.2	6	001001
h	0.0313	5.0	5	10001
i	0.0599	4.1	4	1001
j	0.0006	10.7	10	1101000000
k	0.0084	6.9	7	1010000
l	0.0335	4.9	5	11101
m	0.0235	5.4	6	110101
n	0.0596	4.1	4	0001
o	0.0689	3.9	4	1011
p	0.0192	5.7	6	111001
q	0.0008	10.3	9	110100001
r	0.0508	4.3	5	11011
s	0.0567	4.1	4	0011
t	0.0706	3.8	4	1111
u	0.0334	4.9	5	10101
v	0.0069	7.2	8	11010001
w	0.0119	6.4	7	1101001
x	0.0073	7.1	7	1010001
y	0.0164	5.9	6	101001
z	0.0007	10.4	10	1101000001
-	0.1928	2.4	2	01

Figure 3.3. Huffman code for the English language ensemble introduced in figure 1.16.

Why is this not the end of the story?

- Adaptation: what if the ensemble X changes? (as it does..)
\checkmark calculate probabilities in one pass
\checkmark communicate code + the Huffman-coded message
- "The extra Git": what if $\mathcal{H}(X) \sim 16$ it?
\checkmark Group symbols to 6 locks and design a "Huffman block code"

