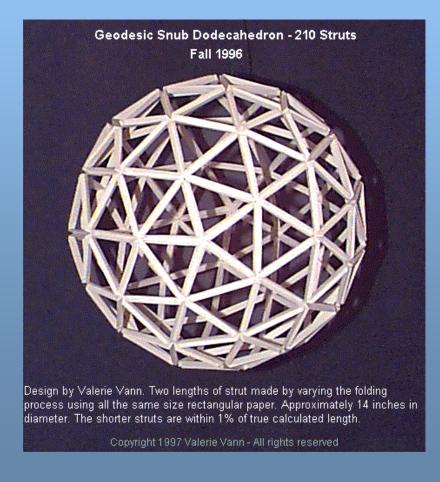
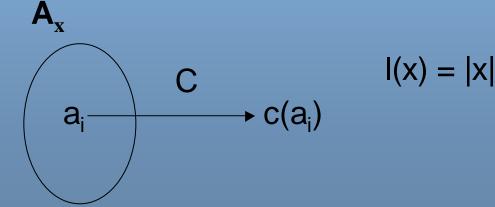
## The Revenge of a Student -Symbol Codes



### Symbol codes

- Notation: {0,1}\*={0,1,00,01,10,11,000,...}
- A symbol code C is a mapping from A<sub>x</sub> to {0,1}<sup>+</sup>

$$C^{+}(X_{1}X_{2}X_{3}...X_{N}) = C(X_{1})C(X_{2})C(X_{3})...C(X_{N})$$





### Decoding of symbol codes

A code C(X) is uniquely decodable if

 $\forall \mathbf{x}, \mathbf{y} \in A_X^+, \mathbf{x} \neq \mathbf{y} \Rightarrow c^+(\mathbf{x}) \neq c^+(\mathbf{y})$ 

- A code C(X) is a prefix code if no codeword is a prefix of any other codeword
- The expected length L(C,X) of a symbol code C for ensemble X is

$$L(C,X) = \sum_{x \in A_x} P(x)l(x)$$

Three Concepts: Information '02

#### Example

 $A_x = \{1,2,3,4\}, P_X = \{1/2,1/4,1/8,1/8\}$ C: c(1) = 0, c(2) = 10, c(3) = 110, c(4) = 111 The entropy of X is 1.75 bits: L(C,X) is also 1.75 bits

Obs!

$$l_i = \log_2(1/p_i), p_i = 2^{-l_i}$$



## Kraft inequality

- Given a list of integer {I<sub>i</sub>}, does there exist a uniquely decodable code with {I<sub>i</sub>}?
- "Market model": total budget 1; cost per codeword of length *I* is 2<sup>-1</sup>.

**Kraft inequality**: For any uniquely decodeable code C over the binary alphabet {0,1}, the codeword lengths must satisfy:  $\sum 2^{-l_i} \le 1$ 

Conversely, given a set of codeword lengths that satisfy this inequality, there exists a uniquely decodable prefix code with these codelengths.

#### Limits of unique decodeability

|   | 00               | 000   | 0000 |                |
|---|------------------|-------|------|----------------|
|   |                  |       | 0001 |                |
|   |                  | 004   | 0010 |                |
| 0 |                  | 001   | 0011 |                |
| 0 |                  | 010   | 0100 | 5              |
|   | 01               | 010   | 0101 | Idget          |
|   |                  | 044   | 0110 |                |
|   |                  | 011   | 0111 | p<br>p         |
|   | 100<br>10<br>101 | 100   | 1000 | Total "budget" |
|   |                  |       | 1001 |                |
|   |                  | 4.04  | 1010 |                |
| 1 |                  | 101   | 1011 |                |
|   |                  | 110   | 1100 |                |
|   |                  | 110   | 1101 |                |
|   | 11               | 4.4.4 | 1110 |                |
|   |                  | 111   | 1111 |                |

Three Concepts: Information '02

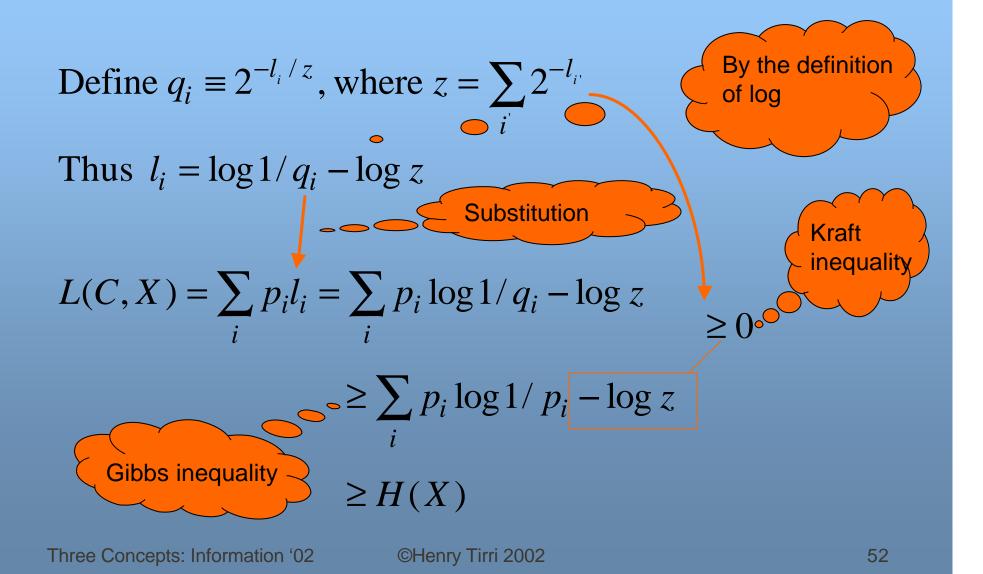
#### What can we hope for?

**Lower bound on expected length**: The expected length L(C,X) of a uniquely decodable code is bounded below by H(X).

Compression limit of symbol codes: For an ensemble X there exists a prefix code  $H(X) \le L(C,X) < H(X) + 1.$ 



#### "Proof-map" of the lower bound



## (What happens if we use the "wrong" code?)

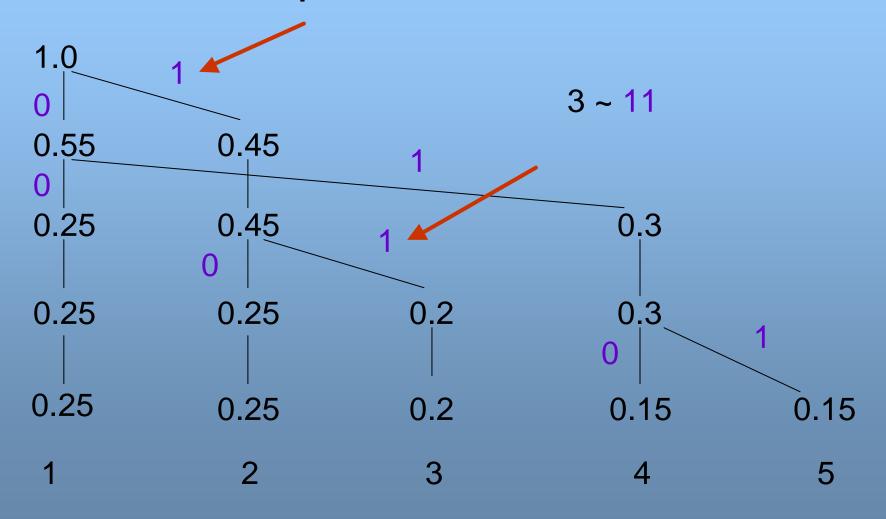
Assume the "true probability distribution" is  $\{p_i\}$ . If we use a complete code with lengths  $I_i$ , they define a probabilistic model  $q_i = 2^{-li}$ . The average length is

$$L(C, X) = H(X) + \sum_{i} p_i \log p_i / q_i$$

# "Optimal" symbol code: Huffman coding

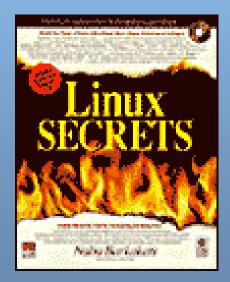
- Take two least probable symbols in the alphabet as defined by {p<sub>i</sub>}.
- Combine these symbols into a single symbol, p<sub>new</sub> = p<sub>1</sub> + p<sub>2</sub>. Repeat (until one symbol)

#### Huffman in practice



#### Huffman for the Linux manual

L(C,X) = 4.15 bits H(X) = 4.11 bits



| a, | $p_i$  | $\log_2 \frac{1}{p_i}$ | $l_i$ | $c(a_i)$   |
|----|--------|------------------------|-------|------------|
| a  | 0.0575 | 4.1                    | 4     | 0000       |
| b  | 0.0128 | 6.3                    | 6     | 001000     |
| c  | 0.0263 | 5.2                    | 5     | 00101      |
| ď  | 0.0285 | 5.1                    | 5     | 10000      |
| е  | 0.0913 | 3.5                    | 4     | 1100       |
| f  | 0.0173 | 5.9                    | 6     | 111000     |
| g  | 0.0133 | 6.2                    | 6     | 001001     |
| h  | 0.0313 | 5.0                    | 5     | 10001      |
| i  | 0.0599 | 4.1                    | 4     | 1001       |
| j  | 0.0006 | 10.7                   | 10    | 110100000  |
| k  |        | 6.9                    | 7     | 1010000    |
| 1  | 0.0335 | 4.9                    | 5     | 11101      |
| m  | 0.0235 | 5.4                    | 6     | 110101     |
| n  | 0.0596 | 4.1                    | 4     | 0001       |
| 0  | 0.0689 | 3.9                    | 4     | 1011       |
| P  | 0.0192 | 5.7                    | 6     | 111001     |
| q  | 0.0008 | 10.3                   | 9     | 110100001  |
| r  | 0.0508 | 4.3                    | 5     | 11011      |
| s  | 0.0567 | 4.1                    | 4     | 0011       |
| t  | 0.0706 | 3.8                    | 4     | 1111       |
| u  | 0.0334 | 4.9                    | 5     | 10101      |
| v  | 0.0069 | 7.2                    | 8     | 11010001   |
| w  | 0.0119 | 6.4                    | 7     | 1101001    |
| x  | 0.0073 | 7.1                    | 7     | 1010001    |
| у  | 0.0164 | 5.9                    | 6     | 101001     |
| z  | 0.0007 | 10.4                   | 10    | 1101000001 |
| -  | 0.1928 | 2.4                    | 2     | 01         |

Figure 3.3. Huffman code for the English language ensemble introduced in figure 1.16.

# Why is this not the end of the story?

- Adaptation: what if the ensemble X changes? (as it does...)
  - ✓ calculate probabilities in one pass
  - ✓ communicate code + the Huffman-coded
    message
- "The extra bit": what if H(X) ~1 bit?
   Group symbols to blocks and design a "Huffman block code"