
The Revenge of a Student -
Symbol Codes
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Symbol codes

§ Notation: {0,1}+={0,1,00,01,10,11,000,…}
§ A symbol code C is a mapping from Ax to

{0,1}+

Ax

ai c(ai)
C

c+(x1x2x3...xN) = c(x1)c(x2)c(x3)... c(xN)

l(x) = |x|
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Decoding of symbol codes

§ A code C(X) is uniquely decodable if

)()(,, yxyxyx +++ ≠⇒≠∈∀ ccAX

§ A code C(X) is a prefix code if no 
codeword is a prefix of any other 
codeword
§ The expected length L(C,X) of a symbol 

code C for ensemble X is

∑
∈

=
XAx

xlxPXCL )()(),(
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Example

Ax = {1,2,3,4}, PX = {1/2,1/4,1/8,1/8}

C: c(1) = 0, c(2) = 10, c(3) = 110, c(4) = 111

The entropy of X is 1.75 bits: L(C,X) is also 1.75 bits

il
iii ppl −== 2),/1(log2

Obs!
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Kraft inequality
§ Given a list of integer {li}, does there exist a 

uniquely decodable code with {li}?
§ “Market model”: total budget 1; cost per 

codeword of length l is 2-l. 

Kraft inequality: For any uniquely decodeable code C 
over the binary alphabet {0,1}, the codeword lengths must
satisfy:

Conversely, given a set of codeword lengths that satisfy
this inequality, there exists a uniquely decodable prefix 
code with these codelengths.

∑ ≤−

i

li 12
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Limits of unique decodeability
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What can we hope for?
Lower bound on expected length: The expected length
L(C,X) of a uniquely decodable code is bounded below 
by H(X).

Compression limit of symbol codes: For an ensemble 
X there exists a prefix code

H(X) ≤ L(C,X) < H(X) + 1.
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“Proof-map” of the lower bound

∑ −− =≡
'

'2  where,2 Define /

i

lzl
i

ii zq

zql ii log/1log  Thus −=

By the definition
of log

zqplpXCL
i

ii
i

ii log/1log),( −== ∑∑

Substitution

∑ −≥
i

ii zpp log/1log

Gibbs inequality

Kraft
inequality

0≥

)( XH≥
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(What happens if we use the 
“wrong” code?)

Assume the “true probability distribution” is {pi}. If we 
use a complete code with lengths li, they define a
probabilistic model qi = 2-li. The average length is

ii
i

i qppXHXCL /log)(),( ∑+=

Kullback-Leibler divergence DKL(p||q)
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“Optimal” symbol code: Huffman 
coding

§ Take two least probable symbols in the 
alphabet as defined by {pi}.
§ Combine these symbols into a single 

symbol, pnew = p1 + p2. Repeat (until one 
symbol)
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Huffman in practice

1 2 3 4 5

0.25 0.25 0.2 0.15 0.15

0.25 0.25 0.2 0.3
0 1

0.25 0.45 0.31
0

0.55 0.45 1
0

1.0 1
0 3 ~ 11
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Huffman for the Linux manual

L(C,X) = 4.15 bits

H(X) = 4.11 bits
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Why is this not the end of the 
story?
§ Adaptation: what if the ensemble X 

changes? (as it does…)
ücalculate probabilities in one pass
ücommunicate code + the Huffman-coded 

message
§ “The extra bit”: what if H(X) ~1 bit?
üGroup symbols to blocks and design a 

“Huffman block code”


