

What do we learn?

- Central results by Shannon and their consequences
 - \checkmark the source coding theorem

Three Concepts: Information '05 © Petri Myllymäki, Henry Tirri 2002-2005

- ✓ the noisy channel coding theorem
- "The legend of Minimum Description Length (MDL) Principle"

What is Information theory?

Claude Shannon, "A mathematical Theory of Communication" Bell Syst. Tech. Journal, 27: 379-423,623-656, 1948.

Simply put

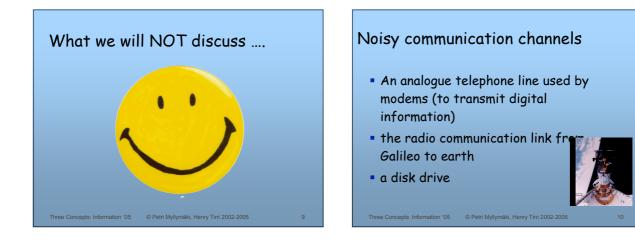
- The problem of representing the source alphabet symbols s in terms of another system of symbols (0,1)
 - Channel encoding: how to represent the source symbols so that their representations are far apart in some suitable sense ("error-correction")
 - Source encoding: How to represent the source symbols in a minimal form for purposes of efficiency ("compression")

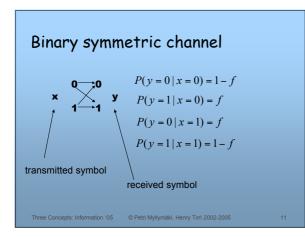
Three Concepts: Information '05 © Petri Myllymäki, Henry Tirri 2002-2005

The course focus

- we will address source encoding as it has deep relationship to modeling
- (by the end of the course) abstract from actual codes to code lengths
- discuss information-theoretic principles that can be used as a foundation of statistical modeling

Three Concepts: Information '05 © Petri Myllymäki, Henry Tirri 2002-2005







"To be more precise"

- Information theory answers questions about the theoretical limitations of such systems
- Coding theory discusses how to build practical encoding and decoding systems

Three Concepts: Information '05 © Petri Myllymäki, Henry Tirri 2002-2005

Encoding		Decoding							
s	t	r (000 0	001 0	10 10	00 10	1 11	0 011	111
0	000	ŝ	0	0	0	0 1	1	1	1
1	111			-	-				
_									
	S	0	0	1	0	1	1	0	
	t	000	000	111	000	111	111	000	
	n	000	001	000	000	101	000	000	
	r	000	001	111	000	010	111	000	

Think!

• What is the error probability for the previous repetition code for a binary symmetric channel with noise level f?

Some analysis

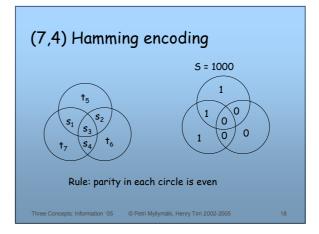
- For f = 0.1 the error probability $p_b = 0.03$
- What did we loose?
 ✓ information transmission rate reduced by factor of three!
- Good?
 - ✓ assume we want a probability of error close to 10⁻¹⁵. What would be the rate of the repetition code? (~1/60)

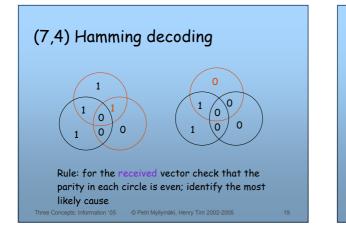
© Petri Myllymäki, Henry Tirri 2002-2

×

- Goal: (very) small probability of error and a good transmission rate
- Idea: add redundancy to blocks instead of encoding one bit at a time (the origin of "parity")
- Solution: (N,K) block code adds (N-K) redundant bits to the end of the sequence of K source bits

Three Concepts: Information '05 © Petri Myllymäki, Henry Tirri 2002-2005





Performance of the best codes

We want

 \checkmark small error probability p_b

✓large (transmission) rate R

- What points in the (p_b,R)-plane are achievable?
- A good guess: boundary passes through the origin (0,0)

© Petri Myllymäki, Henry Tirri 2002-2005

