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How much can we compress?
- Shannon’s Source Coding

Theorem

On Probability and Entropy
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Probability

 An ensemble X is a random variable x
with a set of possible outcomes Ax

with probabilities Px

 Probability of a subset T of Ax
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 A joint ensemble XY is an ensemble for
which the outcomes are ordered pairs
x,y where x ∈ Ax and y ∈ Ay
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Probability continued
 Marginal probability (from the joint

probability P(x,y))
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 Conditional probability
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Probability continued

 Product rule
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 Sum rule
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Bayes’s theorem
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Bayesian view of probability!
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Information content

 First attempt: number of possible outcomes
|Ax|
not additive: for xy we have |Ax||Ay|

 Perfect information  content

additive, but no probabilistic element
||log)( 20 X

AXH =
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Shannon information

 looking for an information content of
the event x=ai

! 

h(x = ai) = log2
1

pi

Information = decreased uncertainty
 Example: 4 outcomes a,b,c,d with probabilities p(a),
p(b), p(c) and p(d)
 Sender knows the result, receiver doesn’t
 Binary channel (yes/no questions)
 A lot of questions  a lot of information
 “code” = sequence of answers to questions

 Is it a or b? Is it a (Is it c)?
 Is it a? Is it b? Is it c?

 Case 1: P(a) = 1
 Case 2: P(a) = P(b) = P(c) = P(d) = 1/4
 Case 3: P(a)=1/2, P(b)=1/4, P(c)=P(d)=1/8
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Entropy

 The entropy of X is a measure of the
expected information content or
“decreased uncertainty” of an event x

H(X) ≥ 0 (= iff pi=1 for one i)
H(X) ≤ log (|X|) (= iff pi=1 /|X| for all i)
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Binary entropy
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Example: letter distribution
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Weighting problem
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Entropy continued

 The joint entropy of X,Y

!
"

#
YX
AAxy yxP

yxPYXH
),(

1
log),(),(

 The conditional entropy of X given Y
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Entropy continued

 Chain rule for entropy
H(X,Y) = H(X) + H(Y|X) = H(Y) + H(X|Y)
 Mutual information

H(X;Y) ≡ H(X) - H(X|Y)
 Entropy distance

DH(X,Y) ≡ H(X,Y) - H(X;Y)

“Average reduction in uncertainty
of x  when learning the value of y
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Entropy relationships

H(X,Y)

H(X)

H(Y)

H(X|Y) H(X;Y) H(Y|X)
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Kullback-Leibler divergence

 Also known as “relative entropy”
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 Not strictly a “distance”
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Idea
 Some symbols have a smaller probability
 gamble that the rare symbols won’t

occur
 encode the observations in a smaller

code (alphabet) CX

 measure log2|CX|
 the larger the risk, the smaller the

alphabet
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Formalize the idea

T

Ax

x x
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Essential information

{ }!! "#$%= 1)(,|:|minlog)( 2 TxPATTXH X

Smallest T s.t.
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Block coding

 assume that x = {x1,x2,…,xN} i.i.d.
 independent variables, thus 

H(XN) = NH(X)
 Hδ(XN) depends on the value of δ, so

where is the theory?
 N grows, Hδ(XN) becomes almost

independent of δ!
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Shannon’s source coding theorem

Let X be an ensemble with entropy H(X) bits. Given
ε>0 and 0< δ <1, there exists a positive integer N0

s.t.
For N > N0,

!" <# )()(
1

XHXH
N

N

Three Concepts: Information ‘05 © Petri Myllymäki & Henry Tirri 2002-2005 44

Typical set

 for long strings

 the information content of a typical string is

 the typical set
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AEP and source coding

Asymptotic Equipartition Principle: for N i.i.d. random
variables XN = {X1,…,XN}, with N sufficiently large, the
outcome x = {x1,…,xN} is almost certain to belong to
a subset of Ax

N having only 2NH(X) members all having 
probability close to 2-NH(X) 


