The Revenge of a Student Symbol Codes

Symbol codes

- Notation: $\{0,1\}^{+}=\{0,1,00,01,10,11,000, \ldots$.
- A symbol code C is a mapping from \boldsymbol{A}_{x} to $\{0,1\}^{+}$

$$
c^{+}\left(x_{1} x_{2} x_{3} \ldots x_{N}\right)=c\left(x_{1}\right) c\left(x_{2}\right) c\left(x_{3}\right) \ldots c\left(x_{N}\right)
$$

\boldsymbol{A}_{x}

$1(x)=|x|$

Three Concepts: Information '05 © Petri Myllymäki, Henry Tirri 2002-2005

Example

$$
\begin{aligned}
& \boldsymbol{A}_{\mathrm{x}}=\{1,2,3,4\}, P_{\mathrm{x}}=\{1 / 2,1 / 4,1 / 8,1 / 8\} \\
& c: c(1)=0, c(2)=10, c(3)=110, c(4)=111
\end{aligned}
$$

The entropy of X is 1.75 bits: $\mathrm{L}(\mathrm{C}, \mathrm{X})$ is also 1.75 bits
Obs!
$l_{i}=\log _{2}\left(1 / p_{i}\right), p_{i}=2^{-l}$

Three Concepts: Information ' 05 © Petri Myllymäki, Henry Tirri 2002-2005

Kraft inequality

- Given a list of integer $\left\{I_{i}\right\}$, does there exist a uniquely decodable code with $\left\{\left.\right|_{i}\right\}$?
- "Market model": total budget 1; cost per codeword of length / is 2^{-1}.
Kraft inequality: For any uniquely decodeable code C over the binary alphabet $\{0,1\}$, the codeword lengths must satisfy: $\sum_{i} 2^{-l_{i}} \leq 1$

Conversely, given a set of codeword lengths that satisfythis inequality, there exists a uniquely decodable prefix code with these codelengths.

Limits of unique decodeability

	00	000	0000	"00000000
0			0001	
			0010	
		001	0011	
		010	0100	
	01	010	0101	
		011	0110	
		011	0111	
1	10	100	1000	
			1001	
		101	1010	
			1011	
	11	110	1100	
			1101	
		111	1110	
			1111	

[^0]
What can we hope for?

Lower bound on expected length: The expected length $\mathrm{L}(\mathrm{C}, \mathrm{X})$ of a uniquely decodable code is bounded below by $\mathrm{H}(\mathrm{X})$.

Compression limit of symbol codes: For an ensemble X there exists a prefix code $\mathrm{H}(\mathrm{X}) \leq \mathrm{L}(\mathrm{C}, \mathrm{X})<\mathrm{H}(\mathrm{X})+1$.

Three Concepts: Information '05
"Proof-map" of the lower bound

(What happens if we use the "wrong" code?)

Assume the "true probability distribution" is $\left\{p_{i}\right\}$. If we use a complete code with lengths I_{i}, they define a probabilistic model $q_{\mathrm{i}}=2^{-\mathrm{i}}$. The average length is

$$
L(C, X)=H(X)+\sum_{i} p_{i} \log p_{i} / q_{i}
$$

"Optimal" symbol code: Huffman coding

- Take two least probable symbols in the alphabet as defined by $\left\{p_{i}\right\}$.
- Combine these symbols into a single symbol, $p_{\text {new }}=p_{1}+p_{2}$. Repeat (until one symbol)

Huffman for the Linux manual
$L(C, X)=4.15$ bits $H(X)=4.11$ bits

Three Concepts: Information '05 © Petri Mylymäki, Henry Tirri 2002-2005

Why is this not the end of the story?

- Adaptation: what if the ensemble X changes? (as it does...)
\checkmark calculate probabilities in one pass \checkmark communicate code + the Huffman-coded message
- "The extra bit": what if $H(X) \sim 1$ bit?
\checkmark Group symbols to blocks and design a "Huffman block code"

The guessing game

| An example fixed model | | | |
| :--- | :--- | :---: | :---: | | Symbol | Probability |
| :--- | :--- |
| a | Range |
| e | 0.2 |
| i | 0.3 |
| 0 | 0.1 |
| u | $0.0 .2)$ |
| $!$ | 0.2 |

IEEE Information Society Golden Award: Stream codes

History of arithmetic coding

- Does not require that the symbols translate into integral number of bits
- Shannon 1948 discussed binary fractions
- First code of this type discovered by Elias
- 1976 Pasco and Rissanen (independently)
- Rissanen \& Langdon 1979 described hardware implementation

Three Concepts: Information '05 © Petri Myllymäki, Henry Tirri 2002-2005

The idea

Arithmetic coding

- with every new symbol produced by the source, the probabilistic model provides a predictive distribution over all possible values of the next symbol
- i.i.d. = predictive distribution does not change
- encoder uses the model predictions to create a binary string

Three Concepts: Information ' 05 © Petri Myllymäki, Henry Tirri 2002-2005

Basics

- Source alphabet $\boldsymbol{A}_{x}=\left\{a_{1}, \ldots, a_{I}\right\}$
- Source stream x_{1}, x_{2}, \ldots
- Model M :

$$
P\left(x_{n}=a_{i} \mid x_{1}, \ldots, x_{n-1}\right)
$$

- A binary transmission is viewed defining an interval within the real line from 0 to 1

Three Concepts: Information '05 © Petri Myllymäki, Henry Tirri 2002-2005

Encoding example

Various codes: the big picture

- fixed length block codes: mappings from a fixed number of course symbols to a fixed length binary message
- symbol codes
\checkmark variable length code for each symbol in the alphabet
\checkmark code lengths integers
\checkmark Huffmann code (expectation) optimal

...big picture continued

- stream codes
\checkmark not constrained to emit at least one bit for every symbol in the source stream
\checkmark arithmetic codes use a probabilistic model that identifies each string with a sub-interval of [0,1). "Good compression requires intelligence"
\checkmark Lempel-Ziv codes memorize strings that have already occurred. "No prior assumptions on the world"

Lempel-Ziv coding

- simple to implement, asymptotic rate approaches the entropy
- widely used (gzip, compress,...)
- basic idea: replace a substring with a pointer to an earlier occurrence of the substring
- Example: \checkmark String: 1011010100010...
\checkmark Substrings: $1,0,11,01,010,00,10, \ldots$ \checkmark Replace 010 with a pointer to "01" + "1"

[^0]: Three Concepts: Information ' 05 © Petri Myllymäki, Henry Tirri 2002-2005

