581286-6 Three concepts:Information Spring 2006

http://www.cs.helsinki.fi/group/cosco/Teaching/Information/2006/

Petri Myllymäki
Complex Systems Computation Group
Department of Computer Science, University of Helsinki http://www.cs.helsinki.fi/petri.myllymaki/

Three concepts

Compression, coding, modeling

Why information theory?

- "Educational argument" \checkmark general background
- "Employment argument" \checkmark information theory is the theory of data (tele)communication
- "Intelligent systems argument"
\checkmark information theoretical concepts are deeply related to learning and adaptation

Information theory for Intelligent systems?

- Many problems are the same
\checkmark data compression and error correcting codes are based on modeling and inference
\checkmark "reliable communication over unreliable channels" vs. "reliable computation with unreliable hardware" (e.g., neural networks)
\checkmark working with probability distributions in high dimensional spaces

What do we learn?

- Central results by Shannon and their consequences
\checkmark the source coding theorem
\checkmark
- "The legend of Minimum Description Length (MDL) Principle"

What is Information theory?

Claude Shannon, "A mathematical Theory of Communication". Bell Syst. Tech. Journal, 27: 379-423,623-656, 1948.

Simply put

- The problem of representing the source alphabet symbols sin terms of another system of symbols $(0,1)$
\checkmark Channel encoding: how to represent the source symbols so that their representations are far apart in some suitable sense ("error-correction")
\checkmark Source encoding: How to represent the source symbols in a minimal form for purposes of efficiency ("compression")

The course focus

- we will address source encoding as it has deep relationship to modeling
- (by the end of the course) abstract from actual codes to code lengths
- discuss information-theoretic principles that can be used as a foundation of statistical modeling

What we will NOT discuss

Noisy communication channels

- An analogue telephone line used by modems (to transmit digital information)
- DVB-T transmissions
- the radio communication link from Galileo to earth
- a disk drive

Binary symmetric channel

How to reach error probabilities

 of order 10-15?- The physical solution
- The system solution

"To be more precise"
- Information theory answers questions about the theoretical limitations of such systems
- Coding theory discusses how to build practical encoding and decoding systems

Repetition codes

Encoding Decoding
s t r 000001010100101110011111
0000
今 0
0
0
01

s	0	0	1	0	1	1	0
t	000	000	111	000	111	111	000
n	000	001	000	000	101	000	000
r	000	001	111	000	010	111	000
\hat{s}	0	0	1	0	0	1	0

Think!

- What is the error probability for the previous repetition code for a binary symmetric channel with noise level f ?

Some analysis

- For $f=0.1$ the error probability is $p_{b}=3 f^{2}(1-f)+f^{3} \sim 0.03$
- What did we loose?
\checkmark information transmission rate reduced by factor of three!
- Good?
\checkmark assume we want a probability of error close to 10^{-15}. What would be the rate of the repetition code? ($\sim 1 / 60$)

Block codes

- Goal: (very) small probability of error and a good transmission rate
- Idea: add redundancy to blocks instead of encoding one bit at a time (the origin of "parity")
- Solution: (N,K) block code adds (N-K) redundant bits to the end of the sequence of K source bits

$(7,4)$ Hamming encoding

Rule: parity in each circle is even

$(7,4)$ Hamming decoding

Rule: for the received vector check that the parity in each circle is even; identify the most likely cause

Performance of the best codes

- We want
\checkmark small error probability p_{b}
\checkmark large (transmission) rate R
- What points in the (p_{b}, R)-plane are achievable?
- A good guess: boundary passes through the origin $(0,0)$

Wrong!
 (The noisy channel theorem)

- Shannon proved that for any given channel, the boundary meets the R axis at a non-zero value $R=C$

Channel capacity

- The channel capacity C for binary symmetric channel is

$$
C(f)=1-\left[f \log _{2} \frac{1}{f}+(1-f) \log _{2} \frac{1}{1-f}\right] \begin{gathered}
1,2 \\
1.8 \\
0,6 \\
0,6 \\
0,4 \\
0,2 \\
0
\end{gathered} \underbrace{1}_{0},
$$

- Generally, the channel capacity is the maximal mutual information between input X and output Y

So how many disks?

- For $f=0.1$ we have $C \cong 0.53$
- Repetition code R_{3} gave us $R=1 / 3$ with $p_{b}=0.03$ (3 noisy gigabyte disk drives)
- To reach $p_{b}=10^{-15}$ we needed 60 noisy gigabyte disk drives
- Shannon says:
\checkmark to reach $p_{b}=10^{-15}$ you can achieve with 2 disk drives (2 > 1/0.53)
\checkmark and to reach $p_{b}=10^{-24}$ you still need only 2 disk drives!

