How much can we compress? - Shannon's Source Coding Theorem

On Probability and Entropy

Probability

- An ensemble X is a random variable x with a set of possible outcomes A_x with probabilities P_x
- Probability of a subset T of A_x

$$P(T) = \sum_{a_i \in T} P(x = a_i)$$

• A joint ensemble XY is an ensemble for which the outcomes are ordered pairs x,y where $x \in \mathcal{A}_x$ and $y \in \mathcal{A}_y$

Probability continued

Marginal probability (from the joint probability P(x,y))

$$P(y) = \sum_{x \in A_x} P(x, y)$$

Conditional probability

$$P(x = a_i \mid y = b_j) \equiv \frac{P(x = a_i, y = b_j)}{P(y = b_j)}$$

Probability continued

Product rule

 $P(x, y \mid H) = P(x \mid y, H)P(y \mid H)$

• Sum rule $P(x \mid H) = \sum_{y} P(x, y \mid H)$ $= \sum_{y} P(x \mid y, H) P(y \mid H)$

$$P(y | x, H) = \frac{P(x | y, H)P(y | H)}{P(x | H)}$$
$$= \frac{P(x | y, H)P(y | H)}{\sum_{y'} P(x | y', H)P(y' | H)}$$

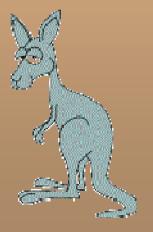
Bayesian view of probability!

Information content

- First attempt: number of possible outcomes
 |A_x|
 ✓ not additive: for xy we have |A_x||A_y|
- Perfect information content

 $H_0(X) = \log_2 |A_X|$

✓ additive, but no probabilistic element



Shannon information

 looking for an information content of the event x=a_i

$$h(x=a_i) = \log_2 \frac{1}{p_i}$$

Information = decreased uncertainty

- Example: 4 outcomes a,b,c,d with probabilities p(a),
 p(b), p(c) and p(d)
- Sender knows the result, receiver doesn't
- Binary channel (yes/no questions)
- A lot of questions \Rightarrow a lot of information
- "code" = sequence of answers to questions
 - Is it a or b? Is it a (Is it c)?
 - Is it a? Is it b? Is it c?
- Case 1: P(a) = 1
- Case 2: P(a) = P(b) = P(c) = P(d) = 1/4
- Case 3: P(a)=1/2, P(b)=1/4, P(c)=P(d)=1/8

Entropy

The entropy of X is a measure of the expected information content or "decreased uncertainty" of an event x

$$H(X) \equiv \sum_{x \in A_x} P(x) \log \frac{1}{P(x)}$$

 $\checkmark H(X) \ge 0 \ (= iff \ p_i=1 \ for \ one \ i)$ $\checkmark H(X) \le \log (|X|) \ (= iff \ p_i=1 \ /|X| \ for \ all \ i)$

$$H(X) \equiv \sum_{i} p_i \log_2 \frac{1}{p_i}$$

Information measure?

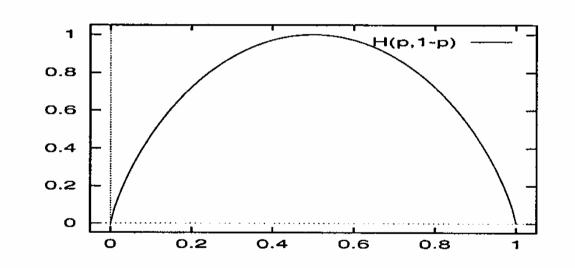


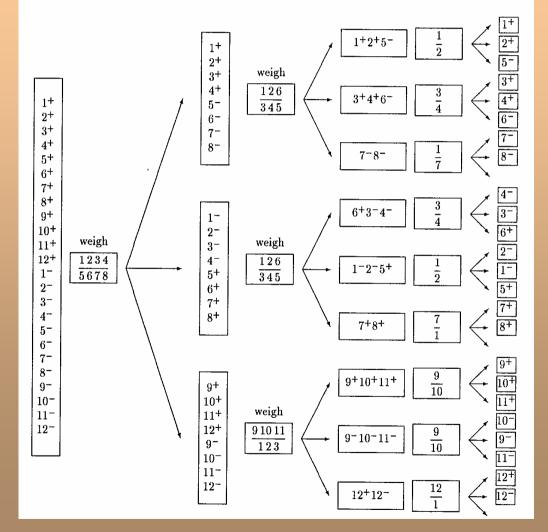
Figure 2.1. The binary entropy function $H_2(p) = H(p, 1-p) = p \log_2 \frac{1}{p} + (1-p) \log_2 \frac{1}{(1-p)}$ as a function of p.

Example: letter distribution

i	a_i	p_i	$\log_2 \frac{1}{p_i}$		i	a_i	p_i	$\log_2 \frac{1}{p_i}$		i	a_i	p_i	$\log_2 \frac{1}{p_i}$	
1	a	0.06	4.1	1	10	j	0.00	10.7		19	S	0.06	4.1	
2	ъ	0.01	6.3]	11	k	0.01	6.9		20	t	0.07	3.8	
3	с	0.03	5.2	1	12	1	0.04	4.9		21	u	0.03	4.9	
4	d	0.03	5.1]	13	m	0.02	5.4		22	v	0.01	7.2	
5	е	0.09	3.5]	14	n	0.06	4.1		23	W	0.01	6.4	
6	f	0.02	5.9]	15	ο	0.07	3.9		24	x	0.01	7.1	
7	g	0.01	6.2]	16	р	0.02	5.7		25	у	0.02	5.9	
8	h	0.03	5.0]	17	q	0.01	10.3		26	z	0.00	10.4	
9	i	0.06	4.1	1	18	r	0.05	4.3		27	-	0.19	2.4	
		$\sum_i p_i \log_2 \frac{1}{p_i}$									4.11			
		a	bcdef	g h	i j	k l	mno	pqrs	tu	vwx	x y z	-		

Figure 1.16. Probability distribution over the 27 outcomes for a randomly selected letter in an English language document (estimated from *The frequently asked questions manual for Linux*). The picture shows the probabilities by the sizes of white squares.

Weighting problem



Three Concepts: Information '06

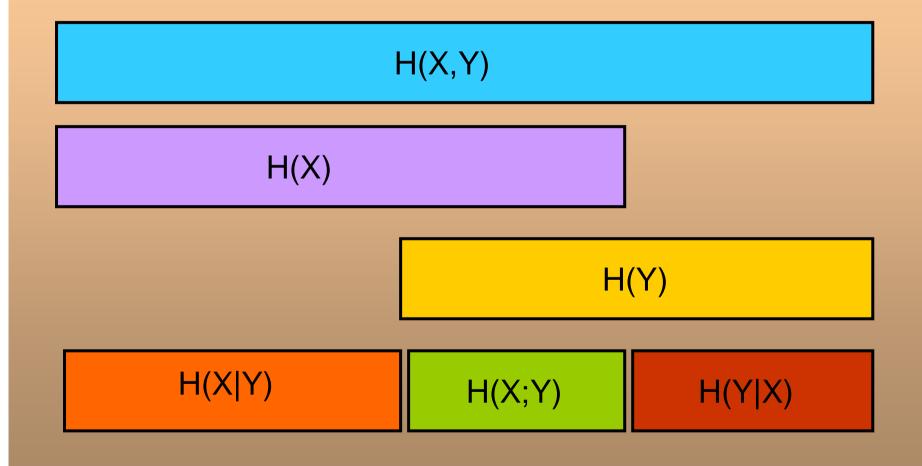
© Petri Myllymäki & Henry Tirri 2002-2006

Entropy continued The joint entropy of X,Y Average uncertainty that remains about _X $H(X,Y) \equiv \sum_{xy \in A_x A_y} P(x,y) \log \frac{1}{P(x,y)}$ The conditional entropy of X given Y $H(X \mid Y) \equiv \sum_{y \in A_Y} P(y) \left[\sum_{x \in A_X} P(x \mid y) \log \frac{1}{P(x \mid y)} \right]$ $= \sum_{xy \in A_x A_y} P(x, y) \log \frac{1}{P(x \mid y)}$

Entropy continued

Chain rule for entropy H(X,Y) = H(X) + H(Y|X) = H(Y) + H(X|Y)
Mutual information H(X;Y) ≡ H(X) - H(X|Y) "Average reduction in uncertainty of x when learning the value of y
Entropy distance D_H(X,Y) ≡ H(X,Y) - H(X;Y)

Entropy relationships



Kullback-Leibler divergence

Also known as "relative entropy"

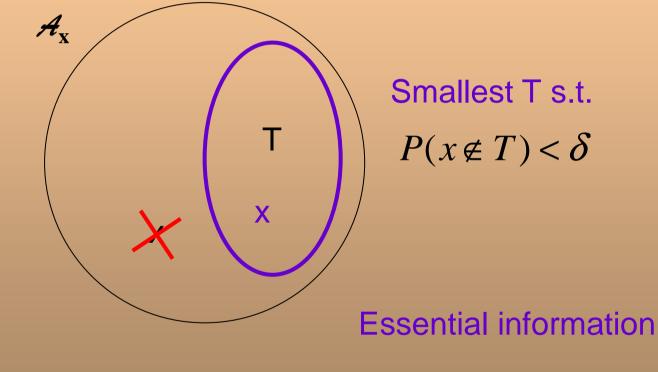
$$D_{KL}(P \parallel Q) = \sum_{x} P(x) \log \frac{P(x)}{Q(x)}$$

Not strictly a "distance"

Idea

- Some symbols have a smaller probability
- gamble that the rare symbols won't occur
- encode the observations in a smaller code (alphabet) C_X
- measure $\log_2 |C_X|$
- the larger the risk, the smaller the alphabet

Formalize the idea



 $H_{\delta}(X) = \log_2 \min\{|T|: T \subseteq A_X, P(x \in T) \ge 1 - \delta\}$

Block coding

- assume that $x = \{x_1, x_2, ..., x_N\}$ i.i.d.
- independent variables, thus $H(X^N) = NH(X)$
- $H_{\delta}(X^N)$ depends on the value of δ , so where is the theory?
- N grows, $H_{\delta}(X^N)$ becomes almost independent of δ !

Shannon's source coding theorem

Let X be an ensemble with entropy H(X) bits. Given $\epsilon > 0$ and $0 < \delta < 1$, there exists a positive integer N₀ s.t. For N > N₀,

$$\left|\frac{1}{N}H_{\delta}(X^{N}) - H(X)\right| < \varepsilon$$

Typical set

for long strings

$$p(\mathbf{x})_{typical} = P(x_1)P(x_2)\cdots P(x_N) \cong p_1^{(p_1N)}p_2^{(p_2N)}\cdots p_j^{(p_jN)}$$

the information content of a typical string is

$$\log \frac{1}{p(\mathbf{x})} \cong N \sum_{i} p_i \log_2 \frac{1}{p_i} \cong NH$$

• the typical set $T_{N\beta} \equiv \left\{ x \in A_X^N : \left| \frac{1}{N} \log_2 \frac{1}{P(\mathbf{x})} - H(\mathbf{x}) \right| < \beta \right\}$

AEP and source coding

Asymptotic Equipartition Principle: for N i.i.d. random variables $X^N = \{X_1, ..., X_N\}$, with N sufficiently large, the outcome $x = \{x_1, ..., x_N\}$ is almost certain to belong to a subset of A_x^N having only $2^{NH(X)}$ members all having probability close to $2^{-NH(X)}$