The Revenge of a Student Symbol Codes

Symbol codes

- Notation: $\{0,1\}^{+=}=\{0,1,00,01,10,11,000, . .$.
- A symbol code C is a mapping from \boldsymbol{A}_{x} to $\{0,1\}^{+}$

$$
c^{+}\left(x_{1} x_{2} x_{3} \ldots x_{N}\right)=c\left(x_{1}\right) c\left(x_{2}\right) c\left(x_{3}\right) \ldots c\left(x_{N}\right)
$$

A_{x}
$\left(a_{i}\right) c\left(a_{i}\right) \xrightarrow{l(x)=|x|}$

Decoding of symbol codes

- A code $C(X)$ is uniquely decodable if $\forall \mathbf{x}, \mathbf{y} \in A_{X}^{+}, \mathbf{x} \neq \mathbf{y} \Rightarrow c^{+}(\mathbf{x}) \neq c^{+}(\mathbf{y})$
- A code $C(X)$ is a prefix code if no codeword is a prefix of any other codeword
- The expected length $L(C, X)$ of a symbol code C for ensemble X is

$$
L(C, X)=\sum_{x \in A_{x}} P(x) l(x)
$$

Example

$\mathscr{A}_{\mathrm{x}}=\{1,2,3,4\}, \mathrm{P}_{\mathrm{X}}=\{1 / 2,1 / 4,1 / 8,1 / 8\}$
$C: c(1)=0, c(2)=10, c(3)=110, c(4)=111$
The entropy of X is 1.75 bits: $L(C, X)$ is also 1.75 bits Obs!

$$
l_{i}=\log _{2}\left(1 / p_{i}\right), p_{i}=2^{-l_{i}}
$$

Kraft inequality

- Given a list of integer $\left\{I_{i}\right\}$, does there exist a uniquely decodable code with $\left\{I_{i}\right\}$?
- "Market model": total budget 1; cost per codeword of length / is 2^{-1}.

Kraft inequality: For any uniquely decodeable code C over the binary alphabet $\{0,1\}$, the codeword lengths must satisfy: $\sum_{i} 2^{-l_{i}} \leq 1$
Conversely, given a set of codeword lengths that satisfythis inequality, there exists a uniquely decodable prefix code with these codelengths.

Limits of unique decodeability

0	00	000	0000	$\begin{aligned} & \text { n} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \end{aligned}$
			0001	
		001	0010	
			0011	
	01	010	0100	
			0101	
		011	0110	
			0111	
1	10	100	1000	-
			1001	$\stackrel{0}{0}$
		101	1010	-
			1011	
	11	110	1100	
			1101	
		111	1110	
			1111	

What can we hope for?

Lower bound on expected length: The expected length $L(C, X)$ of a uniquely decodable code is bounded below by H(X).

Compression limit of symbol codes: For an ensemble X there exists a prefix code

$$
\mathrm{H}(\mathrm{X}) \leq \mathrm{L}(\mathrm{C}, \mathrm{X})<\mathrm{H}(\mathrm{X})+1 .
$$

"Proof-map" of the lower bound

Define $q_{i} \equiv 2^{-l_{i}} / z$, where $z=\sum 2^{-l_{i}}$
Thus $l_{i}=\log 1 / q_{i}-\log z$
$L(C, X)=\sum_{i} p_{i} l_{i}=\sum_{i} p_{i} \log 1 / q_{i}-\log z$
By the definition of \log

Gibbs inequality

$$
\geq H(X)
$$

Proof of Gibbs' inequality

- Jensen's inequality: $f(E(x)) \leq E(f(x))$

$$
\begin{aligned}
& \Rightarrow \int p(x) \log \frac{p(x)}{q(x)} \geq-\log \int p(x) \frac{q(x)}{p(x)} \\
& \Rightarrow \int p(x) \log \frac{p(x)}{q(x)} \geq 0 \\
& \Rightarrow-\int p(x) \log q(x) \geq-\int p(x) \log p(x),
\end{aligned}
$$

- Alternative proofs: see e.g. Wikipedia

(What happens if we use the "wrong" code?)

Assume the "true probability distribution" is $\left\{p_{i}\right\}$. If we use a complete code with lengths l_{i}, they define a probabilistic model $q_{i}=2^{-\mathrm{ii}}$. The average length is

$$
L(C, X)=H(X)+\sum_{i} p_{i} \log p_{i} / q_{i}
$$

NB: The expected code length reaches the minimum $\mathrm{H}(\mathrm{X})$ when
(in other words: when $p=q$ and $K-L$ divergence is zero)

Optimal symbol code: Huffman coding

- Take two least probable symbols in the alphabet as defined by $\left\{\mathrm{p}_{\mathrm{i}}\right\}$.
- Combine these symbols into a single symbol, $p_{\text {new }}=p_{1}+p_{2}$. Repeat (until one symbol)

Huffman in practice

Huffman for the Linux manual

$$
L(C, X)=4.15 \text { bits }
$$

$H(X)=4.11$ bits

a_{i}	p_{i}	$\log _{2} \frac{1}{p_{i}}$	l_{i}	$c\left(a_{i}\right)$
a	0.0575	4.1	4	0000
b	0.0128	6.3	6	001000
c	0.0263	5.2	5	00101
d	0.0285	5.1	5	10000
e	0.0913	3.5	4	1100
f	0.0173	5.9	6	111000
g	0.0133	6.2	6	001001
h	0.0313	5.0	5	10001
i	0.0599	4.1	4	1001
j	0.0006	10.7	10	1101000000
k	0.0084	6.9	7	1010000
l	0.0335	4.9	5	11101
m	0.0235	5.4	6	110101
n	0.0596	4.1	4	0001
o	0.0689	3.9	4	1011
p	0.0192	5.7	6	111001
q	0.0008	10.3	9	110100001
r	0.0508	4.3	5	11011
s	0.0567	4.1	4	0011
t	0.0706	3.8	4	1111
u	0.0334	4.9	5	10101
v	0.0069	7.2	8	11010001
w	0.0119	6.4	7	1101001
x	0.0073	7.1	7	1010001
y	0.0164	5.9	6	101001
z	0.0007	10.4	10	1101000001
-	0.1928	2.4	2	01

Figure 3.3. Huffman code for the English language ensemble introduced in figure 1.16.

Why is this not the end of the story?

- Adaptation: what if the ensemble X changes? (as it does...)
\checkmark calculate probabilities in one pass
\checkmark communicate code + the Huffman-coded message
- "The extra bit": what if $H(X) \sim 1$ bit?
\checkmark Group symbols to blocks and design a "Huffman block code"

IEEE Information Society Golden Award: Stream codes

The guessing game

THERE-IS-NO-GROUP-LIKE-COSCO-GROUP 211511211311112111111321111111121111
 The number of guesses before the character was identified

Encode: use the number of guesses

Decode: let the twin guess and stop after the communicated number of guesses

History of arithmetic coding

- Does not require that the symbols translate into integral number of bits
- Shannon 1948 discussed binary fractions
- First code of this type discovered by Elias
- 1976 Pasco and Rissanen (independently)
- Rissanen \& Langdon 1979 described hardware implementation

An example fixed model

Symbol	Probability	Range
a	0.2	$[0,0.2)$
e	0.3	$[0.2,0.5)$
i	0.1	$[0.5,0.6)$
o	0.2	$[0.6,0.8)$
u	0.1	$[0.8,0.9)$
$!$	0.1	$[0.9,1.0)$

The idea

after
seeing
nothing
0
(b)

Arithmetic coding

- with every new symbol produced by the source, the probabilistic model provides a predictive distribution over all possible values of the next symbol
- encoder uses the model predictions to create a binary string
- dynamic model (chain rule):

$$
P(e, a, i, i!!)=P(e) P(a \mid e) P(i \mid e, a) P(i \mid e, a, i) P(!\mid e, a, i, i)
$$

Basics

- Source alphabet $\boldsymbol{A}_{x}=\left\{a_{1}, \ldots, a_{I}\right\}$
- Source stream x_{1}, x_{2}, \ldots
- Model M:

$$
P\left(x_{n}=a_{i} \mid x_{1}, \ldots, x_{n-1}\right)
$$

- A binary transmission is viewed defining an interval within the real line from 0 to 1
$01101 \longrightarrow[0.01101,0.01110)$

Basics continued

- $[0,1)$ can be divided into I intervals according to $\mathrm{P}\left(x_{1}=\mathrm{a}_{\mathrm{i}}\right)$

$$
\left[0, P\left(x_{1}=a_{1}\right)\right),\left[P\left(x_{1}=a_{1}\right), P\left(x_{1}=a_{2}\right)\right), \ldots
$$

- Repeat the same procedure with interval a_{i} to get $a_{i} a_{1}, \ldots, a_{i} a_{I}$ so that the length of $a_{i} a_{j}$ is proportional to

$$
P\left(x_{2}=a_{j} \mid x_{1}=a_{i}\right)
$$

$$
R_{n, i \mid x_{1}, \ldots, x_{n-1}} \equiv \sum_{i^{\prime}=1}^{i} P\left(x_{n}=a_{i^{\prime}} \mid x_{1}, \ldots, x_{n-1}\right)
$$

Encoding example

Decoding example

10011101

Calculate the initial $P(a), P(b)$ and $P(!)$ [duplicate the encoder!] and deduce the intervals "a", "b" and "!"
$10 \longrightarrow$ Deduce that the first symbol was "b"

Calculate $P(a \mid b), P(b \mid b)$ and $P(!\mid b)$ and deduce the intervals "ba", "bb" and "b!"
$1001 \longrightarrow$ Deduce that the second symbol was "b" Etc.

Lempel-Ziv coding

- simple to implement, asymptotic rate approaches the entropy
- widely used (gzip, compress,...)
- basic idea: replace a substring with a pointer to an earlier occurrence of the substring
- Example:
\checkmark String: 1011010100010...
\checkmark Substrings: 1, 0, 11, 01, 010, 00, 10,...
\checkmark Replace 010 with a pointer to "01" + "0"

Various codes: the big picture

- fixed length block codes: mappings from a fixed number of course symbols to a fixed length binary message
- symbol codes
\checkmark variable length code for each symbol in the alphabet
\checkmark code lengths integers
\checkmark Huffmann code (expectation) optimal

...big picture continued

- stream codes
\checkmark not constrained to emit at least one bit for every symbol in the source stream
\checkmark arithmetic codes use a probabilistic model that identifies each string with a sub-interval of [0,1). "Good compression requires intelligence"
\checkmark Lempel-Ziv codes memorize strings that have already occurred. "No prior assumptions on the world"

