#### The Revenge of a Student -Symbol Codes



#### Symbol codes

- Notation: {0,1}+={0,1,00,01,10,11,000,...}
- A symbol code C is a mapping from A<sub>x</sub> to {0,1}<sup>+</sup>

 $|(\mathbf{x}) = |\mathbf{x}|$ 

$$c^{+}(x_{1}x_{2}x_{3}...x_{N}) = c(x_{1})c(x_{2})c(x_{3})...c(x_{N})$$





#### Decoding of symbol codes

A code C(X) is uniquely decodable if

 $\forall \mathbf{x}, \mathbf{y} \in A_X^+, \mathbf{x} \neq \mathbf{y} \Rightarrow c^+(\mathbf{x}) \neq c^+(\mathbf{y})$ 

- A code C(X) is a prefix code if no codeword is a prefix of any other codeword
- The expected length L(C,X) of a symbol code C for ensemble X is

$$L(C,X) = \sum_{x \in A_x} P(x)l(x)$$

© Petri Myllymäki, Henry Tirri 2002-2006

#### Example

 $\mathcal{A}_{x} = \{1,2,3,4\}, P_{X} = \{1/2,1/4,1/8,1/8\}$ C: c(1) = 0, c(2) = 10, c(3) = 110, c(4) = 111 The entropy of X is 1.75 bits: L(C,X) is also 1.75 bits

Obs!

$$l_i = \log_2(1/p_i), p_i = 2^{-l_i}$$



#### Kraft inequality

- Given a list of integer {I<sub>i</sub>}, does there exist a uniquely decodable code with {I<sub>i</sub>}?
- "Market model": total budget 1; cost per codeword of length / is 2<sup>-1</sup>.

Kraft inequality: For any uniquely decodeable code C over the binary alphabet {0,1}, the codeword lengths must satisfy:  $\sum 2^{-l_i} \le 1$ 

Conversely, given a set of codeword lengths that satisfythis inequality, there exists a uniquely decodable prefix code with these codelengths.

#### Limits of unique decodeability

| 0 | 00 | 000 | 0000 | Total "budget" |
|---|----|-----|------|----------------|
|   |    |     | 0001 |                |
|   |    | 001 | 0010 |                |
|   |    |     | 0011 |                |
|   | 01 | 010 | 0100 |                |
|   |    |     | 0101 |                |
|   |    | 011 | 0110 |                |
|   |    |     | 0111 |                |
| 1 | 10 | 100 | 1000 |                |
|   |    |     | 1001 |                |
|   |    | 101 | 1010 |                |
|   |    |     | 1011 |                |
|   | 11 | 110 | 1100 |                |
|   |    |     | 1101 |                |
|   |    | 111 | 1110 |                |
|   |    |     | 1111 |                |

#### What can we hope for?

**Lower bound on expected length**: The expected length L(C,X) of a uniquely decodable code is bounded below by H(X).

Compression limit of symbol codes: For an ensemble X there exists a prefix code  $H(X) \le L(C,X) \le H(X) + 1.$ 



#### "Proof-map" of the lower bound



#### Proof of Gibbs' inequality

• Jensen's inequality:  $f(E(x)) \le E(f(x))$ 

$$\Rightarrow \int p(x) \log \frac{p(x)}{q(x)} \ge -\log \int p(x) \frac{q(x)}{p(x)}$$

$$\Rightarrow \int p(x)\log \frac{p(x)}{q(x)} \geq 0$$

$$\Rightarrow -\int p(x)\log q(x) \geq -\int p(x)\log p(x),$$

#### Alternative proofs: see e.g. Wikipedia

# (What happens if we use the "wrong" code?)

Assume the "true probability distribution" is  $\{p_i\}$ . If we use a complete code with lengths  $I_i$ , they define a probabilistic model  $q_i = 2^{-li}$ . The average length is

$$L(C,X) = H(X) + \sum_{i} p_i \log p_i / q_i$$

Kullback-Leibler divergence D<sub>KL</sub>(p||q)

NB: The expected code length reaches the minimum H(X) when  $I_i = log (1/p_i)$ (in other words: when p=q and K-L divergence is zero) Three Concepts: Information '06 © Petri Myllymäki, Henry Tirri 2002-2006

## Optimal symbol code: Huffman coding

- Take two least probable symbols in the alphabet as defined by {p<sub>i</sub>}.
- Combine these symbols into a single symbol, p<sub>new</sub> = p<sub>1</sub> + p<sub>2</sub>. Repeat (until one symbol)

#### Huffman in practice



#### Huffman for the Linux manual

L(C,X) = 4.15 bits H(X) = 4.11 bits



| $a_i$ | $p_i$  | $\log_2 \frac{1}{p_i}$ | $l_i$    | $c(a_i)$   |
|-------|--------|------------------------|----------|------------|
| a     | 0.0575 | 4.1                    | 4        | 0000       |
| b     | 0.0128 | 6.3                    | 6        | 001000     |
| с     | 0.0263 | 5.2                    | 5        | 00101      |
| ď     | 0.0285 | 5.1                    | 5        | 10000      |
| е     | 0.0913 | 3.5                    | 4        | 1100       |
| f     | 0.0173 | 5.9                    | 6        | 111000     |
| g     | 0.0133 | 6.2                    | 6        | 001001     |
| h     | 0.0313 | 5.0                    | 5        | 10001      |
| i     | 0.0599 | 4.1                    | 4        | 1001       |
| j     | 0.0006 | 10.7                   | 10       | 1101000000 |
| k     | 0.0084 | 6.9                    | 7        | 1010000    |
| 1     | 0.0335 | 4.9                    | 5        | 11101      |
| m     | 0.0235 | 5.4                    | 6        | 110101     |
| n     | 0.0596 | 4.1                    | 4        | 0001       |
| o     | 0.0689 | 3.9                    | 4        | 1011       |
| Ρ     | 0.0192 | 5.7                    | 6        | 111001     |
| q     | 0.0008 | 10.3                   | 9        | 110100001  |
| r     | 0.0508 | 4.3                    | <b>5</b> | 11011      |
| s     | 0.0567 | 4.1                    | 4        | 0011       |
| t     | 0.0706 | 3.8                    | 4        | 1111       |
| u     | 0.0334 | 4.9                    | 5        | 10101      |
| v     | 0.0069 | 7.2                    | 8        | 11010001   |
| W     | 0.0119 | 6.4                    | 7        | 1101001    |
| х     | 0.0073 | 7.1                    | 7        | 1010001    |
| у     | 0.0164 | 5.9                    | 6        | 101001     |
| z     | 0.0007 | 10.4                   | 10       | 1101000001 |
| -     | 0.1928 | 2.4                    | <b>2</b> | 01         |
|       |        |                        |          |            |

Figure 3.3. Huffman code for the English language ensemble introduced in figure 1.16.

## Why is this not the end of the story?

- Adaptation: what if the ensemble X changes? (as it does...)
  - calculate probabilities in one pass
  - ✓ communicate code + the Huffman-coded
     message
- "The extra bit": what if H(X) ~1 bit?
   Group symbols to blocks and design a "Huffman block code"

#### IEEE Information Society Golden Award: Stream codes



### The guessing game

THERE-IS-NO-GROUP-LIKE-COSCO-GROUP 21151121131111211111321111111121111

"A new alphabet"

The number of guesses before the character was identified



Encode: use the number of guesses

#### 21151121131111211111321111111121111

Decode: let the twin guess and stop after the communicated number of guesses



#### History of arithmetic coding

- Does not require that the symbols translate into integral number of bits
- Shannon 1948 discussed binary fractions
- First code of this type discovered by Elias
- 1976 Pasco and Rissanen (independently)
- Rissanen & Langdon 1979 described hardware implementation

### An example fixed model

| Symbol | <b>Probability</b> | Range     |
|--------|--------------------|-----------|
| а      | 0.2                | [0,0.2)   |
| е      | 0.3                | [0.2,0.5) |
| i      | 0.1                | [0.5,0.6) |
| 0      | 0.2                | [0.6,0.8) |
| u      | 0.1                | [0.8,0.9) |
| !      | 0.1                | [0.9,1.0) |

#### The idea



(b)



#### Arithmetic coding

- with every new symbol produced by the source, the probabilistic model provides a predictive distribution over all possible values of the next symbol
- encoder uses the model predictions to create a binary string
- dynamic model (chain rule):
   P(e,a,i,i,!)=P(e)P(a|e)P(i|e,a)P(i|e,a,i)P(!|e,a,i,i)

#### Basics

- Source alphabet  $\mathcal{A}_{x} = \{a_{1}, \dots, a_{I}\}$
- Source stream  $x_1, x_2, \dots$
- Model M:

$$P(x_n = a_i | x_1, \dots, x_{n-1})$$

 A binary transmission is viewed defining an interval within the real line from 0 to 1

#### **Basics** continued

- [0,1] can be divided into I intervals according to  $P(x_1=a_i)$  $[0, P(x_1 = a_1)), [P(x_1 = a_1), P(x_1 = a_2)), ...$
- Repeat the same procedure with interval  $\mathbf{a}_i$  to get  $\mathbf{a}_i \mathbf{a}_1, \dots, \mathbf{a}_i \mathbf{a}_T$  so that the length of  $a_i a_j$  is proportional to

$$P(x_{2} = a_{j} | x_{1} = a_{i})$$

$$R_{n,i|x_{1},...,x_{n-1}} \equiv \sum_{i'=1}^{i} P(x_{n} = a_{i'} | x_{1},...,x_{n-1})$$

Ihree

#### Encoding example





### Lempel-Ziv coding

- simple to implement, asymptotic rate approaches the entropy
- widely used (gzip, compress,...)
- basic idea: replace a substring with a pointer to an earlier occurrence of the substring
- Example:
  - ✓ String: 10110100010...
  - ✓ Substrings: 1, 0, 11, 01, 010, 00, 10,...
  - ✓ Replace 010 with a pointer to "01" + "0"

#### Various codes: the big picture

- fixed length block codes: mappings from a fixed number of course symbols to a fixed length binary message
- symbol codes
  - variable length code for each symbol in the alphabet
  - ✓ code lengths integers
  - Huffmann code (expectation) optimal

#### ... big picture continued

- stream codes
  - not constrained to emit at least one bit for every symbol in the source stream
  - ✓ arithmetic codes use a probabilistic model that identifies each string with a sub-interval of [0,1). "Good compression requires intelligence"
  - Lempel-Ziv codes memorize strings that have already occurred. "No prior assumptions on the world"