"Year 2020" -Topics in Information Theory for Further Studies

Comprestimation

Comprestimation

- lossy compression of "non-natural" images (regular lossy compression uses MSE)
- compression of images so that the statistical inferences on the compressed images remain valid
- E.g. compression of microarray images

Microarray images

Comprestimation cont.

- also known as "Multi-terminal data compression"
- T. Han \& S.Amari; R. Jörnsten \& B. Yu:

Algorithmic Information Theory

Algorithmic Information Theory

- ...as used by Chaitin for "metamathematics"
- incompleteness theorems
\checkmark Gödel (logic)
\checkmark Turing (algorithm)
\checkmark The Halting Probability Omega (information, randomness)
http://www.umcs.maine.edu/~chaitin/

Physics, information and games

2020: Quantum Odyssey

"On Quantum Computing and information transmission"

Motivation

- Computers as physical systems
- Technological issues
\checkmark miniaturization and speedup - Moore's law \checkmark need for energy efficiency

Fig. 1.1 The number of atoms needed to represent one bit of information as a function of calendar year. As the vertical axis is on a logarithmic scale, the straight line fit suggests the trend is exponential. Extrapolation of the trend suggests that the one-atom-per-bit level is reached in about the year 2020. Adapted from [Keyes88].

Why would we bother?

- Cryptography: QC can break RSA codes
- Communication of messages that betray the presence of eavesdropping
- Teleportation: moving qubits around without having them ever being transmitted over an insecure channel

Central concepts

- Superposition: a "blend" of 0 and 1 simultaneously, i.e., quantum parallel mode
- http://www.quantiki.org
- Reversible computing: logical irreversibility implies thermodynamic irreversibility (i.e., heat dissipation)

Charles Bennett

Wave/particle duality

Mach-Zehnder interferometer

Detector 1

The Capabilities of Computers

(Deterministic)
Turing Machine

Probabilistic
 Turing Machine

Quantum
 Turing Machine

Fig. 2.2 In a probabilistic classical Turing machine there are multiple possible successor states, only one of which is actually selected. Unselected paths are terminated (x). The probabilities of transitioning between various states are shown. Notice that the sum of the probabilities on all the paths emanating from a state is 1 .

Fig. 2.3 In the quantum Turing machine each cell on the tape can hold a qubit whose state is represented as an arrow contained in a sphere. All paths are pursued simultaneously. Instead of probabilities on each path we now have amplitudes. Amplitudes are complex numbers whose square moduli are probabilities.

Proving vs. providing proof

- QTM can simulate a TM - QTM universal
- TM provides a proof as the sequence of steps performed
- QTM can provide an answer without a proof trace (worse: if you try to "peek" QTM that would disrupt the proof!)

Bits and Qubits

- Each bit is represented by the state of a simple 2-state quantum system e.g., spin state)
- We need finite dimensional Hilbert space

"Complex linear vector space"

Bra-ket

- For a simple two-state system you can write the state as a "ket (vector)"

$$
|\psi\rangle=\omega_{0}\left|\psi_{0}\right\rangle+\omega_{1}\left|\psi_{1}\right\rangle \equiv\binom{\omega_{0}}{\omega_{1}}
$$

- Probability interpretation

$$
P\left(\text { system in state }\left|\psi_{i}\right\rangle\right)=\frac{\left|\omega_{i}\right|^{2}}{\left.\sum_{i=0}^{n-1} \omega_{i}\right|^{2}}
$$

Unitary operators

- 2-state system has 2 eigenstates called $\left|\psi_{0}\right\rangle$ and $\left|\psi_{1}\right\rangle$ (basis)

$$
\begin{aligned}
& |0\rangle=\binom{1}{0},|1\rangle=\binom{0}{1} \\
& |\psi\rangle=\omega_{0}\binom{1}{0}+\omega_{1}\binom{0}{1}=\binom{\omega_{0}}{\omega_{1}}
\end{aligned}
$$

Unitary operators continued

- To change the quantum world one needs an operator, e.g. NOT
NOT $|0\rangle=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\binom{1}{0}=\binom{0}{1}=|1\rangle, \quad$ NOT is reversible!
$\operatorname{NOT}|1\rangle=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\binom{0}{1}=\binom{1}{0}=|0\rangle$
- One can also have non-classical gates such as $\sqrt{\text { NOT }}$

Universality

- In classical computation AND and NOT are enough to build any circuit
- In quantum computing it is enough to use a 2-qubit gate (Barenco et al)

$$
\hat{A}(\phi, \alpha, \theta)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & e^{i \alpha} \cos (\theta) & -i e^{i(\alpha-\theta)} \sin (\theta) \\
0 & 0 & -i e^{i(\alpha+\theta)} \sin (\theta) & e^{i \alpha} \cos (\theta)
\end{array}\right)
$$

Fundamentals

- One can have quantum interference whenever there is more than one way of obtaining a particular result \dagger
- measuring a quantum system:
\checkmark if the system is in eigenstate the outcome is one of the eigenvalues
\checkmark if the system is in superposition state the result is given by

"A good quantum calculation"

- Create a superposition of register elements
- Calculate in "one shot" all function values $F(j)$
- Do something clever with all the $F(j)$ values
(Use interference to increase the amplitudes and thus probabilities of the solution states)

Quantum entanglement (EPR)

- If two systems (particles) are "Quantum correlated" one talks about entanglement
- For entangled particles their joint state is not factorizable as the direct product of two simpler states
- Produced by conservation of some attribute

Teleportation

-dissociation
-information transmission -reconstitution

Well, at least a qubit

Fig. 9.5 Schematic view of quantum teleportation using EPR.

Further topics

- quantum search
- quantum cryptography
- dense coding
- random number generation
- breaking unbreakable codes
- quantum complexity theory

