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G.W. Leibniz, 1646–1716 Isaac Newton, 1643–1727
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Functions

Functions associate with each possible input value x a unique
output value y . The set of possible inputs is called the domain
(“alphabet”). The set of possible outputs is called the codomain,
and the set of actual outcomes is called the range. (Usually we
just use the term ‘range’ for both.)

f : X → Y f

domain codomain/range
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Examples: Exponent
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exp x

Exponent function exp : R → R+, exp k = ek =

k︷ ︸︸ ︷
e × e × . . .× e:

multiplicative growth (nuclear reaction, “interest on interest”, ...)

exp x · exp y = exp(x + y) Derivative
d exp x

dx
= exp x .
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exp x
ln x

Natural logarithm ln : R+ → R, ln exp x = x :
time to grow to x , number of digits (log10).

General (base a) logarithm, loga ax = x : loga x =
1

ln a
ln x
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exp x
ln x

ln xy = ln x +ln y

ln x r = r ln x ln
1

x
= − ln x ln

x

y
= ln x− ln y

ln x ≤ x − 1 with equality if and only if x = 1
(NB: doesn’t work with loga x if a 6= e)

d ln x

dx
=

1

x
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Limits and Convergence

A sequence of values (xi : i ∈ N) converges to limit L,
limi→∞ xi = L, iff for any ε > 0 there exists a number N ∈ N
such that

|xi − L| < ε for all i ≥ N .

f (x) has a limit L as x approaches c , limx→c f (x) = L, (from
above c+/below c−) iff for any ε > 0 there exists a number
δ > 0 such that

|f (x)− L| < ε for all


c < x < c + δ ‘above’

c − δ < x < c ’below’

0 < |x − c | < δ —
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Example: Logarithm Again
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x ln x

Even though x ln x is undefined at x = 0, we have (by l’Hôpital’s rule):

lim
x→0+

x ln x = 0 .
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Convexity

Function f : X → R is said to be convex iff for any x , y ∈ X and
any t ∈ [0, 1], we have

f (tx + (1− t)y) ≤ tf (x) + (1− t)f (y) .

 0
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-4 -2  0  2  4

exp x

Function f is strictly convex iff the above inequality holds strictly
(‘<’ instead of ‘≤’).

Function f is (strictly) concave iff the above holds for −f .
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Convexity and Derivatives

Theorem

If function f has a second derivative f ′′, and f ′′ is non-negative
(≥ 0) for all x , then f is convex. If f ′′ is positive (> 0) for all x ,
then f is strictly convex.
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exp x

ex is convex !

Example: f ′(x) =
d exp x

dx
= exp x ⇒ f ′′(x) = exp x > 0. Hence

exp is strictly convex.
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Probability

A.N. Kolmogorov, 1903–1987
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Probability Space

A probability space (Ω,F ,P) is defined by

the sample space Ω whose elements are called outcomes ω,

a sigma algebra F of subsets of Ω, whose elements are called
events E , and

a measure P which determines the probabilities of events,
P : F → [0, 1].

Measure P has to satisfy the probability axioms: P(E ) ≥ 0 for all
E ∈ F , P(Ω) = 1, and P(E1 ∪ E2 ∪ . . .) =

∑
i P(Ei ) if (Ei ) is a

countable sequence of disjoint events.

These axioms imply the usual rules of probability calculus, e.g.,
P(A ∪ B) = P(A) + P(B)− P(A ∩ B), P(Ω\E ) = 1− P(E ), etc.
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Probability Calculus

1 The conditional probability of event B given that event A
occurs is defined as

P(B | A) =
P(A ∩ B)

P(A)
for A such that P(A) > 0.

2 P(A ∩ B) = P(A)× P(B | A) = P(B)× P(A | B) .

3 Bayes’ rule: P(B | A) =
P(A | B)× P(B)

P(A)
.

4 Chain rule:

P(∩N
i=1Ei ) =

N∏
i=1

P(Ei | ∩i−1
j=1Ej)

= P(E1)× P(E2 | E1)× P(E3 | E1 ∩ E2)× . . .

× P(EN | E1 ∩ . . . ∩ EN−1) .
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Random Variables

Technically, a random variable is a (measurable) function
X : Ω → R from the sample space to the reals.

The probability measure P on Ω determines the distribution of X :

PX (A) = Pr[X ∈ A] = P({ω : X (ω) ∈ A}) ,

where A ⊆ R.

In practice, we often forget about the underlying probability space
Ω, and just speak of random variable X and its distribution PX .
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Random Variables

The distribution of a random variable can always be represented as
a cumulative distribution function (cdf) FX (x) = Pr[X ≤ x ].

In addition:

A discrete random variable X with countable alphabet X has
a probability mass function (pmf) pX such that
Pr[X = x ] = pX (x).

A continuous random variable Y has a probability density
function (pdf) fY such that Pr[Y ∈ A] =

∫
A fY (x) dy .

There are also mixed random variables that are neither discrete nor
continuous. They don’t have a pmf or pdf, but they do have a cdf.

We often omit the subscripts X ,Y , . . . and write p(x), f (y), etc.
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Random Variables

The distribution of a random variable can always be represented as
a cumulative distribution function (cdf) FX (x) = Pr[X ≤ x ].

In addition:
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a probability mass function (pmf) pX such that
Pr[X = x ] = pX (x).
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Random Variables

Since random variables are functions, we can define more random
variables as functions of random variables: if f is a function, and X
and Y are r.v.’s, then f (X ) : Ω → R is a r.v., X + Y is a r.v.,
etc.

Example: Let r.v. X be the outcome of a die.

The pmf of X is given by pX (x) = 1/6 for all
x ∈ {1, 2, 3, 4, 5, 6}.
The pmf of r.v. X 2 is given by pX 2(x) = 1/6 for all
x ∈ {1, 4, 9, 16, 25, 36}.

! In particular, a pmf pX is a function, and hence, pX (X ) is also a
random variable. Further, p2

X (X ), ln pX (X ), etc. are random
variables.
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Multivariate Distributions

The probabilistic behavior of two or more random variables is
described by multivariate distributions.

The joint distribution of r.v.’s X and Y is

PX ,Y (A,B) = Pr[X ∈ A ∧ Y ∈ B]

= P({ω : X (ω) ∈ A,Y (ω) ∈ B}) .

For each multivariate distribution PX ,Y , there are unique marginal
distributions PX and PY such that

PX (A) = PX ,Y (A, R), PY (B) = PX ,Y (R,B) ,

pmf: pY (y) =
∑
x∈X

pX ,Y (x , y) pdf: fY (y) =

∫
R

fX ,Y (x , y) dx .
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Multivariate Distributions

The conditional distribution is defined similar to conditional
probability:

PY |X (B | A) =
PX ,Y (A,B)

PX (A)
for A such that PX (A) > 0.

For discrete/continuous variables we have:

discrete r.v.’s:

pY |X (y | x) =
pX ,Y (x , y)

pX (x)
, pX (x) > 0 ,

continuous r.v.’s:

fY |X (y | x) =
fX ,Y (x , y)

fX (x)
, fX (x) > 0 .
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Independence

Variable X is said to be independent of variable Y (X � Y ) iff

PX ,Y (A,B) = PX (A)× PY (B) for all A,B ⊆ R.

This is equivalent to

PX |Y (A | B) = PX (A) for all B such that P(B) > 0,

and

PY |X (B | A) = PY (B) for all A such that P(A) > 0.

In words, knowledge about one variable tells nothing about the
other. Note that independence is symmetric, X � Y ⇔ Y � X .
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Expectation

The expectation (or expected value, or mean) of a discrete
random variable is given by

E [X ] =
∑
x∈X

p(x) x .

The expectation of a continuous random variable is given by

E [X ] =

∫
X

f (x) x dx .

In both cases, it is possible that E [X ] = ±∞.

E [kX ] = kE [X ] E [X + Y ] = E [X ] + E [Y ]

E [XY ] = E [X ]E [Y ] if X � Y
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Law of Large Numbers

Let X1,X2, . . . be a sequence of independent outcomes
of a die, so that pXi

(x) = 1/6 for all i ∈ N, x ∈ {1, 2, 3, 4, 5, 6}.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1  2  3  4  5  6

E [Xi ] =
6∑

x=1

1

6
x =

21

6
= 3.5 for all i ∈ N.
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Law of Large Numbers

Let Sn =
∑n

i=1 Xn be the sum of the first n outcomes.

The distribution of Sn is given by

PSn(x) =
# of ways to get sum x with n dice

6n
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Law of Large Numbers

Let Sn =
∑n

i=1 Xn be the sum of the first n outcomes.

The distribution of Sn is given by

PSn(x) =
# of ways to get sum x with n dice

6n

distribution of S1
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Let Sn =
∑n

i=1 Xn be the sum of the first n outcomes.

The distribution of Sn is given by

PSn(x) =
# of ways to get sum x with n dice

6n

distribution of S2
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Law of Large Numbers

Let Sn =
∑n

i=1 Xn be the sum of the first n outcomes.

The distribution of Sn is given by
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# of ways to get sum x with n dice
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distribution of S3
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Law of Large Numbers

Let Sn =
∑n

i=1 Xn be the sum of the first n outcomes.

The distribution of Sn is given by
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# of ways to get sum x with n dice
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distribution of S4
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Law of Large Numbers

Let Sn =
∑n

i=1 Xn be the sum of the first n outcomes.

The distribution of Sn is given by

PSn(x) =
# of ways to get sum x with n dice

6n

distribution of S5
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Law of Large Numbers

Let Sn =
∑n

i=1 Xn be the sum of the first n outcomes.

The distribution of Sn is given by

PSn(x) =
# of ways to get sum x with n dice

6n

distribution of S10
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Law of Large Numbers

Let Sn =
∑n

i=1 Xn be the sum of the first n outcomes.

The distribution of Sn is given by

PSn(x) =
# of ways to get sum x with n dice

6n

distribution of S20
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Law of Large Numbers

Let Sn =
∑n

i=1 Xn be the sum of the first n outcomes.

The distribution of Sn is given by

PSn(x) =
# of ways to get sum x with n dice

6n

distribution of S100
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Law of Large Numbers

Source: Wikipedia
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Law of Large Numbers

Weak Law of Large Numbers

For a sequence of independent and identically distributed (i.i.d.)
random variables with finite mean µ, the average 1

nSn converges in
probability to µ:

lim
n→∞

Pr

[∣∣∣∣Sn

n
− µ

∣∣∣∣ < ε

]
= 1 for all ε > 0.

We will use the LLN to prove a result known as the Asymptotic
Equipartition Property (AEP), which is a central result in
information theory (see next lecture).
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Jensen’s inequality

J.L.W.V. Jensen, 1859–1925
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Jensen’s inequality

If f is a convex function and X is a random variable, then

E [f (X )] ≥ f (E [X ]) .

Moreover, if f is strictly convex, the inequality holds as an equality
if and only if X = E [X ] with probability 1.

We give a proof for the first part of the theorem in the special case
where X has a finite domain.

For two mass points, we have p(x2) = 1− p(x1), and the claim
holds by definition of convexity:

p(x1) f (x1) + p(x2) f (x2) ≥ f (p(x1) x1 + p(x2) x2) .
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Inequalities: Jensen

Induction: Assume that (∗) the theorem holds for N − 1 mass points.

N∑
i=1

p(xi ) f (xi ) = p(xN) f (xN) + (1− p(xN))
N−1∑
i=1

p′(xi ) f (xi )

≥ p(xN) f (xN) + (1− p(xN)) f

(
N−1∑
i=1

p′(xi ) xi

)
(∗)

≥ f

(
p(xN) xN + (1− p(xN))

N−1∑
i=1

p′(xi ) xi

)
(convexity)

= f

(
N∑

i=1

p(xi ) xi

)
,

where p′(xi ) =
p(xi )

1− p(xN)
.
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≥ p(xN) f (xN) + (1− p(xN)) f

(
N−1∑
i=1

p′(xi ) xi

)
(∗)

≥ f

(
p(xN) xN + (1− p(xN))

N−1∑
i=1

p′(xi ) xi

)
(convexity)

= f

(
N∑

i=1

p(xi ) xi

)
,

where p′(xi ) =
p(xi )

1− p(xN)
.
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Gibbs’ inequality

W. Gibbs, 1839–1903
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Inqualities: Gibbs

Gibbs’ inequality

For any two discrete probability distributions p and q, we have∑
x∈X

p(x) log2 p(x) ≥
∑
x∈X

p(x) log2 q(x)

with equality if and only if p(x) = q(x) for all x ∈ X .

Proof. Since log2 x =
1

ln 2
ln x , dividing both sides by ln 2 changes

log2 to ln.
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Inqualities: Gibbs

Gibbs’ inequality

For any two discrete probability distributions p and q, we have∑
x∈X

p(x) ln p(x) ≥
∑
x∈X

p(x) ln q(x)

with equality if and only if p(x) = q(x) for all x ∈ X .

Proof. Since log2 x =
1

ln 2
ln x , dividing both sides by ln 2 changes

log2 to ln.
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Inequalities: Gibbs

Gibbs’ inequality ∑
x∈X

p(x) ln p(x) ≥
∑
x∈X

p(x) ln q(x)

∑
x∈X

p(x) ln q(x)−
∑
x∈X

p(x) ln p(x) =
∑
x∈X

p(x) (ln q(x)− ln p(x))

=
∑
x∈X

p(x) ln
q(x)

p(x)
ln x − ln y = ln

x

y

≤
∑
x∈X

p(x)

(
q(x)

p(x)
− 1

)
ln x ≤ x − 1

=
∑
x∈X

q(x)−
∑
x∈X

p(x) = 1− 1 = 0 .
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For next week, read Chapter 2 of Cover & Thomas and do home
assignment (see course web page).
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