

Three Concepts: Information Lecture 2: Mathematical Preliminaries

Teemu Roos

Complex Systems Computation Group Department of Computer Science, University of Helsinki

Fall 2007

・ロト ・部 ト ・ヨト ・ヨト

1

SQR

Lecture 2: Mathematical Preliminaries

"I think you should be more explicit here in step two."

◆ロ > ◆母 > ◆臣 > ◆臣 >

- Functions
- Limits and Convergence
- Convexity

3

590

<ロト < 団ト < 巨ト < 巨ト</p>

- Functions
- Limits and Convergence
- Convexity
- Probability
 - Probability Space and Random Variables
 - Joint and Conditional Distributions
 - Expectation
 - Law of Large Numbers

< □ > < 同 >

э

- Functions
- Limits and Convergence
- Convexity
- 2 Probability
 - Probability Space and Random Variables
 - Joint and Conditional Distributions
 - Expectation
 - Law of Large Numbers
- Inequalities
 - Jensen's Inequality
 - Gibbs's Inequality

< A

Functions Limits and Convergence Convexity

Calculus

G.W. Leibniz, 1646-1716

Isaac Newton, 1643-1727

◆ロ > ◆母 > ◆臣 > ◆臣 >

Functions

Functions associate with each possible input value x a unique output value y. The set of possible inputs is called the **domain** (*"alphabet"*). The set of possible outputs is called the **codomain**, and the set of actual outcomes is called the **range**. (Usually we just use the term 'range' for both.)

Calculus Probability Inequalities Functions Limits and Convergence Convexity

Examples: Exponent

Exponent function exp : $\mathbb{R} \to \mathbb{R}^+$, exp $k = e^k = \overbrace{e \times e \times \dots \times e}^k$: multiplicative growth (nuclear reaction, "interest on interest", ...)

< ロ > < 同 > < 三 > < 三 >

SQ (P

Functions Limits and Convergence Convexity

Examples: Exponent

Exponent function exp : $\mathbb{R} \to \mathbb{R}^+$, exp $k = e^k = e^k \times e \times \dots \times e^k$: multiplicative growth (nuclear reaction, "interest on interest", ...)

$$\exp x \cdot \exp y = \exp(x+y)$$

< ロ > < 同 > < 三 > < 三 >

SQ (P

Functions Limits and Convergence Convexity

Examples: Exponent

Teemu Roos Three Conc

Calculus Probability nequalities Functions Limits and Convergence Convexity

Examples: Logarithm

Natural logarithm In : $\mathbb{R}^+ \to \mathbb{R}$, ln exp x = x: time to grow to x, number of digits (log₁₀).

イロト イポト イヨト イヨト

1

SQR

Functions Limits and Convergence Convexity

Examples: Logarithm

Natural logarithm In : $\mathbb{R}^+ \to \mathbb{R}$, ln exp x = x: time to grow to x, number of digits (log₁₀).

General (base *a*) logarithm, $\log_a a^x = x$: $\log_a x = \frac{1}{\ln a} \ln x$

・ロッ ・ 日 ・ ・ 日 ・ ・ 日 ・

Calculus Probability Inequalities Functions Limits and Convergence Convexity

Examples: Logarithm

 $\ln xy = \ln x + \ln y$

◆ロ > ◆母 > ◆臣 > ◆臣 >

3

Calculus Probability Inequalities Functions Limits and Convergence Convexity

Examples: Logarithm

 $\ln xy = \ln x + \ln y \qquad \ln x^r = r \ln x$

◆ロ > ◆母 > ◆臣 > ◆臣 >

3

Calculus Probability nequalities Functions Limits and Convergence Convexity

Examples: Logarithm

 $\ln xy = \ln x + \ln y$ $\ln x^{r} = r \ln x$ $\ln \frac{1}{x} = -\ln x$

・ロト ・回ト ・モト ・モト

3

Calculus Calculus Probability Inequalities Functions Limits and Convergence Convexity

Examples: Logarithm

 $\ln xy = \ln x + \ln y$ $\ln x^{r} = r \ln x$ $\ln \frac{1}{x} = -\ln x$ $\ln \frac{x}{y} = \ln x - \ln y$

イロト イポト イヨト イヨト

nar

Calculus Probability nequalities Functions Limits and Convergence Convexity

Examples: Logarithm

 $\ln xy = \ln x + \ln y \quad \ln x^{r} = r \ln x \quad \ln \frac{1}{x} = -\ln x \quad \ln \frac{x}{y} = \ln x - \ln y$ $\ln x \le x - 1 \text{ with equality if and only if } x = 1$ (NB: doesn't work with $\log_{a} x$ if $a \ne e$)

イロト イボト イヨト イヨト

Calculus Calculus Probability Inequalities Functions Limits and Convergence Convexity

Examples: Logarithm

 $\ln xy = \ln x + \ln y \quad \ln x^{r} = r \ln x \quad \ln \frac{1}{x} = -\ln x \quad \ln \frac{x}{y} = \ln x - \ln y$ $\ln x \le x - 1 \text{ with equality if and only if } x = 1 \qquad \frac{d \ln x}{dx} = \frac{1}{x}$ (NB: doesn't work with $\log_{a} x$ if $a \ne e$) $\frac{d \ln x}{dx} = \frac{1}{x}$

イロト イボト イヨト イヨト

Functions Limits and Convergence Convexity

Limits and Convergence

• A sequence of values $(x_i : i \in \mathbb{N})$ converges to limit L, $\lim_{i\to\infty} x_i = L$, iff for any $\epsilon > 0$ there exists a number $N \in \mathbb{N}$ such that

 $|x_i - L| < \epsilon$ for all $i \ge N$.

イロト イポト イヨト イヨト

SQR

Functions Limits and Convergence Convexity

Limits and Convergence

• A sequence of values $(x_i : i \in \mathbb{N})$ converges to limit L, $\lim_{i\to\infty} x_i = L$, iff for any $\epsilon > 0$ there exists a number $N \in \mathbb{N}$ such that

$$|x_i - L| < \epsilon$$
 for all $i \ge N$.

• f(x) has a *limit* L as x approaches c, $\lim_{x\to c} f(x) = L$, (from above c^+ /below c^-) iff for any $\epsilon > 0$ there exists a number $\delta > 0$ such that

$$|f(x) - L| < \epsilon$$
 for all $\begin{cases} c < x < c + \delta & \text{`above'} \\ c - \delta < x < c & \text{`below'} \\ 0 < |x - c| < \delta & -- \end{cases}$

イロト イポト イヨト イヨト

Calculus Probability Inequalities Functions Limits and Convergence Convexity

Example: Logarithm Again

Even though $x \ln x$ is undefined at x = 0, we have (by l'Hôpital's rule):

$$\lim_{x\to 0^+} x \ln x = 0 \;\; .$$

イロト イポト イヨト イヨト

nar

Convexity

Function $f : \mathcal{X} \to \mathbb{R}$ is said to be **convex** iff for any $x, y \in \mathcal{X}$ and any $t \in [0, 1]$, we have

イロト イポト イヨト イヨト

SQR

Convexity

Function $f : \mathcal{X} \to \mathbb{R}$ is said to be **convex** iff for any $x, y \in \mathcal{X}$ and any $t \in [0, 1]$, we have

Function f is **strictly convex** iff the above inequality holds strictly ('<' instead of ' \leq ').

イロト イポト イヨト イヨト

Convexity

Function $f : \mathcal{X} \to \mathbb{R}$ is said to be **convex** iff for any $x, y \in \mathcal{X}$ and any $t \in [0, 1]$, we have

Function f is **strictly convex** iff the above inequality holds strictly ('<' instead of ' \leq ').

Function f is (strictly) **concave** iff the above holds for -f.

- 「「「」」(「」)(「」)(「」)

Functions Limits and Convergence Convexity

Convexity and Derivatives

Theorem

If function f has a second derivative f'', and f'' is non-negative (≥ 0) for all x, then f is convex. If f'' is positive (> 0) for all x, then f is *strictly* convex.

< ロ > < 同 > < 三 > < 三 >

Functions Limits and Convergence Convexity

Convexity and Derivatives

Theorem

If function f has a second derivative f'', and f'' is non-negative (≥ 0) for all x, then f is convex. If f'' is positive (> 0) for all x, then f is *strictly* convex.

Example: $f'(x) = \frac{d \exp x}{dx} = \exp x \Rightarrow f''(x) = \exp x > 0$. Hence exp is strictly convex.

Functions Limits and Convergence Convexity

Convexity and Derivatives

Theorem

If function f has a second derivative f'', and f'' is non-negative (≥ 0) for all x, then f is convex. If f'' is positive (> 0) for all x, then f is *strictly* convex.

Example: $f'(x) = \frac{d \exp x}{dx} = \exp x \Rightarrow f''(x) = \exp x > 0$. Hence exp is strictly convex.

Probability Space and Random Variables Joint and Conditional Distributions Expectation Law of Large Numbers

Probability

A.N. Kolmogorov, 1903-1987

Teemu Roos Three Concepts: Information

・ロット 4 日マ 4 田マ 4

э

Probability Space

A probability space (Ω, \mathcal{F}, P) is defined by

◆ロ > ◆母 > ◆臣 > ◆臣 >

SQC

Probability Space

A probability space (Ω, \mathcal{F}, P) is defined by

• the sample space Ω whose elements are called outcomes ω ,

イロト イポト イヨト イヨト

SQR

Probability Space

A probability space (Ω, \mathcal{F}, P) is defined by

- the sample space Ω whose elements are called outcomes ω ,
- a sigma algebra *F* of subsets of Ω, whose elements are called events *E*, and

< ロ > < 同 > < 三 > < 三 >

Probability Space

A probability space (Ω, \mathcal{F}, P) is defined by

- the sample space Ω whose elements are called outcomes $\omega,$
- a sigma algebra \mathcal{F} of subsets of Ω , whose elements are called **events** E, and
- a measure *P* which determines the **probabilities of events**, $P : \mathcal{F} \rightarrow [0, 1].$

イロト イポト イヨト イヨト

Probability Space

A probability space (Ω, \mathcal{F}, P) is defined by

- the sample space Ω whose elements are called outcomes $\omega,$
- a sigma algebra \mathcal{F} of subsets of Ω , whose elements are called **events** E, and
- a measure *P* which determines the **probabilities of events**, *P* : $\mathcal{F} \rightarrow [0, 1]$.

Measure *P* has to satisfy the **probability axioms**: $P(E) \ge 0$ for all $E \in \mathcal{F}$, $P(\Omega) = 1$, and $P(E_1 \cup E_2 \cup ...) = \sum_i P(E_i)$ if (E_i) is a countable sequence of *disjoint* events.

イロト イポト イヨト イヨト

Probability Space

A probability space (Ω, \mathcal{F}, P) is defined by

- the sample space Ω whose elements are called outcomes $\omega,$
- a sigma algebra \mathcal{F} of subsets of Ω , whose elements are called **events** E, and
- a measure *P* which determines the **probabilities of events**, $P : \mathcal{F} \rightarrow [0, 1].$

Measure *P* has to satisfy the **probability axioms**: $P(E) \ge 0$ for all $E \in \mathcal{F}$, $P(\Omega) = 1$, and $P(E_1 \cup E_2 \cup ...) = \sum_i P(E_i)$ if (E_i) is a countable sequence of *disjoint* events.

These axioms imply the usual rules of **probability calculus**, e.g., $P(A \cup B) = P(A) + P(B) - P(A \cap B)$, $P(\Omega \setminus E) = 1 - P(E)$, etc.

<ロト < 同ト < ヨト < ヨト -

Outline Probability Space and Random Variables Calculus Joint and Conditional Distributions Probability Expectation Inequalities Law of Large Numbers

Venn Diagrams

Teemu Roos Three Concepts: Information

Probability Calculus

The conditional probability of event B given that event A occurs is defined as

$$P(B \mid A) = rac{P(A \cap B)}{P(A)}$$

for A such that P(A) > 0.

(日) (同) (三) (三)

SQR
Probability Calculus

The conditional probability of event B given that event A occurs is defined as

$$P(B \mid A) = rac{P(A \cap B)}{P(A)}$$
 for A such that $P(A) > 0$.

$$P(A \cap B) = P(A) \times P(B \mid A) = P(B) \times P(A \mid B) .$$

(日) (同) (三) (三)

1

Outline Probability Space and Random Variables Calculus Joint and Conditional Distributions Probability Expectation Law of Large Numbers

Probability Calculus

1

• The conditional probability of event B given that event A occurs is defined as

$$P(B \mid A) = \frac{P(A \cap B)}{P(A)} \quad \text{for } A \text{ such that } P(A) > 0.$$

$$P(A \cap B) = P(A) \times P(B \mid A) = P(B) \times P(A \mid B) \quad .$$

$$\text{Bayes' rule: } P(B \mid A) = \frac{P(A \mid B) \times P(B)}{P(A)} \quad .$$

イロト イポト イヨト イヨト

Probability Calculus

- The conditional probability of event B given that event A occurs is defined as $P(B \mid A) = rac{P(A \cap B)}{P(A)}$ for A such that P(A) > 0. $P(A \cap B) = P(A) \times P(B \mid A) = P(B) \times P(A \mid B) .$ 3 Bayes' rule: $P(B \mid A) = \frac{P(A \mid B) \times P(B)}{P(A)}$. Chain rule: Ν $P(\bigcap_{i=1}^{N} E_i) = \prod P(E_i \mid \bigcap_{i=1}^{i-1} E_j)$ i=1
 - $= P(E_1) \times P(E_2 \mid E_1) \times P(E_3 \mid E_1 \cap E_2) \times \dots \times P(E_N \mid E_1 \cap \dots \cap E_{N-1}) .$

イロト 不得 トイヨト イヨト 二日

SQ (P

Random Variables

Technically, a random variable is a (measurable) function $X : \Omega \to \mathbb{R}$ from the sample space to the reals.

イロト イポト イヨト イヨト

-

Random Variables

 Technically, a random variable is a (measurable) function
 X : $\Omega \to \mathbb{R}$ from the sample space to the reals.

The probability measure P on Ω determines the distribution of X:

$$P_X(A) = \Pr[X \in A] = P(\{\omega : X(\omega) \in A\}) ,$$

where $A \subseteq \mathbb{R}$.

(日) (同) (三) (三)

Random Variables

 Technically, a random variable is a (measurable) function
 X : $\Omega \to \mathbb{R}$ from the sample space to the reals.

The probability measure P on Ω determines the distribution of X:

$$P_X(A) = \Pr[X \in A] = P(\{\omega : X(\omega) \in A\}) ,$$

where $A \subseteq \mathbb{R}$.

In practice, we often forget about the underlying probability space Ω , and just speak of random variable X and its distribution P_X .

(日) (同) (三) (三)

Random Variables

The distribution of a random variable can *always* be represented as a *cumulative distribution function* (cdf) $F_X(x) = \Pr[X \le x]$.

イロト イポト イヨト イヨト

Random Variables

The distribution of a random variable can *always* be represented as a *cumulative distribution function* (cdf) $F_X(x) = \Pr[X \le x]$.

In addition:

A discrete random variable X with countable alphabet X has a probability mass function (pmf) p_X such that Pr[X = x] = p_X(x).

<ロト <同ト < 国ト < 国ト

Random Variables

The distribution of a random variable can *always* be represented as a *cumulative distribution function* (cdf) $F_X(x) = \Pr[X \le x]$.

In addition:

- A discrete random variable X with countable alphabet \mathcal{X} has a probability mass function (pmf) p_X such that $\Pr[X = x] = p_X(x)$.
- A continuous random variable Y has a probability density function (pdf) f_Y such that $Pr[Y \in A] = \int_A f_Y(x) dy$.

Random Variables

The distribution of a random variable can *always* be represented as a *cumulative distribution function* (cdf) $F_X(x) = \Pr[X \le x]$.

In addition:

- A discrete random variable X with countable alphabet \mathcal{X} has a probability mass function (pmf) p_X such that $\Pr[X = x] = p_X(x)$.
- A continuous random variable Y has a probability density function (pdf) f_Y such that $Pr[Y \in A] = \int_A f_Y(x) dy$.

There are also *mixed* random variables that are neither discrete nor continuous. They don't have a pmf or pdf, but they do have a cdf.

Random Variables

The distribution of a random variable can *always* be represented as a *cumulative distribution function* (cdf) $F_X(x) = \Pr[X \le x]$.

In addition:

- A discrete random variable X with countable alphabet X has a probability mass function (pmf) p_X such that Pr[X = x] = p_X(x).
- A continuous random variable Y has a probability density function (pdf) f_Y such that $Pr[Y \in A] = \int_A f_Y(x) dy$.

There are also *mixed* random variables that are neither discrete nor continuous. They don't have a pmf or pdf, but they do have a cdf.

We often omit the subscripts X, Y, \ldots and write p(x), f(y), etc.

・ロト ・ 同ト ・ ヨト ・ ヨト

-

Random Variables

Since random variables are functions, we can define more random variables as functions of random variables: if f is a function, and X and Y are r.v.'s, then $f(X) : \Omega \to \mathbb{R}$ is a r.v., X + Y is a r.v., etc.

< ロ > < 同 > < 三 > < 三 >

Random Variables

Since random variables are functions, we can define more random variables as functions of random variables: if f is a function, and X and Y are r.v.'s, then $f(X) : \Omega \to \mathbb{R}$ is a r.v., X + Y is a r.v., etc.

Example: Let r.v. X be the outcome of a die. The pmf of X is given by $p_X(x) = 1/6$ for all $x \in \{1, 2, 3, 4, 5, 6\}$.

<ロト <同ト < ヨト < ヨト

Random Variables

Since random variables are functions, we can define more random variables as functions of random variables: if f is a function, and X and Y are r.v.'s, then $f(X) : \Omega \to \mathbb{R}$ is a r.v., X + Y is a r.v., etc.

Example: Let r.v. X be the outcome of a die.

- The pmf of X is given by $p_X(x) = 1/6$ for all $x \in \{1, 2, 3, 4, 5, 6\}.$
- The pmf of r.v. X^2 is given by $p_{X^2}(x) = 1/6$ for all $x \in \{1, 4, 9, 16, 25, 36\}.$

Random Variables

Since random variables are functions, we can define more random variables as functions of random variables: if f is a function, and X and Y are r.v.'s, then $f(X) : \Omega \to \mathbb{R}$ is a r.v., X + Y is a r.v., etc.

- The pmf of X is given by $p_X(x) = 1/6$ for all $x \in \{1, 2, 3, 4, 5, 6\}$.
- The pmf of r.v. X^2 is given by $p_{X^2}(x) = 1/6$ for all $x \in \{1, 4, 9, 16, 25, 36\}.$

In particular, a pmf p_X is a function, and hence, $p_X(X)$ is also a random variable. Further, $p_X^2(X)$, $\ln p_X(X)$, etc. are random variables.

Outline Probability Space and Random Variables Calculus Joint and Conditional Distributions Probability Expectation Inequalities Law of Large Numbers

Multivariate Distributions

The probabilistic behavior of two or more random variables is described by multivariate distributions.

The **joint distribution** of r.v.'s X and Y is

$$egin{aligned} & P_{X,Y}(A,B) = \Pr[X \in A \land Y \in B] \ &= P(\{\omega \ : \ X(\omega) \in A, Y(\omega) \in B\}) \end{aligned}$$

イロト イポト イヨト イヨト

Multivariate Distributions

The probabilistic behavior of two or more random variables is described by multivariate distributions.

The **joint distribution** of r.v.'s X and Y is

$$egin{aligned} & P_{X,Y}(A,B) = \Pr[X \in A \ \land \ Y \in B] \ &= P(\{\omega \ : \ X(\omega) \in A, Y(\omega) \in B\}) \end{aligned}$$

For each multivariate distribution $P_{X,Y}$, there are unique marginal distributions P_X and P_Y such that

$$P_X(A) = P_{X,Y}(A,\mathbb{R}), \qquad P_Y(B) = P_{X,Y}(\mathbb{R},B)$$

< ロ > < 同 > < 回 > < 回 > :

Multivariate Distributions

The probabilistic behavior of two or more random variables is described by multivariate distributions.

The **joint distribution** of r.v.'s X and Y is

$$egin{aligned} & P_{X,Y}(A,B) = \Pr[X \in A \ \land \ Y \in B] \ &= P(\{\omega \ : \ X(\omega) \in A, Y(\omega) \in B\}) \end{aligned}$$

For each multivariate distribution $P_{X,Y}$, there are unique **marginal** distributions P_X and P_Y such that

$$P_X(A) = P_{X,Y}(A,\mathbb{R}), \qquad P_Y(B) = P_{X,Y}(\mathbb{R},B)$$

pmf:
$$p_Y(y) = \sum_{x \in \mathcal{X}} p_{X,Y}(x,y)$$
 pdf: $f_Y(y) = \int_{\mathbb{R}} f_{X,Y}(x,y) dx$.

Multivariate Distributions

The **conditional distribution** is defined similar to *conditional probability*:

$$P_{Y|X}(B \mid A) = rac{P_{X,Y}(A,B)}{P_X(A)}$$
 for A such that $P_X(A) > 0$.

3

Multivariate Distributions

The **conditional distribution** is defined similar to *conditional probability*:

$$P_{Y\mid X}(B\mid A) = rac{P_{X,Y}(A,B)}{P_X(A)}$$
 for A such that $P_X(A) > 0.$

For discrete/continuous variables we have:

• discrete r.v.'s:

$$p_{Y|X}(y \mid x) = rac{p_{X,Y}(x,y)}{p_X(x)} , \quad p_X(x) > 0 ,$$

(日) (同) (三) (三)

-

Multivariate Distributions

The **conditional distribution** is defined similar to *conditional probability*:

$$P_{Y\mid X}(B\mid A) = rac{P_{X,Y}(A,B)}{P_X(A)}$$
 for A such that $P_X(A) > 0.$

For discrete/continuous variables we have:

• *discrete* r.v.'s:

$$p_{Y|X}(y \mid x) = rac{p_{X,Y}(x,y)}{p_X(x)} \ , \quad p_X(x) > 0 \ ,$$

• continuous r.v.'s:

< ロ > < 同 > < 三 > < 三 >

Independence

Variable X is said to be **independent** of variable $Y(X \perp Y)$ iff

 $P_{X,Y}(A,B) = P_X(A) \times P_Y(B)$ for all $A,B \subseteq \mathbb{R}$.

1

Independence

Variable X is said to be **independent** of variable Y $(X \perp Y)$ iff

$$\mathsf{P}_{X,Y}(A,B)=\mathsf{P}_X(A) imes\mathsf{P}_Y(B) \quad ext{for all } A,B\subseteq \mathbb{R}.$$

This is equivalent to

 $P_{X|Y}(A \mid B) = P_X(A)$ for all B such that P(B) > 0,

(日) (同) (三) (三)

Independence

and

Variable X is said to be **independent** of variable Y $(X \perp Y)$ iff

$$P_{X,Y}(A,B)=P_X(A) imes P_Y(B) \quad ext{for all } A,B\subseteq \mathbb{R}.$$

This is equivalent to

 $P_{X|Y}(A \mid B) = P_X(A)$ for all B such that P(B) > 0,

 $P_{Y|X}(B \mid A) = P_Y(B)$ for all A such that P(A) > 0.

In words, knowledge about one variable tells nothing about the other. Note that independence is symmetric, $X \perp Y \Leftrightarrow Y \perp X$.

Expectation

The **expectation** (or expected value, or mean) of a discrete random variable is given by

$$E[X] = \sum_{x \in \mathcal{X}} p(x) x$$
.

イロト イポト イヨト イヨト

Expectation

The **expectation** (or expected value, or mean) of a discrete random variable is given by

$$E[X] = \sum_{x \in \mathcal{X}} p(x) x \; \; .$$

The expectation of a continuous random variable is given by

$$E[X] = \int_{\mathcal{X}} f(x) \, x \, dx \; \; .$$

Expectation

The **expectation** (or expected value, or mean) of a discrete random variable is given by

$$E[X] = \sum_{x \in \mathcal{X}} p(x) x \; \; .$$

The expectation of a continuous random variable is given by

$$E[X] = \int_{\mathcal{X}} f(x) \, x \, dx \; \; .$$

In both cases, it is possible that $E[X] = \pm \infty$.

Expectation

The **expectation** (or expected value, or mean) of a discrete random variable is given by

$$E[X] = \sum_{x \in \mathcal{X}} p(x) x \; \; .$$

The expectation of a continuous random variable is given by

$$E[X] = \int_{\mathcal{X}} f(x) \, x \, dx \; \; .$$

In both cases, it is possible that $E[X] = \pm \infty$.

 $E[kX] = kE[X] \qquad E[X+Y] = E[X] + E[Y]$

E[XY] = E[X]E[Y] if $X \perp Y$

Law of Large Numbers

Let X_1, X_2, \ldots be a sequence of independent outcomes of a die, so that $p_{X_i}(x) = 1/6$ for all $i \in \mathbb{N}, x \in \{1, 2, 3, 4, 5, 6\}$.

Image: A math a math

Law of Large Numbers

Let X_1, X_2, \ldots be a sequence of independent outcomes of a die, so that $p_{X_i}(x) = 1/6$ for all $i \in \mathbb{N}, x \in \{1, 2, 3, 4, 5, 6\}$.

Law of Large Numbers

Let $S_n = \sum_{i=1}^n X_n$ be the sum of the first *n* outcomes.

3

Law of Large Numbers

Let $S_n = \sum_{i=1}^n X_n$ be the sum of the first *n* outcomes.

The distribution of S_n is given by

$$P_{S_n}(x) = \frac{\# \text{ of ways to get sum } x \text{ with } n \text{ dice}}{6^n}$$

(日) (同) (三) (三)

1

Law of Large Numbers

Let $S_n = \sum_{i=1}^n X_n$ be the sum of the first *n* outcomes.

The distribution of S_n is given by

$$P_{S_n}(x) = \frac{\# \text{ of ways to get sum } x \text{ with } n \text{ dice}}{6^n}$$

・ロト ・ 同ト ・ ヨト ・

э

Law of Large Numbers

Let $S_n = \sum_{i=1}^n X_n$ be the sum of the first *n* outcomes.

The distribution of S_n is given by

$$P_{S_n}(x) = \frac{\# \text{ of ways to get sum } x \text{ with } n \text{ dice}}{6^n}$$

1

Law of Large Numbers

Let $S_n = \sum_{i=1}^n X_n$ be the sum of the first *n* outcomes.

The distribution of S_n is given by

$$P_{S_n}(x) = \frac{\# \text{ of ways to get sum } x \text{ with } n \text{ dice}}{6^n}$$

Law of Large Numbers

Let $S_n = \sum_{i=1}^n X_n$ be the sum of the first *n* outcomes.

The distribution of S_n is given by

$$P_{S_n}(x) = \frac{\# \text{ of ways to get sum } x \text{ with } n \text{ dice}}{6^n}$$

Law of Large Numbers

Let $S_n = \sum_{i=1}^n X_n$ be the sum of the first *n* outcomes.

The distribution of S_n is given by

$$P_{S_n}(x) = \frac{\# \text{ of ways to get sum } x \text{ with } n \text{ dice}}{6^n}$$

1

Law of Large Numbers

Let $S_n = \sum_{i=1}^n X_n$ be the sum of the first *n* outcomes.

The distribution of S_n is given by

$$P_{S_n}(x) = \frac{\# \text{ of ways to get sum } x \text{ with } n \text{ dice}}{6^n}$$

1

Law of Large Numbers

Let $S_n = \sum_{i=1}^n X_n$ be the sum of the first *n* outcomes.

The distribution of S_n is given by

$$P_{S_n}(x) = \frac{\# \text{ of ways to get sum } x \text{ with } n \text{ dice}}{6^n}$$

э

Law of Large Numbers

Let $S_n = \sum_{i=1}^n X_n$ be the sum of the first *n* outcomes.

The distribution of S_n is given by

$$P_{S_n}(x) = \frac{\# \text{ of ways to get sum } x \text{ with } n \text{ dice}}{6^n}$$

Probability Space and Random Variables Joint and Conditional Distributions Expectation Law of Large Numbers

Law of Large Numbers

LAW OF LARGE NUMBERS IN AVERAGE OF DIE ROLLS

Outline

Calculus

Probability

3

Law of Large Numbers

Weak Law of Large Numbers

For a sequence of independent and identically distributed (i.i.d.) random variables with finite mean μ , the average $\frac{1}{n}S_n$ converges in probability to μ :

$$\lim_{n\to\infty} \Pr\left[\left|\frac{S_n}{n}-\mu\right|<\epsilon\right] = 1 \quad \text{for all } \epsilon > 0.$$

We will use the LLN to prove a result known as the Asymptotic Equipartition Property (AEP), which is a central result in information theory (see next lecture).

<ロト <同ト < ヨト < ヨト

Jensen's Inequality Gibbs's Inequality

Jensen's inequality

J.L.W.V. Jensen, 1859-1925

Teemu Roos Three Concepts: Information

イロト イポト イヨト イヨト

SQR

Jensen's Inequality Gibbs's Inequality

Inqualities: Jensen

Jensen's inequality

If f is a convex function and X is a random variable, then

 $E[f(X)] \ge f(E[X])$.

Moreover, if f is strictly convex, the inequality holds as an equality if and only if X = E[X] with probability 1.

< ロ > < 同 > < 三 > < 三 >

Jensen's Inequality Gibbs's Inequality

Inqualities: Jensen

Jensen's inequality

If f is a convex function and X is a random variable, then

 $E[f(X)] \ge f(E[X])$.

Moreover, if f is strictly convex, the inequality holds as an equality if and only if X = E[X] with probability 1.

We give a proof for the first part of the theorem in the special case where X has a finite domain.

イロト イポト イヨト イヨト

Jensen's Inequality Gibbs's Inequality

Inqualities: Jensen

Jensen's inequality

If f is a convex function and X is a random variable, then

 $E[f(X)] \ge f(E[X])$.

Moreover, if f is strictly convex, the inequality holds as an equality if and only if X = E[X] with probability 1.

We give a proof for the first part of the theorem in the special case where X has a finite domain.

For two mass points, we have $p(x_2) = 1 - p(x_1)$, and the claim holds by definition of convexity:

$$p(x_1) f(x_1) + p(x_2) f(x_2) \ge f(p(x_1) x_1 + p(x_2) x_2)$$
.

イロト イポト イヨト イヨト

Jensen's Inequality Gibbs's Inequality

Inequalities: Jensen

Induction: Assume that (*) the theorem holds for N-1 mass points.

$$\sum_{i=1}^{N} p(x_i) f(x_i) = p(x_N) f(x_N) + (1 - p(x_N)) \sum_{i=1}^{N-1} p'(x_i) f(x_i)$$

$$\geq p(x_N) f(x_N) + (1 - p(x_N)) f\left(\sum_{i=1}^{N-1} p'(x_i) x_i\right) (*)$$

$$\geq f\left(p(x_N) x_N + (1 - p(x_N)) \sum_{i=1}^{N-1} p'(x_i) x_i\right) \text{ (convexity)}$$

$$= f\left(\sum_{i=1}^{N} p(x_i) x_i\right) ,$$
where $p'(x_i) = \frac{p(x_i)}{1 - p(x_N)}.$

◆ロ > ◆母 > ◆臣 > ◆臣 >

MQ (P

Jensen's Inequality Gibbs's Inequality

Inequalities: Jensen

Induction: Assume that (*) the theorem holds for N-1 mass points.

$$\sum_{i=1}^{N} p(x_i) f(x_i) = p(x_N) f(x_N) + (1 - p(x_N)) \sum_{i=1}^{N-1} p'(x_i) f(x_i)$$

$$\geq p(x_N) f(x_N) + (1 - p(x_N)) f\left(\sum_{i=1}^{N-1} p'(x_i) x_i\right) (*)$$

$$\geq f\left(p(x_N) x_N + (1 - p(x_N)) \sum_{i=1}^{N-1} p'(x_i) x_i\right) \text{ (convexity)}$$

$$= f\left(\sum_{i=1}^{N} p(x_i) x_i\right) ,$$

where $p'(x_i) = \frac{p(x_i)}{1 - p(x_N)}.$

・ロト ・回ト ・ヨト ・ヨト

SQC

1

Jensen's Inequality Gibbs's Inequality

Inequalities: Jensen

Induction: Assume that (*) the theorem holds for N-1 mass points.

$$\sum_{i=1}^{N} p(x_i) f(x_i) = p(x_N) f(x_N) + (1 - p(x_N)) \sum_{i=1}^{N-1} p'(x_i) f(x_i)$$

$$\geq p(x_N) f(x_N) + (1 - p(x_N)) f\left(\sum_{i=1}^{N-1} p'(x_i) x_i\right) (*)$$

$$\geq f\left(p(x_N) x_N + (1 - p(x_N)) \sum_{i=1}^{N-1} p'(x_i) x_i\right) \text{ (convexity)}$$

$$= f\left(\sum_{i=1}^{N} p(x_i) x_i\right) ,$$
where $p'(x_i) = \frac{p(x_i)}{1 - p(x_N)}.$

・ロト ・部 ト ・ヨト ・ヨト

3

SQC

Jensen's Inequality Gibbs's Inequality

Inequalities: Jensen

Induction: Assume that (*) the theorem holds for N-1 mass points.

$$\sum_{i=1}^{N} p(x_i) f(x_i) = p(x_N) f(x_N) + (1 - p(x_N)) \sum_{i=1}^{N-1} p'(x_i) f(x_i)$$

$$\geq p(x_N) f(x_N) + (1 - p(x_N)) f\left(\sum_{i=1}^{N-1} p'(x_i) x_i\right) (*)$$

$$\geq f\left(p(x_N) x_N + (1 - p(x_N)) \sum_{i=1}^{N-1} p'(x_i) x_i\right) \text{ (convexity)}$$

$$= f\left(\sum_{i=1}^{N} p(x_i) x_i\right) ,$$
where $p'(x_i) = \frac{p(x_i)}{1 - p(x_N)}.$

・ロト ・回ト ・ヨト ・ヨト

3

SQR

Jensen's Inequality Gibbs's Inequality

Inequalities: Jensen

Induction: Assume that (*) the theorem holds for N-1 mass points.

$$\sum_{i=1}^{N} p(x_i) f(x_i) = p(x_N) f(x_N) + (1 - p(x_N)) \sum_{i=1}^{N-1} p'(x_i) f(x_i)$$

$$\geq p(x_N) f(x_N) + (1 - p(x_N)) f\left(\sum_{i=1}^{N-1} p'(x_i) x_i\right) (*)$$

$$\geq f\left(p(x_N) x_N + (1 - p(x_N)) \sum_{i=1}^{N-1} p'(x_i) x_i\right) \text{ (convexity)}$$

$$= f\left(\sum_{i=1}^{N} p(x_i) x_i\right) ,$$

where
$$p'(x_i) = \frac{p(x_i)}{1 - p(x_N)}$$
.

◆ロ > ◆母 > ◆臣 > ◆臣 >

MQ (P

Jensen's Inequality Gibbs's Inequality

Gibbs' inequality

W. Gibbs, 1839-1903

Teemu Roos Three Concepts: Information

イロト イポト イヨト イヨト

SQR

Jensen's Inequality Gibbs's Inequality

Inqualities: Gibbs

Gibbs' inequality

For any two discrete probability distributions p and q, we have

$$\sum_{x \in \mathcal{X}} p(x) \log_2 p(x) \ge \sum_{x \in \mathcal{X}} p(x) \log_2 q(x)$$

with equality if and only if p(x) = q(x) for all $x \in \mathcal{X}$.

Proof. Since $\log_2 x = \frac{1}{\ln 2} \ln x$, dividing both sides by $\ln 2$ changes \log_2 to \ln .

・ロト ・ 同ト ・ ヨト ・ ヨト

Jensen's Inequality Gibbs's Inequality

Inqualities: Gibbs

Gibbs' inequality

For any two discrete probability distributions p and q, we have

$$\sum_{x \in \mathcal{X}} p(x) \ln p(x) \ge \sum_{x \in \mathcal{X}} p(x) \ln q(x)$$

with equality if and only if p(x) = q(x) for all $x \in \mathcal{X}$.

Proof. Since $\log_2 x = \frac{1}{\ln 2} \ln x$, dividing both sides by $\ln 2$ changes \log_2 to \ln .

・ロト ・ 同ト ・ ヨト ・ ヨト

Jensen's Inequality Gibbs's Inequality

Inequalities: Gibbs

$$\sum_{x \in \mathcal{X}} p(x) \ln p(x) \ge \sum_{x \in \mathcal{X}} p(x) \ln q(x)$$

$$\sum_{x \in \mathcal{X}} p(x) \ln q(x) - \sum_{x \in \mathcal{X}} p(x) \ln p(x) = \sum_{x \in \mathcal{X}} p(x) (\ln q(x) - \ln p(x))$$
$$= \sum_{x \in \mathcal{X}} p(x) \ln \frac{q(x)}{p(x)} \qquad \boxed{\ln x - \ln y = \ln \frac{x}{y}}$$
$$\leq \sum_{x \in \mathcal{X}} p(x) \left(\frac{q(x)}{p(x)} - 1\right) \qquad \boxed{\ln x \leq x - 1}$$
$$= \sum_{x \in \mathcal{X}} q(x) - \sum_{x \in \mathcal{X}} p(x) = 1 - 1 = 0 \quad \Box$$

Jensen's Inequality Gibbs's Inequality

Inequalities: Gibbs

$$\sum_{x \in \mathcal{X}} p(x) \ln p(x) \ge \sum_{x \in \mathcal{X}} p(x) \ln q(x)$$

$$\sum_{x \in \mathcal{X}} p(x) \ln q(x) - \sum_{x \in \mathcal{X}} p(x) \ln p(x) = \sum_{x \in \mathcal{X}} p(x) (\ln q(x) - \ln p(x))$$
$$= \sum_{x \in \mathcal{X}} p(x) \ln \frac{q(x)}{p(x)} \qquad \boxed{\ln x - \ln y = \ln \frac{x}{y}}$$
$$\leq \sum_{x \in \mathcal{X}} p(x) \left(\frac{q(x)}{p(x)} - 1\right) \qquad \boxed{\ln x \le x - 1}$$
$$= \sum_{x \in \mathcal{X}} q(x) - \sum_{x \in \mathcal{X}} p(x) = 1 - 1 = 0 \quad \Box$$

Jensen's Inequality Gibbs's Inequality

Inequalities: Gibbs

$$\sum_{x \in \mathcal{X}} p(x) \ln p(x) \ge \sum_{x \in \mathcal{X}} p(x) \ln q(x)$$

$$\sum_{x \in \mathcal{X}} p(x) \ln q(x) - \sum_{x \in \mathcal{X}} p(x) \ln p(x) = \sum_{x \in \mathcal{X}} p(x) (\ln q(x) - \ln p(x))$$
$$= \sum_{x \in \mathcal{X}} p(x) \ln \frac{q(x)}{p(x)} \qquad \boxed{\ln x - \ln y = \ln \frac{x}{y}}$$
$$\leq \sum_{x \in \mathcal{X}} p(x) \left(\frac{q(x)}{p(x)} - 1\right) \qquad \boxed{\ln x \le x - 1}$$
$$= \sum_{x \in \mathcal{X}} q(x) - \sum_{x \in \mathcal{X}} p(x) = 1 - 1 = 0 \quad \Box$$

Jensen's Inequality Gibbs's Inequality

Inequalities: Gibbs

$$\sum_{x \in \mathcal{X}} p(x) \ln p(x) \ge \sum_{x \in \mathcal{X}} p(x) \ln q(x)$$

$$\sum_{x \in \mathcal{X}} p(x) \ln q(x) - \sum_{x \in \mathcal{X}} p(x) \ln p(x) = \sum_{x \in \mathcal{X}} p(x) (\ln q(x) - \ln p(x))$$
$$= \sum_{x \in \mathcal{X}} p(x) \ln \frac{q(x)}{p(x)} \qquad \boxed{\ln x - \ln y = \ln \frac{x}{y}}$$
$$\leq \sum_{x \in \mathcal{X}} p(x) \left(\frac{q(x)}{p(x)} - 1\right) \qquad \boxed{\ln x \leq x - 1}$$
$$= \sum_{x \in \mathcal{X}} q(x) - \sum_{x \in \mathcal{X}} p(x) = 1 - 1 = 0 \quad \Box$$

Outline Calculus Probability Inequalities	Jensen's Inequality Gibbs's Inequality	
--	---	--

For next week, read Chapter 2 of Cover & Thomas and do **home assignment** (see course web page).

SQC

-