Three Concepts: Information

Lecture 2: Mathematical Preliminaries

Teemu Roos
Complex Systems Computation Group
Department of Computer Science, University of Helsinki

Fall 2007

Lecture 2: Mathematical Preliminaries

"I think you should be more explicit here in step two."
(1) Calculus

- Functions
- Limits and Convergence
- Convexity

Inequalities
(1) Calculus

- Functions
- Limits and Convergence
- Convexity
(2) Probability
- Probability Space and Random Variables
- Joint and Conditional Distributions
- Expectation
- Law of Large Numbers

(1) Calculus
- Functions
- Limits and Convergence
- Convexity
(2) Probability
- Probability Space and Random Variables
- Joint and Conditional Distributions
- Expectation
- Law of Large Numbers
(3) Inequalities
- Jensen's Inequality
- Gibbs's Inequality

Calculus

G.W. Leibniz, 1646-1716

Isaac Newton, 1643-1727

Functions

Functions associate with each possible input value x a unique output value y. The set of possible inputs is called the domain ("alphabet"). The set of possible outputs is called the codomain, and the set of actual outcomes is called the range. (Usually we just use the term 'range' for both.)

$$
f: \mathcal{X} \rightarrow \mathcal{Y}
$$

Outline

Examples: Exponent

Exponent function $\exp : \mathbb{R} \rightarrow \mathbb{R}^{+}, \exp k=e^{k}=\overbrace{e \times e \times \ldots \times e}$: multiplicative growth (nuclear reaction, "interest on interest", ...)

Outline

Examples: Exponent

Exponent function $\exp : \mathbb{R} \rightarrow \mathbb{R}^{+}, \exp k=e^{k}=\overbrace{e \times e \times \ldots \times e}$: multiplicative growth (nuclear reaction, "interest on interest", ...)
$\exp x \cdot \exp y=\exp (x+y)$

Examples: Exponent

Exponent function $\exp : \mathbb{R} \rightarrow \mathbb{R}^{+}, \exp k=e^{k}=\overbrace{e \times e \times \ldots \times e}$: multiplicative growth (nuclear reaction, "interest on interest", ...)
$\exp x \cdot \exp y=\exp (x+y) \quad$ Derivative $\frac{d \exp x}{d x}=\exp x$.

Outline

Examples: Logarithm

Natural logarithm $\ln : \mathbb{R}^{+} \rightarrow \mathbb{R}, \ln \exp x=x:$ time to grow to x, number of digits $\left(\log _{10}\right)$.

Outline

Examples: Logarithm

Natural logarithm $\ln : \mathbb{R}^{+} \rightarrow \mathbb{R}, \ln \exp x=x:$ time to grow to x, number of digits $\left(\log _{10}\right)$.

General (base a) logarithm, $\log _{a} a^{x}=x: \quad \log _{a} x=\frac{1}{\ln a} \ln x$

Outline

Examples: Logarithm

$\ln x y=\ln x+\ln y$

Outline

Examples: Logarithm

$\ln x y=\ln x+\ln y \quad \ln x^{r}=r \ln x$

Outline

Examples: Logarithm

$\ln x y=\ln x+\ln y \quad \ln x^{r}=r \ln x \quad \ln \frac{1}{x}=-\ln x$

Outline

Examples: Logarithm

$\ln x y=\ln x+\ln y \quad \ln x^{r}=r \ln x \quad \ln \frac{1}{x}=-\ln x \quad \ln \frac{x}{y}=\ln x-\ln y$

Outline

Examples: Logarithm

$\ln x y=\ln x+\ln y \quad \ln x^{r}=r \ln x \quad \ln \frac{1}{x}=-\ln x \quad \ln \frac{x}{y}=\ln x-\ln y$
$\ln x \leq x-1$ with equality if and only if $x=1$
(NB: doesn't work with $\log _{a} x$ if $a \neq e$)

Outline

Examples: Logarithm

$\ln x y=\ln x+\ln y \quad \ln x^{r}=r \ln x \quad \ln \frac{1}{x}=-\ln x \quad \ln \frac{x}{y}=\ln x-\ln y$
$\ln x \leq x-1$ with equality if and only if $x=1$
(NB: doesn't work with $\log _{a} x$ if $a \neq e$)

$$
\frac{d \ln x}{d x}=\frac{1}{x}
$$

Outline

Limits and Convergence

- A sequence of values $\left(x_{i}: i \in \mathbb{N}\right)$ converges to limit L, $\lim _{i \rightarrow \infty} x_{i}=L$, iff for any $\epsilon>0$ there exists a number $N \in \mathbb{N}$ such that

$$
\left|x_{i}-L\right|<\epsilon \quad \text { for all } i \geq N .
$$

Outline

Limits and Convergence

- A sequence of values $\left(x_{i}: i \in \mathbb{N}\right)$ converges to limit L, $\lim _{i \rightarrow \infty} x_{i}=L$, iff for any $\epsilon>0$ there exists a number $N \in \mathbb{N}$ such that

$$
\left|x_{i}-L\right|<\epsilon \quad \text { for all } i \geq N .
$$

- $f(x)$ has a limit L as x approaches $c, \lim _{x \rightarrow c} f(x)=L$, (from above c^{+}/below c^{-}) iff for any $\epsilon>0$ there exists a number $\delta>0$ such that

$$
|f(x)-L|<\epsilon \quad \text { for all } \begin{cases}c<x<c+\delta & \text { 'above' } \\ c-\delta<x<c & \text { 'below' } \\ 0<|x-c|<\delta & -\end{cases}
$$

Outline

Example: Logarithm Again

Even though $x \ln x$ is undefined at $x=0$, we have (by l'Hôpital's rule):

$$
\lim _{x \rightarrow 0^{+}} x \ln x=0
$$

Outline

Convexity

Function $f: \mathcal{X} \rightarrow \mathbb{R}$ is said to be convex iff for any $x, y \in \mathcal{X}$ and any $t \in[0,1]$, we have

$$
f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)
$$

Convexity

Function $f: \mathcal{X} \rightarrow \mathbb{R}$ is said to be convex iff for any $x, y \in \mathcal{X}$ and any $t \in[0,1]$, we have

$$
f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)
$$

Function f is strictly convex iff the above inequality holds strictly ($<$ ' instead of ' \leq ').

Convexity

Function $f: \mathcal{X} \rightarrow \mathbb{R}$ is said to be convex iff for any $x, y \in \mathcal{X}$ and any $t \in[0,1]$, we have

$$
f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)
$$

Function f is strictly convex iff the above inequality holds strictly ($<$ ' instead of ' \leq ').

Function f is (strictly) concave iff the above holds for $-f$.

Functions

Convexity and Derivatives

Theorem

If function f has a second derivative $f^{\prime \prime}$, and $f^{\prime \prime}$ is non-negative (≥ 0) for all x, then f is convex. If $f^{\prime \prime}$ is positive (>0) for all x, then f is strictly convex.

Convexity and Derivatives

Theorem

If function f has a second derivative $f^{\prime \prime}$, and $f^{\prime \prime}$ is non-negative (≥ 0) for all x, then f is convex. If $f^{\prime \prime}$ is positive (>0) for all x, then f is strictly convex.

Example: $f^{\prime}(x)=\frac{d \exp x}{d x}=\exp x \Rightarrow f^{\prime \prime}(x)=\exp x>0$. Hence exp is strictly convex.

Convexity and Derivatives

Theorem

If function f has a second derivative $f^{\prime \prime}$, and $f^{\prime \prime}$ is non-negative (≥ 0) for all x, then f is convex. If $f^{\prime \prime}$ is positive (>0) for all x, then f is strictly convex.

e^{x} is conve ${ }^{x}$!

Example: $f^{\prime}(x)=\frac{d \exp x}{d x}=\exp x \Rightarrow f^{\prime \prime}(x)=\exp x>0$. Hence exp is strictly convex.

Probability Space and Random Variables Joint and Conditional Distributions

Expectation

Probability

A.N. Kolmogorov, 1903-1987

Probability Space and Random Variables

Probability Space

A probability space (Ω, \mathcal{F}, P) is defined by

Probability Space and Random Variables

Probability Space

A probability space (Ω, \mathcal{F}, P) is defined by

- the sample space Ω whose elements are called outcomes ω,

Probability Space

A probability space (Ω, \mathcal{F}, P) is defined by

- the sample space Ω whose elements are called outcomes ω,
- a sigma algebra \mathcal{F} of subsets of Ω, whose elements are called events E, and

Probability Space

A probability space (Ω, \mathcal{F}, P) is defined by

- the sample space Ω whose elements are called outcomes ω,
- a sigma algebra \mathcal{F} of subsets of Ω, whose elements are called events E, and
- a measure P which determines the probabilities of events, $P: \mathcal{F} \rightarrow[0,1]$.

Probability Space

A probability space (Ω, \mathcal{F}, P) is defined by

- the sample space Ω whose elements are called outcomes ω,
- a sigma algebra \mathcal{F} of subsets of Ω, whose elements are called events E, and
- a measure P which determines the probabilities of events, $P: \mathcal{F} \rightarrow[0,1]$.

Measure P has to satisfy the probability axioms: $P(E) \geq 0$ for all $E \in \mathcal{F}, P(\Omega)=1$, and $P\left(E_{1} \cup E_{2} \cup \ldots\right)=\sum_{i} P\left(E_{i}\right)$ if $\left(E_{i}\right)$ is a countable sequence of disjoint events.

Probability Space

A probability space (Ω, \mathcal{F}, P) is defined by

- the sample space Ω whose elements are called outcomes ω,
- a sigma algebra \mathcal{F} of subsets of Ω, whose elements are called events E, and
- a measure P which determines the probabilities of events, $P: \mathcal{F} \rightarrow[0,1]$.

Measure P has to satisfy the probability axioms: $P(E) \geq 0$ for all $E \in \mathcal{F}, P(\Omega)=1$, and $P\left(E_{1} \cup E_{2} \cup \ldots\right)=\sum_{i} P\left(E_{i}\right)$ if $\left(E_{i}\right)$ is a countable sequence of disjoint events.

These axioms imply the usual rules of probability calculus, e.g., $P(A \cup B)=P(A)+P(B)-P(A \cap B), P(\Omega \backslash E)=1-P(E)$, etc.

Probability Space and Random Variables
Joint and Conditional Distributions
Expectation
Law of Large Numbers

Venn Diagrams

Teemu Roos
Three Concepts: Information

Probability Calculus

(1) The conditional probability of event B given that event A occurs is defined as

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)} \quad \text { for } A \text { such that } P(A)>0 .
$$

Probability Calculus

(1) The conditional probability of event B given that event A occurs is defined as

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)} \quad \text { for } A \text { such that } P(A)>0 .
$$

(2) $P(A \cap B)=P(A) \times P(B \mid A)=P(B) \times P(A \mid B)$.

Probability Calculus

(1) The conditional probability of event B given that event A occurs is defined as

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)} \quad \text { for } A \text { such that } P(A)>0 .
$$

(2) $P(A \cap B)=P(A) \times P(B \mid A)=P(B) \times P(A \mid B)$.
(3) Bayes' rule: $P(B \mid A)=\frac{P(A \mid B) \times P(B)}{P(A)}$.

Probability Calculus

(1) The conditional probability of event B given that event A occurs is defined as

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)} \quad \text { for } A \text { such that } P(A)>0 .
$$

(2) $P(A \cap B)=P(A) \times P(B \mid A)=P(B) \times P(A \mid B)$.
(3) Bayes' rule: $P(B \mid A)=\frac{P(A \mid B) \times P(B)}{P(A)}$.
(9) Chain rule:

$$
\begin{aligned}
P\left(\cap_{i=1}^{N} E_{i}\right)= & \prod_{i=1}^{N} P\left(E_{i} \mid \cap_{j=1}^{i-1} E_{j}\right) \\
= & P\left(E_{1}\right) \times P\left(E_{2} \mid E_{1}\right) \times P\left(E_{3} \mid E_{1} \cap E_{2}\right) \times \ldots \\
& \times P\left(E_{N} \mid E_{1} \cap \ldots \cap E_{N-1}\right)
\end{aligned}
$$

Random Variables

Technically, a random variable is a (measurable) function $X: \Omega \rightarrow \mathbb{R}$ from the sample space to the reals.

Random Variables

Technically, a random variable is a (measurable) function $X: \Omega \rightarrow \mathbb{R}$ from the sample space to the reals.

The probability measure P on Ω determines the distribution of X :

$$
P_{X}(A)=\operatorname{Pr}[X \in A]=P(\{\omega: X(\omega) \in A\}),
$$

where $A \subseteq \mathbb{R}$.

Random Variables

Technically, a random variable is a (measurable) function $X: \Omega \rightarrow \mathbb{R}$ from the sample space to the reals.

The probability measure P on Ω determines the distribution of X :

$$
P_{X}(A)=\operatorname{Pr}[X \in A]=P(\{\omega: X(\omega) \in A\}),
$$

where $A \subseteq \mathbb{R}$.
In practice, we often forget about the underlying probability space Ω, and just speak of random variable X and its distribution P_{X}.

Probability Space and Random Variables Joint and Conditional Distributions Expectation
Law of Large Numbers

Random Variables

The distribution of a random variable can always be represented as a cumulative distribution function $(c d f) F_{X}(x)=\operatorname{Pr}[X \leq x]$.

Random Variables

The distribution of a random variable can always be represented as a cumulative distribution function (cdf) $F_{X}(x)=\operatorname{Pr}[X \leq x]$.

In addition:

- A discrete random variable X with countable alphabet \mathcal{X} has a probability mass function (pmf) p_{X} such that $\operatorname{Pr}[X=x]=p_{X}(x)$.

Random Variables

The distribution of a random variable can always be represented as a cumulative distribution function (cdf) $F_{X}(x)=\operatorname{Pr}[X \leq x]$.

In addition:

- A discrete random variable X with countable alphabet \mathcal{X} has a probability mass function (pmf) p_{X} such that $\operatorname{Pr}[X=x]=p_{X}(x)$.
- A continuous random variable Y has a probability density function (pdf) f_{Y} such that $\operatorname{Pr}[Y \in A]=\int_{A} f_{Y}(x) d y$.

Random Variables

The distribution of a random variable can always be represented as a cumulative distribution function $(c d f) F_{X}(x)=\operatorname{Pr}[X \leq x]$.

In addition:

- A discrete random variable X with countable alphabet \mathcal{X} has a probability mass function (pmf) p_{X} such that $\operatorname{Pr}[X=x]=p_{X}(x)$.
- A continuous random variable Y has a probability density function (pdf) f_{Y} such that $\operatorname{Pr}[Y \in A]=\int_{A} f_{Y}(x) d y$.
There are also mixed random variables that are neither discrete nor continuous. They don't have a pmf or pdf, but they do have a cdf.

Random Variables

The distribution of a random variable can always be represented as a cumulative distribution function (cdf) $F_{X}(x)=\operatorname{Pr}[X \leq x]$.

In addition:

- A discrete random variable X with countable alphabet \mathcal{X} has a probability mass function (pmf) p_{X} such that $\operatorname{Pr}[X=x]=p_{X}(x)$.
- A continuous random variable Y has a probability density function (pdf) f_{Y} such that $\operatorname{Pr}[Y \in A]=\int_{A} f_{Y}(x) d y$.
There are also mixed random variables that are neither discrete nor continuous. They don't have a pmf or pdf, but they do have a cdf.

We often omit the subscripts X, Y, \ldots and write $p(x), f(y)$, etc.

Random Variables

Since random variables are functions, we can define more random variables as functions of random variables: if f is a function, and X and Y are r.v.'s, then $f(X): \Omega \rightarrow \mathbb{R}$ is a r.v., $X+Y$ is a r.v., etc.

Random Variables

Since random variables are functions, we can define more random variables as functions of random variables: if f is a function, and X and Y are r.v.'s, then $f(X): \Omega \rightarrow \mathbb{R}$ is a r.v., $X+Y$ is a r.v., etc.

Example: Let r.v. X be the outcome of a die.

- The pmf of X is given by $p_{X}(x)=1 / 6$ for all

$$
x \in\{1,2,3,4,5,6\}
$$

Random Variables

Since random variables are functions, we can define more random variables as functions of random variables: if f is a function, and X and Y are r.v.'s, then $f(X): \Omega \rightarrow \mathbb{R}$ is a r.v., $X+Y$ is a r.v., etc.

Example: Let r.v. X be the outcome of a die.

- The pmf of X is given by $p_{X}(x)=1 / 6$ for all $x \in\{1,2,3,4,5,6\}$.
- The pmf of r.v. X^{2} is given by $p_{X^{2}}(x)=1 / 6$ for all $x \in\{1,4,9,16,25,36\}$.

Random Variables

Since random variables are functions, we can define more random variables as functions of random variables: if f is a function, and X and Y are r.v.'s, then $f(X): \Omega \rightarrow \mathbb{R}$ is a r.v., $X+Y$ is a r.v., etc.

Example: Let r.v. X be the outcome of a die.

- The pmf of X is given by $p_{X}(x)=1 / 6$ for all

$$
x \in\{1,2,3,4,5,6\} .
$$

- The pmf of r.v. X^{2} is given by $p_{X^{2}}(x)=1 / 6$ for all $x \in\{1,4,9,16,25,36\}$.

!In particular, a pmf p_{X} is a function, and hence, $p_{X}(X)$ is also a random variable. Further, $p_{X}^{2}(X), \ln p_{X}(X)$, etc. are random variables.

Multivariate Distributions

The probabilistic behavior of two or more random variables is described by multivariate distributions.

The joint distribution of r.v.'s X and Y is

$$
\begin{aligned}
P_{X, Y}(A, B) & =\operatorname{Pr}[X \in A \wedge Y \in B] \\
& =P(\{\omega: X(\omega) \in A, Y(\omega) \in B\}) .
\end{aligned}
$$

Multivariate Distributions

The probabilistic behavior of two or more random variables is described by multivariate distributions.

The joint distribution of r.v.'s X and Y is

$$
\begin{aligned}
P_{X, Y}(A, B) & =\operatorname{Pr}[X \in A \wedge Y \in B] \\
& =P(\{\omega: X(\omega) \in A, Y(\omega) \in B\}) .
\end{aligned}
$$

For each multivariate distribution $P_{X, Y}$, there are unique marginal distributions P_{X} and P_{Y} such that

$$
P_{X}(A)=P_{X, Y}(A, \mathbb{R}), \quad P_{Y}(B)=P_{X, Y}(\mathbb{R}, B)
$$

Multivariate Distributions

The probabilistic behavior of two or more random variables is described by multivariate distributions.

The joint distribution of r.v.'s X and Y is

$$
\begin{aligned}
P_{X, Y}(A, B) & =\operatorname{Pr}[X \in A \wedge Y \in B] \\
& =P(\{\omega: X(\omega) \in A, Y(\omega) \in B\}) .
\end{aligned}
$$

For each multivariate distribution $P_{X, Y}$, there are unique marginal distributions P_{X} and P_{Y} such that

$$
\begin{aligned}
P_{X}(A)=P_{X, Y}(A, \mathbb{R}), \quad P_{Y}(B)=P_{X, Y}(\mathbb{R}, B) \\
\text { pmf: } p_{Y}(y)=\sum_{x \in \mathcal{X}} p_{X, Y}(x, y) \quad \text { pdf: } f_{Y}(y)=\int_{\mathbb{R}} f_{X, Y}(x, y) d x .
\end{aligned}
$$

Multivariate Distributions

The conditional distribution is defined similar to conditional probability:

$$
P_{Y \mid X}(B \mid A)=\frac{P_{X, Y}(A, B)}{P_{X}(A)} \quad \text { for } A \text { such that } P_{X}(A)>0
$$

Multivariate Distributions

The conditional distribution is defined similar to conditional probability:

$$
P_{Y \mid X}(B \mid A)=\frac{P_{X, Y}(A, B)}{P_{X}(A)} \quad \text { for } A \text { such that } P_{X}(A)>0
$$

For discrete/continuous variables we have:

- discrete r.v.'s:

$$
p_{Y \mid X}(y \mid x)=\frac{p_{X, Y}(x, y)}{p_{X}(x)}, \quad p_{X}(x)>0
$$

Multivariate Distributions

The conditional distribution is defined similar to conditional probability:

$$
P_{Y \mid X}(B \mid A)=\frac{P_{X, Y}(A, B)}{P_{X}(A)} \quad \text { for } A \text { such that } P_{X}(A)>0
$$

For discrete/continuous variables we have:

- discrete r.v.'s:

$$
p_{Y \mid X}(y \mid x)=\frac{p_{X, Y}(x, y)}{p_{X}(x)}, \quad p_{X}(x)>0
$$

- continuous r.v.'s:

$$
f_{Y \mid X}(y \mid x)=\frac{f_{X, Y}(x, y)}{f_{X}(x)}, \quad f_{X}(x)>0
$$

Probability Space and Random Variables

Independence

Variable X is said to be independent of variable $Y(X \Perp Y)$ iff

$$
P_{X, Y}(A, B)=P_{X}(A) \times P_{Y}(B) \quad \text { for all } A, B \subseteq \mathbb{R}
$$

Probability Space and Random Variables

Independence

Variable X is said to be independent of variable $Y(X \Perp Y)$ iff

$$
P_{X, Y}(A, B)=P_{X}(A) \times P_{Y}(B) \quad \text { for all } A, B \subseteq \mathbb{R}
$$

This is equivalent to

$$
P_{X \mid Y}(A \mid B)=P_{X}(A) \text { for all } B \text { such that } P(B)>0
$$

Independence

Variable X is said to be independent of variable $Y(X \Perp Y)$ iff

$$
P_{X, Y}(A, B)=P_{X}(A) \times P_{Y}(B) \quad \text { for all } A, B \subseteq \mathbb{R}
$$

This is equivalent to

$$
P_{X \mid Y}(A \mid B)=P_{X}(A) \text { for all } B \text { such that } P(B)>0
$$

and

$$
P_{Y \mid X}(B \mid A)=P_{Y}(B) \quad \text { for all } A \text { such that } P(A)>0
$$

In words, knowledge about one variable tells nothing about the other. Note that independence is symmetric, $X \Perp Y \Leftrightarrow Y \Perp X$.

Probability Space and Random Variables Joint and Conditional Distributions
Expectation
Law of Large Numbers

Expectation

The expectation (or expected value, or mean) of a discrete random variable is given by

$$
E[X]=\sum_{x \in \mathcal{X}} p(x) x
$$

Probability Space and Random Variables

Expectation

The expectation (or expected value, or mean) of a discrete random variable is given by

$$
E[X]=\sum_{x \in \mathcal{X}} p(x) x
$$

The expectation of a continuous random variable is given by

$$
E[X]=\int_{\mathcal{X}} f(x) x d x
$$

Probability Space and Random Variables

Expectation

The expectation (or expected value, or mean) of a discrete random variable is given by

$$
E[X]=\sum_{x \in \mathcal{X}} p(x) x
$$

The expectation of a continuous random variable is given by

$$
E[X]=\int_{\mathcal{X}} f(x) x d x
$$

In both cases, it is possible that $E[X]= \pm \infty$.

Expectation

The expectation (or expected value, or mean) of a discrete random variable is given by

$$
E[X]=\sum_{x \in \mathcal{X}} p(x) x
$$

The expectation of a continuous random variable is given by

$$
E[X]=\int_{\mathcal{X}} f(x) x d x
$$

In both cases, it is possible that $E[X]= \pm \infty$.

$$
\begin{aligned}
& E[k X]=k E[X] \quad E[X+Y]=E[X]+E[Y] \\
& E[X Y]=E[X] E[Y] \quad \text { if } X \Perp Y
\end{aligned}
$$

Probability Space and Random Variables

Law of Large Numbers

Let X_{1}, X_{2}, \ldots be a sequence of independent outcomes of a die, so that $p_{X_{i}}(x)=1 / 6$ for all $i \in \mathbb{N}, x \in\{1,2,3,4,5,6\}$.

Law of Large Numbers

Let X_{1}, X_{2}, \ldots be a sequence of independent outcomes of a die, so that $p_{X_{i}}(x)=1 / 6$ for all $i \in \mathbb{N}, x \in\{1,2,3,4,5,6\}$.

Probability Space and Random Variables

Law of Large Numbers

Let $S_{n}=\sum_{i=1}^{n} X_{n}$ be the sum of the first n outcomes.

Law of Large Numbers

Let $S_{n}=\sum_{i=1}^{n} X_{n}$ be the sum of the first n outcomes.
The distribution of S_{n} is given by

$$
P_{S_{n}}(x)=\frac{\# \text { of ways to get sum } x \text { with } n \text { dice }}{6^{n}}
$$

Law of Large Numbers

Let $S_{n}=\sum_{i=1}^{n} X_{n}$ be the sum of the first n outcomes.
The distribution of S_{n} is given by

$$
P_{S_{n}}(x)=\frac{\# \text { of ways to get sum } x \text { with } n \text { dice }}{6^{n}}
$$

distribution of S_{1}

Law of Large Numbers

Let $S_{n}=\sum_{i=1}^{n} X_{n}$ be the sum of the first n outcomes.
The distribution of S_{n} is given by

$$
P_{S_{n}}(x)=\frac{\# \text { of ways to get sum } x \text { with } n \text { dice }}{6^{n}}
$$

Law of Large Numbers

Let $S_{n}=\sum_{i=1}^{n} X_{n}$ be the sum of the first n outcomes.
The distribution of S_{n} is given by

$$
P_{S_{n}}(x)=\frac{\# \text { of ways to get sum } x \text { with } n \text { dice }}{6^{n}}
$$

distribution of S_{3}

Law of Large Numbers

Let $S_{n}=\sum_{i=1}^{n} X_{n}$ be the sum of the first n outcomes.
The distribution of S_{n} is given by

$$
P_{S_{n}}(x)=\frac{\# \text { of ways to get sum } x \text { with } n \text { dice }}{6^{n}}
$$

distribution of S_{4}

Law of Large Numbers

Let $S_{n}=\sum_{i=1}^{n} X_{n}$ be the sum of the first n outcomes.
The distribution of S_{n} is given by

$$
P_{S_{n}}(x)=\frac{\# \text { of ways to get sum } x \text { with } n \text { dice }}{6^{n}}
$$

distribution of S_{5}

Law of Large Numbers

Let $S_{n}=\sum_{i=1}^{n} X_{n}$ be the sum of the first n outcomes.
The distribution of S_{n} is given by

$$
P_{S_{n}}(x)=\frac{\# \text { of ways to get sum } x \text { with } n \text { dice }}{6^{n}}
$$

Law of Large Numbers

Let $S_{n}=\sum_{i=1}^{n} X_{n}$ be the sum of the first n outcomes.
The distribution of S_{n} is given by

$$
P_{S_{n}}(x)=\frac{\# \text { of ways to get sum } x \text { with } n \text { dice }}{6^{n}}
$$

Law of Large Numbers

Let $S_{n}=\sum_{i=1}^{n} X_{n}$ be the sum of the first n outcomes.
The distribution of S_{n} is given by

$$
P_{S_{n}}(x)=\frac{\# \text { of ways to get sum } x \text { with } n \text { dice }}{6^{n}}
$$

Probability Space and Random Variables Joint and Conditional Distributions

Law of Large Numbers

LAW OF LARGE NUMBERS IN AVERAGE OF DIE ROLLS

average converges to expected unlue of 3.5

Law of Large Numbers

Weak Law of Large Numbers

For a sequence of independent and identically distributed (i.i.d.) random variables with finite mean μ, the average $\frac{1}{n} S_{n}$ converges in probability to μ :

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left[\left|\frac{S_{n}}{n}-\mu\right|<\epsilon\right]=1 \quad \text { for all } \epsilon>0
$$

We will use the LLN to prove a result known as the Asymptotic Equipartition Property (AEP), which is a central result in information theory (see next lecture).

Jensen's inequality

J.L.W.V. Jensen, 1859-1925

Jensen's Inequality

Inqualities: Jensen

Jensen's inequality
If f is a convex function and X is a random variable, then

$$
E[f(X)] \geq f(E[X])
$$

Moreover, if f is strictly convex, the inequality holds as an equality if and only if $X=E[X]$ with probability 1 .

Inqualities: Jensen

Jensen's inequality

If f is a convex function and X is a random variable, then

$$
E[f(X)] \geq f(E[X]) .
$$

Moreover, if f is strictly convex, the inequality holds as an equality if and only if $X=E[X]$ with probability 1 .

We give a proof for the first part of the theorem in the special case where X has a finite domain.

Inqualities: Jensen

Jensen's inequality

If f is a convex function and X is a random variable, then

$$
E[f(X)] \geq f(E[X])
$$

Moreover, if f is strictly convex, the inequality holds as an equality if and only if $X=E[X]$ with probability 1 .

We give a proof for the first part of the theorem in the special case where X has a finite domain.

For two mass points, we have $p\left(x_{2}\right)=1-p\left(x_{1}\right)$, and the claim holds by definition of convexity:

$$
p\left(x_{1}\right) f\left(x_{1}\right)+p\left(x_{2}\right) f\left(x_{2}\right) \geq f\left(p\left(x_{1}\right) x_{1}+p\left(x_{2}\right) x_{2}\right) .
$$

Inequalities: Jensen

Induction: Assume that (*) the theorem holds for $N-1$ mass points.

$$
\begin{aligned}
\sum_{i=1}^{N} p\left(x_{i}\right) f\left(x_{i}\right) & =p\left(x_{N}\right) f\left(x_{N}\right)+\left(1-p\left(x_{N}\right)\right) \sum_{i=1}^{N-1} p^{\prime}\left(x_{i}\right) f\left(x_{i}\right) \\
& \geq p\left(x_{N}\right) f\left(x_{N}\right)+\left(1-p\left(x_{N}\right)\right) f\left(\sum_{i=1}^{N-1} p^{\prime}\left(x_{i}\right) x_{i}\right)(*) \\
& \geq f\left(p\left(x_{N}\right) x_{N}+\left(1-p\left(x_{N}\right)\right) \sum_{i=1}^{N-1} p^{\prime}\left(x_{i}\right) x_{i}\right) \text { (convexity) } \\
& =f\left(\sum_{i=1}^{N} p\left(x_{i}\right) x_{i}\right)
\end{aligned}
$$

where $p^{\prime}\left(x_{i}\right)=\frac{p\left(x_{i}\right)}{1-p\left(x_{N}\right)}$.

Inequalities: Jensen

Induction: Assume that ($*$) the theorem holds for $N-1$ mass points.

$$
\begin{aligned}
\sum_{i=1}^{N} p\left(x_{i}\right) f\left(x_{i}\right) & =p\left(x_{N}\right) f\left(x_{N}\right)+\left(1-p\left(x_{N}\right)\right) \sum_{i=1}^{N-1} p^{\prime}\left(x_{i}\right) f\left(x_{i}\right) \\
& \geq p\left(x_{N}\right) f\left(x_{N}\right)+\left(1-p\left(x_{N}\right)\right) f\left(\sum_{i=1}^{N-1} p^{\prime}\left(x_{i}\right) x_{i}\right)(*) \\
& \geq f\left(p\left(x_{N}\right) x_{N}+\left(1-p\left(x_{N}\right)\right) \sum_{i=1}^{N-1} p^{\prime}\left(x_{i}\right) x_{i}\right) \text { (convexity) } \\
& =f\left(\sum_{i=1}^{N} p\left(x_{i}\right) x_{i}\right)
\end{aligned}
$$

where $p^{\prime}\left(x_{i}\right)=\frac{p\left(x_{i}\right)}{1-p\left(x_{N}\right)}$.

Inequalities: Jensen

Induction: Assume that ($*$) the theorem holds for $N-1$ mass points.

$$
\begin{aligned}
\sum_{i=1}^{N} p\left(x_{i}\right) f\left(x_{i}\right) & =p\left(x_{N}\right) f\left(x_{N}\right)+\left(1-p\left(x_{N}\right)\right) \sum_{i=1}^{N-1} p^{\prime}\left(x_{i}\right) f\left(x_{i}\right) \\
& \geq p\left(x_{N}\right) f\left(x_{N}\right)+\left(1-p\left(x_{N}\right)\right) f\left(\sum_{i=1}^{N-1} p^{\prime}\left(x_{i}\right) x_{i}\right)(*) \\
& \geq f\left(p\left(x_{N}\right) x_{N}+\left(1-p\left(x_{N}\right)\right) \sum_{i=1}^{N-1} p^{\prime}\left(x_{i}\right) x_{i}\right) \text { (convexity) } \\
& =f\left(\sum_{i=1}^{N} p\left(x_{i}\right) x_{i}\right)
\end{aligned}
$$

where $p^{\prime}\left(x_{i}\right)=\frac{p\left(x_{i}\right)}{1-p\left(x_{N}\right)}$.

Inequalities: Jensen

Induction: Assume that ($*$) the theorem holds for $N-1$ mass points.

$$
\begin{aligned}
\sum_{i=1}^{N} p\left(x_{i}\right) f\left(x_{i}\right) & =p\left(x_{N}\right) f\left(x_{N}\right)+\left(1-p\left(x_{N}\right)\right) \sum_{i=1}^{N-1} p^{\prime}\left(x_{i}\right) f\left(x_{i}\right) \\
& \geq p\left(x_{N}\right) f\left(x_{N}\right)+\left(1-p\left(x_{N}\right)\right) f\left(\sum_{i=1}^{N-1} p^{\prime}\left(x_{i}\right) x_{i}\right)(*) \\
& \geq f\left(p\left(x_{N}\right) x_{N}+\left(1-p\left(x_{N}\right)\right) \sum_{i=1}^{N-1} p^{\prime}\left(x_{i}\right) x_{i}\right) \text { (convexity) } \\
& =f\left(\sum_{i=1}^{N} p\left(x_{i}\right) x_{i}\right)
\end{aligned}
$$

where $p^{\prime}\left(x_{i}\right)=\frac{p\left(x_{i}\right)}{1-p\left(x_{N}\right)}$.

Inequalities: Jensen

Induction: Assume that ($*$) the theorem holds for $N-1$ mass points.

$$
\begin{aligned}
\sum_{i=1}^{N} p\left(x_{i}\right) f\left(x_{i}\right) & =p\left(x_{N}\right) f\left(x_{N}\right)+\left(1-p\left(x_{N}\right)\right) \sum_{i=1}^{N-1} p^{\prime}\left(x_{i}\right) f\left(x_{i}\right) \\
& \geq p\left(x_{N}\right) f\left(x_{N}\right)+\left(1-p\left(x_{N}\right)\right) f\left(\sum_{i=1}^{N-1} p^{\prime}\left(x_{i}\right) x_{i}\right)(*) \\
& \geq f\left(p\left(x_{N}\right) x_{N}+\left(1-p\left(x_{N}\right)\right) \sum_{i=1}^{N-1} p^{\prime}\left(x_{i}\right) x_{i}\right) \text { (convexity) } \\
& =f\left(\sum_{i=1}^{N} p\left(x_{i}\right) x_{i}\right)
\end{aligned}
$$

where $p^{\prime}\left(x_{i}\right)=\frac{p\left(x_{i}\right)}{1-p\left(x_{N}\right)}$.

Gibbs’ inequality

W. Gibbs, 1839-1903

Inqualities: Gibbs

Gibbs' inequality
For any two discrete probability distributions p and q, we have

$$
\sum_{x \in \mathcal{X}} p(x) \log _{2} p(x) \geq \sum_{x \in \mathcal{X}} p(x) \log _{2} q(x)
$$

with equality if and only if $p(x)=q(x)$ for all $x \in \mathcal{X}$.

Proof. Since $\log _{2} x=\frac{1}{\ln 2} \ln x$, dividing both sides by $\ln 2$ changes $\log _{2}$ to \ln.

Inqualities: Gibbs

Gibbs' inequality
For any two discrete probability distributions p and q, we have

$$
\sum_{x \in \mathcal{X}} p(x) \ln p(x) \geq \sum_{x \in \mathcal{X}} p(x) \ln q(x)
$$

with equality if and only if $p(x)=q(x)$ for all $x \in \mathcal{X}$.

Proof. Since $\log _{2} x=\frac{1}{\ln 2} \ln x$, dividing both sides by $\ln 2$ changes $\log _{2}$ to \ln.

Inequalities: Gibbs

Gibbs' inequality

$$
\sum_{x \in \mathcal{X}} p(x) \ln p(x) \geq \sum_{x \in \mathcal{X}} p(x) \ln q(x)
$$

$$
\sum_{x \in \mathcal{X}} p(x) \ln q(x)-\sum_{x \in \mathcal{X}} p(x) \ln p(x)=\sum_{x \in \mathcal{X}} p(x)(\ln q(x)-\ln p(x))
$$

$$
\begin{align*}
& =\sum_{x \in \mathcal{X}} p(x) \ln \frac{q(x)}{p(x)} \quad \ln x-\ln y=\ln \frac{x}{y} \\
& \leq \sum_{x \in \mathcal{X}} p(x)\left(\frac{q(x)}{p(x)}-1\right) \quad \ln x \leq x-1 \\
& =\sum_{x \in \mathcal{X}} q(x)-\sum_{x \in \mathcal{X}} p(x)=1-1=0 .
\end{align*}
$$

Inequalities: Gibbs

Gibbs' inequality

$$
\sum_{x \in \mathcal{X}} p(x) \ln p(x) \geq \sum_{x \in \mathcal{X}} p(x) \ln q(x)
$$

$$
\sum_{x \in \mathcal{X}} p(x) \ln q(x)-\sum_{x \in \mathcal{X}} p(x) \ln p(x)=\sum_{x \in \mathcal{X}} p(x)(\ln q(x)-\ln p(x))
$$

$$
\begin{align*}
& =\sum_{x \in \mathcal{X}} p(x) \ln \frac{q(x)}{p(x)} \quad \ln x-\ln y=\ln \frac{x}{y} \\
& \leq \sum_{x \in \mathcal{X}} p(x)\left(\frac{q(x)}{p(x)}-1\right) \quad \ln x \leq x-1 \\
& =\sum_{x \in \mathcal{X}} q(x)-\sum_{x \in \mathcal{X}} p(x)=1-1=0 .
\end{align*}
$$

Inequalities: Gibbs

Gibbs' inequality

$$
\sum_{x \in \mathcal{X}} p(x) \ln p(x) \geq \sum_{x \in \mathcal{X}} p(x) \ln q(x)
$$

$$
\sum_{x \in \mathcal{X}} p(x) \ln q(x)-\sum_{x \in \mathcal{X}} p(x) \ln p(x)=\sum_{x \in \mathcal{X}} p(x)(\ln q(x)-\ln p(x))
$$

$$
\begin{align*}
& =\sum_{x \in \mathcal{X}} p(x) \ln \frac{q(x)}{p(x)} \quad \ln x-\ln y=\ln \frac{x}{y} \\
& \leq \sum_{x \in \mathcal{X}} p(x)\left(\frac{q(x)}{p(x)}-1\right) \quad \ln x \leq x-1 \\
& =\sum_{x \in \mathcal{X}} q(x)-\sum_{x \in \mathcal{X}} p(x)=1-1=0 .
\end{align*}
$$

Inequalities: Gibbs

Gibbs' inequality

$$
\sum_{x \in \mathcal{X}} p(x) \ln p(x) \geq \sum_{x \in \mathcal{X}} p(x) \ln q(x)
$$

$$
\sum_{x \in \mathcal{X}} p(x) \ln q(x)-\sum_{x \in \mathcal{X}} p(x) \ln p(x)=\sum_{x \in \mathcal{X}} p(x)(\ln q(x)-\ln p(x))
$$

$$
\begin{align*}
& =\sum_{x \in \mathcal{X}} p(x) \ln \frac{q(x)}{p(x)} \quad \ln x-\ln y=\ln \frac{x}{y} \\
& \leq \sum_{x \in \mathcal{X}} p(x)\left(\frac{q(x)}{p(x)}-1\right) \quad \ln x \leq x-1 \\
& =\sum_{x \in \mathcal{X}} q(x)-\sum_{x \in \mathcal{X}} p(x)=1-1=0 .
\end{align*}
$$

For next week, read Chapter 2 of Cover \& Thomas and do home assignment (see course web page).

