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"Design with the help
of binary code (0 and
1) the most efficient
method to represent
characters, figures
and symbols."

(Assignment at Prof. R.M.
Fano’s 1952 MIT Information
Theory course.)
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Extension Code

A (binary) symbol code C : X → {0, 1}∗ is a mapping from the
alphabet X to the set of finite binary sequences.

The extension of code C is the mapping C ∗ : X ∗ → {0, 1}∗
obtained by concatenating the codewords C (xi ) for each input
symbol xi :

C ∗(x1, x2, . . . , xn) = C (x1)C (x2) . . .C (xn) .
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Extension Code

A (binary) symbol code C : X → {0, 1}∗ is a mapping from the
alphabet X to the set of finite binary sequences.

The extension of code C is the mapping C ∗ : X ∗ → {0, 1}∗
obtained by concatenating the codewords C (xi ) for each input
symbol xi :

C ∗(x1, x2, . . . , xn) = C (x1)C (x2) . . .C (xn) .

C*

I N P U T _ S T R I N G ...

10010001111001101011111010011...
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Extension Code

A (binary) symbol code C : X → {0, 1}∗ is a mapping from the
alphabet X to the set of finite binary sequences.

The extension of code C is the mapping C ∗ : X ∗ → {0, 1}∗
obtained by concatenating the codewords C (xi ) for each input
symbol xi :

C ∗(x1, x2, . . . , xn) = C (x1)C (x2) . . .C (xn) .

C*

N P U T _ S T R I N G ...

0001111001101011111010011...
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Extension Code

A (binary) symbol code C : X → {0, 1}∗ is a mapping from the
alphabet X to the set of finite binary sequences.

The extension of code C is the mapping C ∗ : X ∗ → {0, 1}∗
obtained by concatenating the codewords C (xi ) for each input
symbol xi :

C ∗(x1, x2, . . . , xn) = C (x1)C (x2) . . .C (xn) .

C*

P U T _ S T R I N G ...

111001101011111010011...

I
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Extension Code

A (binary) symbol code C : X → {0, 1}∗ is a mapping from the
alphabet X to the set of finite binary sequences.

The extension of code C is the mapping C ∗ : X ∗ → {0, 1}∗
obtained by concatenating the codewords C (xi ) for each input
symbol xi :

C ∗(x1, x2, . . . , xn) = C (x1)C (x2) . . .C (xn) .

C*

U T _ S T R I N G ...
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Extension Code

A (binary) symbol code C : X → {0, 1}∗ is a mapping from the
alphabet X to the set of finite binary sequences.

The extension of code C is the mapping C ∗ : X ∗ → {0, 1}∗
obtained by concatenating the codewords C (xi ) for each input
symbol xi :

C ∗(x1, x2, . . . , xn) = C (x1)C (x2) . . .C (xn) .
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1111010011...
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Extension Code

A (binary) symbol code C : X → {0, 1}∗ is a mapping from the
alphabet X to the set of finite binary sequences.

The extension of code C is the mapping C ∗ : X ∗ → {0, 1}∗
obtained by concatenating the codewords C (xi ) for each input
symbol xi :

C ∗(x1, x2, . . . , xn) = C (x1)C (x2) . . .C (xn) .

C*
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010011...
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Extension Code

A (binary) symbol code C : X → {0, 1}∗ is a mapping from the
alphabet X to the set of finite binary sequences.

The extension of code C is the mapping C ∗ : X ∗ → {0, 1}∗
obtained by concatenating the codewords C (xi ) for each input
symbol xi :

C ∗(x1, x2, . . . , xn) = C (x1)C (x2) . . .C (xn) .

C*
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Extension Code

A (binary) symbol code C : X → {0, 1}∗ is a mapping from the
alphabet X to the set of finite binary sequences.

The extension of code C is the mapping C ∗ : X ∗ → {0, 1}∗
obtained by concatenating the codewords C (xi ) for each input
symbol xi :

C ∗(x1, x2, . . . , xn) = C (x1)C (x2) . . .C (xn) .

C*
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Decodable Code

Code C is (uniquely) decodable iff its extension C ∗ is a
one-to-one mapping, i.e., iff

(x1, . . . , xn) 6= (y1, . . . , yn) ⇒ C ∗(x1, . . . , xn) 6= C ∗(y1, . . . , yn) .

x A code with codewords {0, 1, 10, 11} is not uniquely
decodable: What does 10 mean?√
A code with codewords {00, 01, 10, 11} is uniquely
decodable: Each pair of bits can be decoded
individually.√
A code with codewords {0, 01, 011, 0111} is also
uniquely decodable: What does 0011 mean?

Teemu Roos Three Concepts: Information
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Decodable Codes

Decodable Code

Code C is (uniquely) decodable iff its extension C ∗ is a
one-to-one mapping, i.e., iff

(x1, . . . , xn) 6= (y1, . . . , yn) ⇒ C ∗(x1, . . . , xn) 6= C ∗(y1, . . . , yn) .

x A code with codewords {0, 1, 10, 11} is not uniquely
decodable: What does 10 mean?

√
A code with codewords {00, 01, 10, 11} is uniquely
decodable: Each pair of bits can be decoded
individually.√
A code with codewords {0, 01, 011, 0111} is also
uniquely decodable: What does 0011 mean?

Teemu Roos Three Concepts: Information



Outline
Codes

Optimal Codes
Below Entropy

Decodable Codes
Prefix Codes
Kraft-McMillan Theorem

Decodable Codes

Decodable Code

Code C is (uniquely) decodable iff its extension C ∗ is a
one-to-one mapping, i.e., iff

(x1, . . . , xn) 6= (y1, . . . , yn) ⇒ C ∗(x1, . . . , xn) 6= C ∗(y1, . . . , yn) .

x A code with codewords {0, 1, 10, 11} is not uniquely
decodable: What does 10 mean?√
A code with codewords {00, 01, 10, 11} is uniquely
decodable: Each pair of bits can be decoded
individually.

√
A code with codewords {0, 01, 011, 0111} is also
uniquely decodable: What does 0011 mean?
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Decodable Codes

Decodable Code

Code C is (uniquely) decodable iff its extension C ∗ is a
one-to-one mapping, i.e., iff

(x1, . . . , xn) 6= (y1, . . . , yn) ⇒ C ∗(x1, . . . , xn) 6= C ∗(y1, . . . , yn) .

x A code with codewords {0, 1, 10, 11} is not uniquely
decodable: What does 10 mean?√
A code with codewords {00, 01, 10, 11} is uniquely
decodable: Each pair of bits can be decoded
individually.√
A code with codewords {0, 01, 011, 0111} is also
uniquely decodable: What does 0011 mean?

Teemu Roos Three Concepts: Information



Outline
Codes

Optimal Codes
Below Entropy

Decodable Codes
Prefix Codes
Kraft-McMillan Theorem

Prefix Codes

An important subset of decodable codes is the set of prefix(-free)
codes.

Prefix Code

A code C : X → {0, 1}∗ is called a prefix code iff no codeword is
a prefix of another.

It is easily seen that all prefix codes are uniquely decodable: each
symbol can be decoded as soon as its codeword is read. Therefore,
prefix codes are also called instantaneous codes.

x A code with codewords {0, 01, 011, 0111} is uniquely
decodable but not prefix-free: e.g., 0 is a prefix of 01.√
A code with codewords {0, 10, 110, 111} is prefix-free.

Teemu Roos Three Concepts: Information
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Prefix Codes

An important subset of decodable codes is the set of prefix(-free)
codes.

Prefix Code

A code C : X → {0, 1}∗ is called a prefix code iff no codeword is
a prefix of another.

It is easily seen that all prefix codes are uniquely decodable: each
symbol can be decoded as soon as its codeword is read. Therefore,
prefix codes are also called instantaneous codes.

x A code with codewords {0, 01, 011, 0111} is uniquely
decodable but not prefix-free: e.g., 0 is a prefix of 01.

√
A code with codewords {0, 10, 110, 111} is prefix-free.
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Prefix Codes

An important subset of decodable codes is the set of prefix(-free)
codes.

Prefix Code

A code C : X → {0, 1}∗ is called a prefix code iff no codeword is
a prefix of another.

It is easily seen that all prefix codes are uniquely decodable: each
symbol can be decoded as soon as its codeword is read. Therefore,
prefix codes are also called instantaneous codes.

x A code with codewords {0, 01, 011, 0111} is uniquely
decodable but not prefix-free: e.g., 0 is a prefix of 01.√
A code with codewords {0, 10, 110, 111} is prefix-free.
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Kraft Inequality

The codeword lengths of a prefix codes satisfy the following
important property.

Kraft Inequality

The codeword lengths `1, . . . , `m of any (binary) prefix code satisfy

m∑
i=1

2−`i ≤ 1 .

Conversely, given a set of codeword lengths that satisfy this
inequality, there is a prefix code with these codeword lengths.
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Kraft Inequality
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Codewords {0, 10, 110, 111}
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x Kraft inequality violated. ⇒ Not decodable.
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Kraft Inequality
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Kraft Inequality

Question: What if the inequality is satisfied strictly, i.e., the sum
of the terms in the sum equals less than one:

m∑
i=1

2−`i < 1 .

Then it is possible to make the codewords shorter and still have a
decodable (prefix) code.
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Kraft Inequality

Question: What if the inequality is satisfied strictly, i.e., the sum
of the terms in the sum equals less than one:

m∑
i=1

2−`i < 1 .

Then it is possible to make the codewords shorter and still have a
decodable (prefix) code.
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Kraft Inequality
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Not all of budget used. ⇒ Some codewords can be made shorter.
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“Kraft tight” / complete code.
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Kraft–McMillan Theorem

The Kraft inequality restricts the codeword lengths of prefix codes.
Could we do much better if we would only require decodability?

In fact it can be shown that we do not lose anything at all!

Kraft-McMillan Theorem

The codeword lengths `1, . . . , `m of any uniquely decodable
(binary) code satisfy

m∑
i=1

2−`i ≤ 1 .

Conversely, given a set of codeword lengths that satisfy this
inequality, there is a uniquely decodable (prefix) code with these
codeword lengths.
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Kraft–McMillan Theorem

The Kraft inequality restricts the codeword lengths of prefix codes.
Could we do much better if we would only require decodability?

In fact it can be shown that we do not lose anything at all!

Kraft-McMillan Theorem

The codeword lengths `1, . . . , `m of any uniquely decodable
(binary) code satisfy

m∑
i=1

2−`i ≤ 1 .

Conversely, given a set of codeword lengths that satisfy this
inequality, there is a uniquely decodable (prefix) code with these
codeword lengths.
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Kraft–McMillan Theorem

The Kraft inequality restricts the codeword lengths of prefix codes.
Could we do much better if we would only require decodability?

In fact it can be shown that we do not lose anything at all!

Kraft-McMillan Theorem

The codeword lengths `1, . . . , `m of any uniquely decodable
(binary) code satisfy

m∑
i=1

2−`i ≤ 1 .

Conversely, given a set of codeword lengths that satisfy this
inequality, there is a uniquely decodable (prefix) code with these
codeword lengths.
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Kraft-McMillan Theorem & Codes

Prefix Codes

Decodable Codes

All Codes

Kraft Inequality
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Codelengths and Probabilities

Let `1, . . . , `m be the codeword lengths of a uniquely decodable
code C : X → {0, 1}∗. By the Kraft-McMillan theorem we have

c =
m∑

i=1

2−`i ≤ 1 .

Define a probability mass function p : X → [0, 1] as follows:

pi =
2−`i

c

⇔ `i = log2
c

pi
,

where c is given above.

Function p is indeed a pmf:

1 Non-negative: p(x) ≥ 0 for all x ∈ X .

2 Sums to one:
∑
x∈X

p(x) =
m∑

i=1

1

c
2−`i =

c

c
= 1 .

Teemu Roos Three Concepts: Information
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Codelengths and Probabilities

Let `1, . . . , `m be the codeword lengths of a uniquely decodable
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Codelengths and Probabilities

Let `1, . . . , `m be the codeword lengths of a uniquely decodable
code C : X → {0, 1}∗. By the Kraft-McMillan theorem we have

c =
m∑
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Define a probability mass function p : X → [0, 1] as follows:
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Let `1, . . . , `m be the codeword lengths of a uniquely decodable
code C : X → {0, 1}∗. By the Kraft-McMillan theorem we have

c =
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Define a probability mass function p : X → [0, 1] as follows:
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Codelengths and Probabilities
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Codelengths and Probabilities

Assuming that the code is “Kraft tight”, c = 1, then under the
pmf p corresponding to the codeword lengths `1, . . . , `m, the
expected codeword length is

E [`(X )] =
m∑

i=1

2−`i `i

=
m∑

i=1

pi log2
1

pi
= H(X ) .

This is the best we can hope for:

The expected codelength of any uniquely decodable code is at
least the entropy:

E [`(X )] ≥ H(X ) .
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Entropy Lower Bound

E [`(X )] ≥ H(X ) .

Proof.

E [`(X )]− H(X ) =
∑
x∈X

p(x) `(x)−
∑
x∈X

p(x) log2
1

p(x)

=
∑
x∈X

p(x) log2
1

2−`x
−

∑
x∈X

p(x) log2
1

p(x)

=
∑
x∈X

p(x) log2
p(x)

2−`x

=
∑
x∈X

p(x)

[
log2

p(x)

q(x)
+ log2

1

c

]
q(x) =

2−`(x)

c

= D(p ‖ q) + log2
1

c
≥ 0 .
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Entropy Lower Bound

So what have we learned?

For decodable symbols codes:

1 E [`(X )]− H(X ) = D(p ‖ q) + log2
1
c , where q(x) =

2−`(x)

c
.

2 E [`(X )] ≥ H(X ).

3 If `(x) = log2
1

p(x) , then E [`(X )] = H(X ). Optimal!

Note also that for a sequence X1, . . . ,Xn the expected codelength
becomes

E [`(X1, . . . ,Xn)] = E

[
n∑

i=1

`(Xi )

]

=
n∑

i=1

E [`(Xi )] = nH(X ) .

! By Shannon’s Noiseless Channel Coding Theorem, this is
optimal among all codes, not only symbol codes.

Fine print: only if Xi i.i.d.!
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So what have we learned? For decodable symbols codes:
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Codelengths and Probabilities

The only problem with the `(x) = log2
1

p(x) codeword choice is the

requirement that codeword lengths must be integers (try to think
about a codeword with length 0.123, for instance), while the so
obtained ` is not in general an integer.

The simplest solution is to round upwards:

Shannon-Fano Code

Given a pmf, the Shannon-Fano code has the codeword lengths

`(x) =

⌈
log2

1

p(x)

⌉
for all x ∈ X .
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Alice in Wonderland
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Shannon-Fano: Example

X p(X ) log2
1

p(X )
`(X )

a 0.0644 3.9 4
b 0.0108 6.5 7
c 0.0178 5.8 6
d 0.0359 4.7 5
e 0.0991 3.3 4
f 0.0147 6.0 7
g 0.0184 5.7 6
h 0.0535 4.2 5
i 0.0551 4.1 5
j 0.0011 9.8 10
k 0.0083 6.8 7
l 0.0343 4.8 5

...
y 0.0165 5.9 6
z 0.0005 10.7 11

0.2111 2.2 3

H(X ) = 4.03

Shannon-Fano:

1 Sort by probability.

2 Choose codewords in
order, avoiding prefixes.
(“Kraft table”!)
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Shannon-Fano: Example

X p(X ) log2
1

p(X )
`(X )

0.2111 2.2 3
e 0.0991 3.3 4
t 0.0781 3.6 4
a 0.0644 3.9 4
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Shannon-Fano:

1 Sort by probability.

2 Choose codewords in
order, avoiding prefixes.
(“Kraft table”!)
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Shannon-Fano: Example
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Shannon-Fano: Example

X p(X ) log2
1

p(X )
`(X ) C(X )

0.2111 2.2 3 000

e 0.0991 3.3 4 0010

t 0.0781 3.6 4 0011

a 0.0644 3.9 4 0100

o 0.0598 4.0 5 01010

i 0.0551 4.1 5 01011

h 0.0535 4.2 5 01100

n 0.0516 4.2 5 01101

s 0.0475 4.3 5 01110

r 0.0401 4.6 5 01111

d 0.0359 4.7 5 10000

l 0.0343 4.8 5 10001
...

x 0.0011 9.8 10 1010111101

j 0.0011 9.8 10 1010111110

z 0.0005 10.7 11 10101111110

H(X ) = 4.03

E [`(X )] = 4.60

E [`(X )]− H(X ) = 0.57
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Shannon-Fano Code

The expected codeword length of the Shannon-Fano code is

E [`(X )] = E

[⌈
log2

1

p(X )

⌉]
≤ E

[
log2

1

p(X )
+ 1

]
= H(X ) + 1 .

In the Alice example we had

E [`(X )]− H(X ) = 4.60− 4.03 = 0.57 ≤ 1 .
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Shannon-Fano Code

Consider the Shannon-Fano code for Alice in Wonderland. The
longest codewords are as follows:

X p(X ) log2
1

p(X ) `(X ) C (X )

b 0.0108 6.5 7 1010101
k 0.0083 6.8 7 1010110
v 0.0061 7.3 8 10101110
q 0.0015 9.3 10 1010111100
x 0.0011 9.8 10 1010111101
j 0.0011 9.8 10 1010111110
z 0.0005 10.7 11 10101111110

Can you find a way to improve the code without violating the
prefix-free property? Hint: zzz...
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Huffman Code

So the Shannon-Fano code is not the optimal symbol code. This is
where Professor Fano and a student called David Huffman enter:

"Design with the help of binary code (0 and 1) the
most efficient method to represent characters,
figures and symbols."
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David Huffman (1925–1999)
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Huffman Code: Algorithm

Huffman’s algorithm proceeds as follows:

1 Sort all symbols by their probabilities pi .

2 Join the two least probable symbols, i and j , and remove
them from the list. Add a new pseudosymbol whose
probability is pi + pj .

3 If there is more than one symbol left, go to Step 1.

4 Use the resulting binary tree to define the codewords.

See the demo at
www.cs.auckland.ac.nz/software/AlgAnim/huffman.html
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Huffman Code: Optimality

The reason why the Huffman code is the optimal symbol code
(shortest expected codelength) is roughly as follows:

It can be shown that there is an optimal code (not necessarily
unique) such that

1 If p(x) > p(y), then `(x) ≤ `(y).

2 The longest two codewords have the same length.

3 The longest two codewords differ only at the last bit and
correspond to the two least probable symbols.

Points 2 & 3 suggest the first step of Huffman’s algorithm. Any
subtree must satisfy the same conditions ⇒ Induction.

Note that since Shannon-Fano gives E [`(X )] ≤ H(X ) + 1, and
Huffman is optimal, Huffman must satisfy the same bound.
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Problems with Symbol Codes

Now we have found the optimal symbols code with expected
codelength E [`(X )] ≤ H(X ) + 1. Are we done?

No. (At least) three problems remain:

1 The one extra bit, H(X ) + 1.

Can make all the difference if H(X ) is small.

2 Shannon-Fano and Huffman codes require that the
distribution generating the source symbols is known.

We can of course first estimate the distribution from the data
to be compressed, but how about the decoder?

3 Distribution is not i.i.d.: Dependence and changes.
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Two-Part Codes

Solution to problem 2:
2 The Shannon-Fano and Huffman codes require that the

distribution generating the source symbols is known.

We can of course first estimate the distribution from the data
to be compressed, but how about the decoder?

Two-Part Codes

Write the distribution (or code) in the beginning of the file.

Usually the overhead is minor compared to the total file size.
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Block Codes

Solution to problems 1 & 3:
1 The one extra bit, H(X ) + 1.

Can make all the difference if H(X ) is small.

3 Distribution is not i.i.d.: Dependence and changes.

Block Codes

Combine successive symbols into blocks and treat blocks as
symbols. ⇒ One extra bit per block.

Allows modeling of dependence.
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Block Codes

Combining solutions to problems 1–3, we get two-part block
codes: Write first the joint distribution of blocks of N symbols,
and then encode using blocks of length N.

The size of the first part (distribution/code) grows with N, but the
performance of the block code get better.

Complexity Tradeoff

Find suitable balance between complexity of the model (increases
with N) and codelength of data given model (decreases with N).
⇒ Minimum Description Length (MDL) Principle
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Adaptive Codes

Alternative Solution to Problems 2 & 3:

Adaptive Codes

For each symbol (or a block of symbols), we can construct a code
based on the probability p(xnew | x1, . . . , xn).

This may lead to computational problems since the code tree has
to be constantly updated.

Block coding with long blocks is another solution, but it introduces
delay in decoding: the first symbol can be read only after the
whole block is decoded.

Arithmetic coding avoids “all problems”: adaptive, spreads the
one additional bit over the whole sequence, and can be decoded
instantaneously. ⇒ Read the material.
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