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Kolmogorov Complexity

We probably agree that the string

10101010101010101010 . . . 10

is ‘simple’.

Why?

(One) Solution: The string can be described briefly:

“10 repeated k times”.

Remark: ‘Describe’ should be understood as meaning “compute by
an algorithm” (a formal procedure that halts).
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Kolmogorov Complexity

Let U : {0, 1}∗ → {0, 1}∗ ∪ ∅ be a computer that given a (binary)
program p ∈ {0, 1}∗ either produces a finite (binary) output
U(p) ∈ {0, 1}∗ or never halts. In the latter case, the output U(p)
is said to be undefined (∅).

Kolmogorov Complexity

For a finite string x ∈ {0, 1}∗, let p∗(x) be the shortest program
for which

U(p∗(x)) = x .

The Kolmogorov complexity of string x is defined as the length
of p∗(x):

KU(x) = min
p : U(p)=x

|p| .

Teemu Roos Three Concepts: Information



Outline
Kolmogorov Complexity

Structure Function
MDL Principle

Definition
Basic Properties

Kolmogorov Complexity

Let U : {0, 1}∗ → {0, 1}∗ ∪ ∅ be a computer that given a (binary)
program p ∈ {0, 1}∗ either produces a finite (binary) output
U(p) ∈ {0, 1}∗ or never halts. In the latter case, the output U(p)
is said to be undefined (∅).

Kolmogorov Complexity

For a finite string x ∈ {0, 1}∗, let p∗(x) be the shortest program
for which

U(p∗(x)) = x .

The Kolmogorov complexity of string x is defined as the length
of p∗(x):

KU(x) = min
p : U(p)=x

|p| .

Teemu Roos Three Concepts: Information



Outline
Kolmogorov Complexity

Structure Function
MDL Principle

Definition
Basic Properties

Kolmogorov Complexity

We assume that the set of programs that halt forms a prefix-free
set (like symbol codes).

The advantage of prefix-free programs is that we can concatenate
two programs, p and q to form the program pq so that the
computer can separate the two programs.
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Kolmogorov Complexity

Let U and V be two computers. If computer U is sufficiently
‘rich’, it can emulate computer V so that it outputs the same
output as V for any program p.

Universality

A computer U is said to be universal, if for any other computer V
there is a ‘translation’ program q ∈ {0, 1}∗ (which depends on V )
such that for all programs p we have

U(qp) = V (p) ,

i.e., when given the concatenated program qp, computer U
outputs the same string as computer V when given the program p.
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Kolmogorov Complexity

For any universal computer U, and any other computer V , we have

KU(x) ≤ KV (x) + C ,

where C is a constant independent of x .

Proof: Let q be a the translation program which translates
programs of V into programs of U, and let p∗V (x) be the shortest
program for which V (p∗V (x)) = x . Then U(qp∗V (x)) = x so that

KU(x) ≤ |qp∗V (x)| = |p∗V (x)|+ |q| = KV (X ) + |q| .

Based on this property, it can be said that Kolmogorov complexity
is the length of the universally shortest description of x .
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Examples of (virtually) universal ‘computers’:

1 C (compiler + operating system + computer),

2 Java (compiler + operating system + computer),

3 your favorite programming language (compiler/interpreter +
OS + computer),

4 Universal Turing machine,

5 Universal recursive function,

6 Lambda calculus,

7 Arithmetics,

8 Game of Life

9 ...

Each of the above can mimic all the others.
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Invariance Theorem

From now on we restrict the choice of the computer U in KU to
universal computers.

Invariance Theorem

Kolmogorov complexity is invariant (up to an additive constant)
under a change of the universal computer. In other words, for any
two universal computers, U and V , there is a constant C such that

|KU(x)− KV (x)| ≤ C for all x ∈ {0, 1}∗ .

Proof: Since U is universal, we have KU(x) ≤ KV (x) + C1. Since
V is universal, we have KV (x) ≤ KU(x) + C2. The theorem follows
by setting C = max{C1,C2}.

Teemu Roos Three Concepts: Information
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Upper Bound 1

We have the following upper bound on KU(x):

KU(x) ≤ 2|x |+ C

for some constant C which depends on the computer U but not on
the string x .

Proof: Let q be the program:

print every even bit that follows

until the next odd bit is 0: x1 1 x2 1 . . . xn 0 .

The length of this program is 2|x |+ C . Prefix-free.

Teemu Roos Three Concepts: Information
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Upper Bound 2

We have the following upper bound on KU(x):

KU(x) ≤ |x |+ 2 log2 |x |+ C

for some constant C which depends on the computer U but not on
the string x .

Proof: Let q be the program:

read integer n and print the following n bits:

n1 1n2 1 . . . n|n|0 x1 x2 . . . xn

The length of n = |x | is at most dlog2 |x |e ≤ log2 |x |+ 1, so that
the length of the program is at most C ′ + 2 log2 |x |+ 2 + |x |.
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Conditional Kolmogorov Complexity

The conditional Kolmogorov complexity is defined as the length
of the shortest program to print x when y is given:

KU(x | y) = min
p : U(ȳ p)=x

|p| ,

where ȳ is a ‘self-delimiting’ representation of y .

Upper Bound 3

We have the following upper bound on KU(x | |x |):

KU(x | |x |) ≤ |x |+ C

for some constant C independent x .

Teemu Roos Three Concepts: Information
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Examples

Let n = |x |.

1 KU(0101010101...01 | n) = C .
Program: print n/2 times 01.

2 KU(π1 π2 . . . πn | n) = C .
Program: print the first n bits of π.

3 KU(English text | n) ≈ 1.3× n + C .
Program: Huffman code.
(Entropy of English is about 1.3 bits per symbol.)

4 KU(fractal) = C .
Program: print # of iterations until zn+1 = z2

n + c > T.
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Martin-Löf Randomness

Examples (contd.):

5 KU(x | n) ≈ n, for almost all x ∈ {0, 1}n.

Proof: Upper bound KU(x | n) ≤ n + C . Lower bound by a
counting argument: less than 2−k of strings compressible by
more than k bits (Lecture 1).

Martin-Löf Randomness

String x is said to be Martin-Löf random iff Ku(x | n) ≥ n.

Consequence of point 5 above: An i.i.d. sequence of unbiased coin
flips is with high probability Martin-Löf random.
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Teemu Roos Three Concepts: Information



Outline
Kolmogorov Complexity

Structure Function
MDL Principle

Definition
Basic Properties

Universal Prediction

Since the set of valid (halting) programs is required to be
prefix-free we can consider the probability distribution pn

U :

pn
U(x) =

2−KU(x |n)

C
, where C =

∑
x∈X n

2−KU(x |n).

Universal Probability Distribution

The distribution pn
U is universal in the sense that for any other

computable distribution q, there is a constant C > 0 such that

pn
U(x) ≥ C q(x) for all x ∈ X n.

Proof idea: The universal computer U can imitate the

Shannon-Fano prefix code with codelengths

⌈
log2

1

q(x)

⌉
.
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C
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Universal Prediction

The universal probability distribution pn
U is a good predictor.

This follows from the relationship between codelengths and
probabilities (Kraft!):

KU(x) is small ⇒ pn
U(x) is large

⇒
n∏

i=1

pn
U(xi | x1, . . . , xi−1) is large

⇒ pn
U(xi | x1, . . . , xi−1) is large for most i ∈ {1, . . . , n},

where xi denotes the ith bit in string x .
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Berry Paradox

The smallest integer that cannot be described in ten words?

Whatever this number is, we have just described (?) it in ten
words.

The smallest uninteresting number?

Whatever this number is, it is quite interesting!
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Non-computability

It is impossible to construct a general procedure (algorithm) to
compute KU(x).

Non-Computability

Kolmogorov complexity KU : {0, 1}∗ → N is non-computable.

Proof: Assume, by way of contradiction, that it would be possible
to compute KU(x). Then for any M > 0, the program

print a string x for which KU(x) > M.

would print a string with KU(x) > M. A contradiction follows by
letting M be larger than the Kolmogorov complexity of this
program. Hence, it cannot be possible to compute KU(x).
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Finite Set Models

Each string x ∈ {0, 1}n can be described in two parts:

1 the regular features of x ,

2 the index of x in the set S of strings with those regular
features.

For set S ⊆ {0, 1}n, the length of such a two-part description is

KU(S | n) + log2 |S |+ C ≥ KU(x | n) ,

where KU(S | n) is the length of the shortest program to list the
members of S (and then halt).

We can consider S (regular features) a model.
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Finite Set Models

all strings

S

x
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Example

For instance, if x is a sequence of biased coin flips, then with high
probability the only regular feature is the number of 1s.

Let Sn
k = {x ∈ {0, 1}n :

∑
xi = k}. The size of this set is

|Sn
k | =

(
n

k

)
=

n!

k!(n − k)!
≈ 2nH( k

n
) ,

where H(k
n ) is the binary entropy with parameter k

n .

Thus, the two-part description has length

KU(k) + nH(k
n ) + CKU(x | n) .

By the Asymptotic Equipartition Property (Lecture 3), nH(k
n )

is with high probability a lower bound (≈) on KU(x | n).
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For instance, if x is a sequence of biased coin flips, then with high
probability the only regular feature is the number of 1s.

Let Sn
k = {x ∈ {0, 1}n :

∑
xi = k}. The size of this set is

|Sn
k | =

(
n

k

)
=

n!
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≈ 2nH( k

n
) ,

where H(k
n ) is the binary entropy with parameter k

n .

Thus, the two-part description has length

KU(k) + nH(k
n ) + C ≈ KU(x | n) .

By the Asymptotic Equipartition Property (Lecture 3), nH(k
n )

is with high probability a lower bound (≈) on KU(x | n).
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Structure Function

Kolmogorov Structure Function

The Kolmogorov structure function is defined as

hx(α) = min
S : x∈S

KU(S |n)≤α

log2 |S | ,

i.e., the log-size of the smallest set containing x that can be
described in α bits.

The more bits we can use to describe S , the more regularities we
can cover, which makes |S | smaller.

For all α > 0, there is a two-part description of length α + hx(α).
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Structure Function

Consider different values of α:

α ≈ 0:
We can only describe the whole set {0, 1}n, and not
much else, so that hx(0) = log2 |{0, 1}n| = n.

α ≈ KU(x | n):
We can use the singleton set S = {x} since
KU({x} | n) = KU(x | n) + C . Thus,
hx(KU(x)) = log2 |{x}| = 0.

0 < α < KU(x | n):
A two-part description can never be better than
optimal:
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Consider different values of α:

α ≈ 0:
We can only describe the whole set {0, 1}n, and not
much else, so that hx(0) = log2 |{0, 1}n| = n.

α ≈ KU(x | n):
We can use the singleton set S = {x} since
KU({x} | n) = KU(x | n) + C . Thus,
hx(KU(x)) = log2 |{x}| = 0.

0 < α < KU(x | n):
A two-part description can never be better than
optimal:

hx(α) ≥ KU(x | n)− α .
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Structure Function

The slope of the structure function hx(α) is at least as steep as
−1 (ignoring constants):

For k extra bits in α, we can reduce the set S in a fraction of 1
2k

by sorting S alphabetically, dividing in 2k equal size parts, and
encoding the index of the part including x .

The constants related to instructions like “sort alphabetically
and choose second half/third quarter/etc.” cause bumps
in the structure function.
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K  (x)

K  (x)

n

h (   )αx

U

U

α

[Adapted from (Vereshchagin & Vitányi, 2004)]
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Sufficient Statistic

In statistics, a sufficient statistic is a function of the data which
contains all the information relevant to a parameter. Examples:

1 in coin flipping, the number of 1s is sufficient for the bias
parameter.

2 in die tossing, the number of times each face is seen is
sufficient for the parameters p1, . . . , p6.

3 in a Gaussian density, the average 1
n

∑
Xi is sufficient for the

mean.

In all these, the order of the outcomes, for instance, is irrelevant.

When estimating the parameter, it is sufficient to know the
sufficient statistic.
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Kolmogorov Sufficient Statistic

A finite set S is a Kolmogorov sufficient statistic iff we have

KU(S | n) + log2 |S | = KU(x | n) + C ,

i.e., the two-part description using S is optimal.

A Kolmogorov sufficient statistic tells everything about the
structure of the data x .

In coin flipping, the number of 1s is with high probability (also) a
Kolmogorov sufficient statistic.
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Structure Function

K  (x)

K  (x)

n

h (   )αx

U

U

α

sufficiency line

[Adapted from (Vereshchagin & Vitányi, 2004)]
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Minimal Sufficient Statistic

If S is a Kolmogorov sufficient statistic, i.e., we have

KU(S | n) + log2 |S | = KU(x | n) ,

then for all α within the range KU(S | n) < α ≤ KU(x | n), there is
another sufficient statistic with complexity α:

α = KU(S | n) + k : KU(S | n) + k + log2
|S |
2k

= KU(x | n) .

Kolmogorov Minimal Sufficient Statistic

The least complex Kolmogorov sufficient statistic is called the
Kolmogorov minimal sufficient statistic. It contains all the
information about the structure of x but nothing more.
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Example: Mona Lisa

Source: Cover & Thomas, 1991
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Ideal MDL

Given data x , choosing the Kolmogorov minimal sufficient statistic
as the preferred model is called “ideal MDL”.

Extracts all regularity from data, and leaves out noise.

Complexity = Information + Noise
= Regularity + Randomness
= Algorithm + Compressed file
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Ideal MDL

The finite set models can be replaced by (computable) probability
distributions — distribution p is a sufficient statistic iff

KU(p | n) + log2
1

p(x)
= KU(x | n) ,

i.e., two-part code optimal.

All things essentially unchanged:

Finite set S can be replaced by a uniform distribution over S ,

Distribution p can be replaced by the typical set under p.
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1 Kolmogorov Complexity
Definition
Basic Properties

2 Structure Function
Finite Set Models
Structure Function
Minimal Sufficient Statistic
Ideal MDL

3 MDL Principle
Definitions
Universal Models
Prediction & Model Selection

Teemu Roos Three Concepts: Information



Outline
Kolmogorov Complexity

Structure Function
MDL Principle

Definitions
Universal Models
Prediction & Model Selection

Ideal vs. Practical MDL

There are two problematic issues with ideal MDL:

1 Uncomputability of Kolmogorov complexity.

2 Hidden constants in the definitions and theorems.
⇒ Says nothing about individual strings.

Practical MDL aims to solve these issues by:

1 Replace computer programs by probabilistic models.
⇒ Computable.

2 Replace universal computer U by a universal model.
⇒ No hidden constants.
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Definitions

We call a probability distribution p : D → [0, 1] a model.

A model class M = {pθ : θ ∈ Θ} is a set of probability
distributions (models).

The model within M that achieves the shortest codelength for
data x is the maximum likelihood (ML) model:

min
θ∈Θ

log2
1

pθ(D)
= log2

1

pθ̂(D)
.

Depends on D!

For model q, the excess codelength or “regret” over the ML
model in M is given by

log2
1

q(D)
− log2

1

pθ̂(D)
.
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Stochastic Complexity

A model (code) for which the regret grows slower than n is said to
be a universal model (code) relative to model class M:

lim
n→∞

1

n

[
log2

1

q(D)
− log2

1

pθ̂(D)

]
= 0 .

The universal computer U is universal relative to all computers,
while a universal model is universal relative to a model class M.

Stochastic Complexity

The stochastic complexity of data D relative to model class M
is the codelength achieved by a universal model.
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Two-Part Universal Model

The two-part code (Lecture 5) consists of

1 optimally quantized parameter values θq, and

2 encoding of the data under model pθq .

The total codelength is

log2
1

pθq(D)
+ `(θq) .

For ‘smooth’ parametric models, and optimal quantization, the
codelength becomes (≈)

log2
1

pθ̂(D)
+

k

2
log2 n ,

so that the regret is
k

2
log2 n. Since log2 n grows slower than n, the

two-part code is universal.
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Mixture Universal Model

There are universal codes that are strictly better than the two-part
code.

For instance, given a code for the parameters, let w be a
distribution over the parameter space Θ (quantized if necessary)
defined as

w(θ) =
2−`(θ)

c
, where c =

∑
θ∈Θ

2−`(θ).

Let pw be a mixture distribution over the data-sets D ∈ D,
defined as

pw (D) =
∑
θ∈Θ

pθ(D) w(θ) ,

i.e., an “average” distribution, where each p is weighted by w .
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Mixture Universal Model

The codelength of the mixture model pw is given by

log2
1∑

θ∈Θ p(D | θ) w(θ)
≤ log2

1

maxθ∈Θ p(D | θ) w(θ)

= log2
1

maxθ∈Θ p(D | θ)
+ log2

c

2−`(θ)
.

The right-hand side is equal to

log2
1

pθ̂(D)
+ `(θ)︸ ︷︷ ︸

two-part code

− log2
1

c︸ ︷︷ ︸
≤0

,

The mixture code is always at least as good as the two-part
code.
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Normalized Maximum Likelihood

Consider the maximum likelihood model

pθ̂(D) = max
θ∈Θ

pθ(D) .

It is the best probability assignment achievable under model M.

Unfortunately, it is not possible to use the ML model for coding
because is not a probability distribution, i.e.,

C =
∑
D∈D

pθ̂(D) > 1 ,

unless θ̂ is constant wrt. D.
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Normalized Maximum Likelihood

Normalized Maximum Likelihood

The normalized maximum likelihood (NML) model is obtained
by normalizing the ML model:

pnml(D) =
pθ̂(D)

C
, where C =

∑
D∈D

pθ̂(D) .

The regret of NML is given by

log2
1

pnml(D)
− log2

1

pθ̂(D)
= log2

C

pθ̂(D)
− log2

1

pθ̂(D)
= log2 C ,

which is constant wrt. D.
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Normalized Maximum Likelihood

Let q be any distribution other than pnml. Then

there must a data-set D ′ ∈ D for which we have

q(D ′) < pnml(D
′)

⇔ log2
1

q(D ′)
− log2

1

pθ̂(D
′)︸ ︷︷ ︸

regret of q

> log2
1

pnml(D ′)
− log2

1

pθ̂(D
′)︸ ︷︷ ︸

regret of pnml

,

For D ′, the regret of q is greater than log2 C , the regret of pnml.

Thus, the worst-case regret of q is greater than the (worst-case)
regret of NML. ⇒ NML has the least possible worst-case regret.
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For D ′, the regret of q is greater than log2 C , the regret of pnml.

Thus, the worst-case regret of q is greater than the (worst-case)
regret of NML. ⇒ NML has the least possible worst-case regret.
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Universal Models

For ‘smooth’ parametric models, the regret of NML, log2 C , grows
slower than n, so NML is also a universal model.

We have seen three kinds of universal models:

1 two-part,

2 mixture,

3 NML.

So what do we do with them?

We can use them for (at least) three purposes:

1 compression,

2 prediction,

3 model selection.
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MDL Prediction

Prediction is done like in Kolmogorov complexity: universal
probability distribution/universal model achieves

good compression: `(D) is small,

good predictions: p(Di | D1, . . . ,Di−1) is large for most
i ∈ {1, . . . , n}.

For instance, the mixture code gives a natural predictor which is
equivalent to Bayesian prediction.

The NML model gives predictions that are good relative to the
best model in the model class, no matter what happens.
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MDL Model Selection

Recall (from Lecture 5) the multi-part codes used when multiple
model classes, M1,M2, . . . are available:

1 Encoding of the model class index: C0(i), i ∈ N.

2 Encoding of the parameter (vector): Ci (θ), θ ∈ Θi .

3 Encoding of the data: Cθ(D), D ∈ D.

If we are interested in choosing a model class (and not the
parameters), we can improve parts 2 & 3 by combining them into a
better universal code than two-part:

1 Encoding of the model class index: C0(i), i ∈ N.

2 Encoding of the data: CMi
(D), D ∈ D, where CMi

is a
universal code (e.g., mixture, NML) based on model class Mi .
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MDL Model Selection

The idea is the same as in the Kolmogorov minimal sufficient
statistic (ideal MDL): Extract all the structure from the data.

MDL Explanation of MDL

The success in extracting the structure from data can be measured
by the codelength.

In practical MDL, we only find the structure that is ‘visible’ to the
used model class(es). For instance, the Bernoulli (coin flipping)
model only sees the number of 1s.
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MDL & Bayes

The MDL model selection criterion

minimize `(θ) + `θ(D)

can be interpreted (via p = 2−`) as

maximize p(θ)× pθ(D) .

In Bayesian probability, this is equivalent to maximization of
posterior probability:

p(θ | D) =
p(θ) p(D | θ)

p(D)
,

where the term p(D) (the marginal probability of D) is constant
wrt. θ and doesn’t affect model selection.

⇒ Three Conceps: Probability
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Example: Denoising

Complexity = Information + Noise
= Regularity + Randomness
= Algorithm + Compressed file

Denoising means the process of removing noise from a signal.

The MDL principle gives a natural method for denoising since the
very idea of MDL is to separate the total complexity of a signal
into information and noise.

First encode a smooth signal (information), and then the difference
to the observed signal (noise).
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Example: Denoising

Noisy PSNR=19.8 MDL (A-B) PSNR=32.9
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Last Slide

The End.
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