Information-Theoretic Modeling, Fall 2009

Exercises V, due Friday 16 October.

1. Consider binary sequences x'° = (x1,x2,...,x15) € {0,1}'> of length n = 15.

Let M ={pg ; 0 € [0, 1]} be a model class consisting of i.i.d. Bernoulli distributions
— hence, the probability of sequence x'° is given by 62 *i(1 — )" L X where
5 x; and n — Y x; denote the number of 1’s and 0’s in x'°, respectively.

We quantize the parameter space © = [0, 1] by choosing 11 points at even inter-
vals, letting the possible quantized parameters be 09 € ©9 = {0.0,0.1,0.2,...,1.0}.

(a) What is the two-part code-length (ignoring the integer requirement) for data
sequence x'° = 001000100000001? Since we are not using the optimal quan-
tization, we need to evaluate the two-part code-length as

1
. L q
p4coa {logz Poa (D) +UHeY)| -

Use the uniform code for 69 which implies {(09) =log, 11 for all 89 € @9.

(b) Compute the mixture code-length,

1
> Pos () w(e)

0dcOd

log,

with the uniform prior w(09) = % for all 89 € O1.

Compare these code-lengths. Optional: Does the order of the code-lengths
159

depend on the actual sequence x'°7

2. Continuation of the first exercise: Compute the normalized maximum likeli-
hood code-length,

1
logy, —————, where C = paly™),
2 p(x19)/C y,sa%]},S 0

where the sum is over all the possible 15 bit sequences. Note that each term pé(yw)
in the sum involves the parameters maximizing the probability of sequence y'>. The

maximizing 0 for y'> is given by 6 = % By these observations, we obtain
2 Ui n—3 yi
Yi Yi
a1 (E2)F (1 E2)
n n

Optional: Can you figure out a way to compute the sum faster than by enu-
merating all the 2'° possible binary sequences?



3. (2 points) Curve fitting. For this exercise you need to use gnuplot or some
other tool that allows you to fit parametric functions to data. We analyse a sequence
of observations given in the polydata.txt file, available at the course web-page’.

First, let’s take a look at the data (Fig. 1):

gnuplot> plot "polydata.txt"

T T
. "polydata.txt"  +

0 5 10 15 20 25 30

Figure 1: polydata.txt

Now, let’s fit a linear function f(x) = a + bx to the data using gnuplot’s fit
procedure:

gnuplot> funcl(x)=a+b*x
gnuplot> fit funcl(x) "polydata.txt" via a,b

We get a long output giving us all sorts of statistics, including the “final sum of
squares of residuals: 5978.96”. The fitted curve (Fig. 2) can be plotted by:

gnuplot> plot "polydata.txt", funcl(x)

T
funci(x)
80 + o+ T "polydata.txt”  + —

0 5 10 15 20 25 30

Figure 2: A linear function f(x) = a + bx fitted to the data.

We can also fit, say, a quadratic function, i.e., a second order polynomial:

gnuplot> func2(x)=a+b*x+c*x*x
gnuplot> fit func2(x) "polydata.txt" via a,b,c

IThe sequence of values is: 53, 44, 69, 59, 81, 76, 80, 83, 83, 69, 77, 76, 70, 57, 43, 41, 36, 37,
30, 28, 29, 12, 7, 19, 8, 18, 20, 19, 13, 16.



In this case the residual sum of squares is 5195.46, which means that the fit was
better. In fact we need not restrict to polynomials: we can fit any function that we
can write in gnuplot, including exponentials, logarithms, trigonometric functions,
etc.

If we want to encode the data using a this kind of a model, we need to encode

. . k
1. the coefficients: we use the asymptotic formula 5 log, n as the code-length

for this part,
2. the data: we use a Gaussian distribution.

In the Gaussian density fitted to the data, the mean is given by the fitted
curve and the variance is given by the residual sum of squares divided by the
sample size: 62 = RSS/n. For instance, in the linear case, the variance is given by
62 =5978.96/30 ~ 199.3.

The fact that the Gaussian distribution is defined as a density, not a probability
mass function, is actually of no concern — this will be explained on Friday’s lecture.
The code-length of the second part becomes then

(f(x) —y)?

n 1 S S A
lo e 262 ,
&2 g V2762

where f(x) is the fitted function. This can be re-written as

n

n 2
210g2(27t62)+;(f(x) Y)

£ (2In2)67 "

where the sum of squared residuals and the ML estimate of the variance 62 cancel
each other, and the second term becomes a constant (see Lecture 10). We can thus
write the code-length as

% log, RSS + constant,

where constant doesn’t depend on the data or the function we are fitting, and can
be ignored.
The total code-length which gives the final MDL criterion is therefore

5 log, RSS + %10g2 n,

where k is given by the number of coefficients in the model plus one for the variance
parameter.

To give an example, in the case of the linear model, the value of the criterion
is given by 32—0 log, 5978.96 + %logz 30 =~ 195.5. For the quadratic function, we get
32—0 log, 5195.46+ % log, 30 =~ 195.0. The latter is smaller, so we prefer the quadratic
function.

Your task is to find a function for which the MDL criterion gives as small a
value as possible.

Bonus exercise. Generate your own data from some parametric function f(x),
and see if that function is identified correctly by the MDL criterion. Try different
sample sizes.



