
Information-Theoreti
 Modeling, Fall 2009Exer
ises V, due Friday 16 O
tober.1. Consider binary sequen
es x15 = (x1, x2, . . . , x15) ∈ {0, 1}15 of length n = 15.Let M = {pθ ; θ ∈ [0, 1]} be a model 
lass 
onsisting of i.i.d. Bernoulli distributions| hen
e, the probability of sequen
e x15 is given by θ
∑

xi(1 − θ)n−
∑

xi , where∑
xi and n −

∑
xi denote the number of 1's and 0's in x15, respe
tively.We quantize the parameter spa
e Θ = [0, 1] by 
hoosing 11 points at even inter-vals, letting the possible quantized parameters be θq ∈ Θq = {0.0, 0.1, 0.2, . . . , 1.0}.(a) What is the two-part 
ode-length (ignoring the integer requirement) for datasequen
e x15 = 001000100000001? Sin
e we are not using the optimal quan-tization, we need to evaluate the two-part 
ode-length asmin

θq∈Θq

[log2

1

pθq(D)
+ ℓ(θq)

]

.Use the uniform 
ode for θq whi
h implies ℓ(θq) = log2 11 for all θq ∈ Θq.(b) Compute the mixture 
ode-length,log2

1∑

θq∈Θq

pθq(x15)w(θq)
,with the uniform prior w(θq) = 1

11
for all θq ∈ Θq.Compare these 
ode-lengths. Optional: Does the order of the 
ode-lengthsdepend on the a
tual sequen
e x15?2. Continuation of the �rst exer
ise: Compute the normalized maximum likeli-hood 
ode-length,log2

1

pθ̂(x15)/C
, where C =

∑

y15∈{0,1}15

pθ̂(y15),where the sum is over all the possible 15 bit sequen
es. Note that ea
h term pθ̂(y15)in the sum involves the parameters maximizing the probability of sequen
e y15. Themaximizing θ for y15 is given by θ̂ =
∑

yi

n
. By these observations, we obtain

pθ̂(y15) =

(∑
yi

n

)

∑
yi

(

1 −

∑
yi

n

)n−
∑

yiOptional: Can you �gure out a way to 
ompute the sum faster than by enu-merating all the 215 possible binary sequen
es?
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3. (2 points) Curve �tting. For this exer
ise you need to use gnuplot or someother tool that allows you to �t parametri
 fun
tions to data. We analyse a sequen
eof observations given in the polydata.txt �le, available at the 
ourse web-page1.First, let's take a look at the data (Fig. 1):
gnuplot> plot "polydata.txt"
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Figure 1: polydata.txtNow, let's �t a linear fun
tion f(x) = a + bx to the data using gnuplot's fitpro
edure:
gnuplot> func1(x)=a+b*x

gnuplot> fit func1(x) "polydata.txt" via a,bWe get a long output giving us all sorts of statisti
s, in
luding the \�nal sum ofsquares of residuals: 5978.96". The �tted 
urve (Fig. 2) 
an be plotted by:
gnuplot> plot "polydata.txt", func1(x)
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Figure 2: A linear fun
tion f(x) = a + bx �tted to the data.We 
an also �t, say, a quadrati
 fun
tion, i.e., a se
ond order polynomial:
gnuplot> func2(x)=a+b*x+c*x*x

gnuplot> fit func2(x) "polydata.txt" via a,b,c1The sequen
e of values is: 53, 44, 69, 59, 81, 76, 80, 83, 83, 69, 77, 76, 70, 57, 43, 41, 36, 37,30, 28, 29, 12, 7, 19, 8, 18, 20, 19, 13, 16. 2



In this 
ase the residual sum of squares is 5195.46, whi
h means that the �t wasbetter. In fa
t we need not restri
t to polynomials: we 
an �t any fun
tion that we
an write in gnuplot, in
luding exponentials, logarithms, trigonometri
 fun
tions,et
.If we want to en
ode the data using a this kind of a model, we need to en
ode1. the 
oeÆ
ients: we use the asymptoti
 formula k

2
log2 n as the 
ode-lengthfor this part,2. the data: we use a Gaussian distribution.In the Gaussian density �tted to the data, the mean is given by the �tted
urve and the varian
e is given by the residual sum of squares divided by thesample size: σ̂2 = RSS/n. For instan
e, in the linear 
ase, the varian
e is given by

σ̂2 = 5978.96/30 ≈ 199.3.The fa
t that the Gaussian distribution is de�ned as a density, not a probabilitymass fun
tion, is a
tually of no 
on
ern | this will be explained on Friday's le
ture.The 
ode-length of the se
ond part be
omes thenlog2







n∏

i=1

1√
2πσ̂2

e
−

(f(x) − y)2

2σ̂2







−1

,where f(x) is the �tted fun
tion. This 
an be re-written as
n

2
log2(2πσ̂2) +

n∑

i=1

(f(x) − y)2

(2 ln 2)σ̂2
,where the sum of squared residuals and the ML estimate of the varian
e σ̂2 
an
elea
h other, and the se
ond term be
omes a 
onstant (see Le
ture 10). We 
an thuswrite the 
ode-length as

n

2
log2 RSS+ 
onstant,where 
onstant doesn't depend on the data or the fun
tion we are �tting, and 
anbe ignored.The total 
ode-length whi
h gives the �nal MDL 
riterion is therefore

n
2
log2 RSS+ k

2
log2 n,where k is given by the number of 
oeÆ
ients in the model plus one for the varian
eparameter.To give an example, in the 
ase of the linear model, the value of the 
riterionis given by 30

2
log2 5978.96 + 3

2
log2 30 ≈ 195.5. For the quadrati
 fun
tion, we get

30
2
log2 5195.46+ 4

2
log2 30 ≈ 195.0. The latter is smaller, so we prefer the quadrati
fun
tion.Your task is to �nd a fun
tion for whi
h the MDL 
riterion gives as small avalue as possible.Bonus exer
ise. Generate your own data from some parametri
 fun
tion f(x),and see if that fun
tion is identi�ed 
orre
tly by the MDL 
riterion. Try di�erentsample sizes. 3


