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@ A sequence of values (x;

i € N) converges to limit L,
lim; oo x; = L, iff for any € > 0 there exists a number N € N
such that
|xi— Ll <e foralli>N .
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Limits and Convergence

@ A sequence of values (x; : i € N) converges to limit L,
lim; o0 X; = L, iff for any € > 0 there exists a number N € N
such that
|xi — L <e foralli>N .

e f(x) has a limit L as x approaches c, limy_.. f(x) = L, (from
above ¢ /below ¢™) iff for any € > 0 there exists a number
0 > 0 such that

c<x<c+§ ‘above’
[f(x) =Ll <e forall c—d<x<c ’below
O<|x—¢|<d —
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Function f : X — R is said to be convex iff for any x,y € X and
any t € [0,1], we have

f(tx + (1 — t)y) < tF(x) + (1 — t)f(y) .
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Function f : X — R is said to be convex iff for any x,y € X and
any t € [0,1], we have
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Function f is strictly convex iff the above inequality holds strictly
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Function f : X — R is said to be convex iff for any x,y € X and
any t € [0,1], we have

f(tx + (1 — t)y) < tF(x) + (1 — t)f(y) .
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Function f is strictly convex iff the above inequality holds strictly
(‘<’ instead of ‘<").

Function f is (strictly) concave iff the above holds for —f.
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If function f has a second derivative f”, and f” is non-negative
then f is strictly convex.

(> 0) for all x, then f is convex. If f" is positive (> 0) for all x,
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If function f has a second derivative f”, and f” is non-negative

(> 0) for all x, then f is convex. If f" is positive (> 0) for all x,
then f is strictly convex.
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If function f has a second derivative f”, and f” is non-negative
(> 0) for all x, then f is convex. If f" is positive (> 0) for all x,
then f is strictly convex.
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If function f has a second derivative f”, and f” is non-negative

(> 0) for all x, then f is convex. If f" is positive (> 0) for all x,
then f is strictly convex.

Example: f'(x) =

exp is strictly convex.
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If function f has a second derivative f”, and f” is non-negative

(> 0) for all x, then f is convex. If f" is positive (> 0) for all x,
then f is strictly convex.
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A probability space (2, F, P) is defined by
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A probability space (2, F, P) is defined by

o the sample space 2 whose elements are called outcomes w,
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A probability space (2, F, P) is defined by

o the sample space 2 whose elements are called outcomes w,
events E, and

@ a sigma algebra F of subsets of €2, whose elements are called
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A probability space (2, F, P) is defined by

@ the sample space 2 whose elements are called outcomes w,

@ a sigma algebra F of subsets of €2, whose elements are called

events E, and

@ a measure P which determines the probabilities of events,

P F—[0,1].
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Probability Space

A probability space (2, F, P) is defined by
@ the sample space 2 whose elements are called outcomes w,

@ a sigma algebra F of subsets of €2, whose elements are called
events E, and

@ a measure P which determines the probabilities of events,
P F—[0,1].

Measure P has to satisfy the probability axioms: P(E) > 0 for all

EcF PQ)=1and P(EEUEU...)=>.P(E)if (E)isa
countable sequence of disjoint events.

Teemu Roos Information-Theoretic Modeling
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A probability space (2, F, P) is defined by
@ the sample space 2 whose elements are called outcomes w,

@ a sigma algebra F of subsets of €2, whose elements are called

events E, and

@ a measure P which determines the probabilities of events,

P F—[0,1].

Measure P has to satisfy the probability axioms: P(E) > 0 for all
EcF PQ)=1and P(EEUEU...)=>.P(E)if (E)isa
countable sequence of disjoint events.

These axioms imply the usual rules of probability calculus, e.g.,
P(AUB) = P(A)+ P(B)— P(ANnB), P(Q\E) =1 — P(E), etc.
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occurs is defined as

p(8 | 4) = PANE)

© The conditional probability of event B given that event A

P(A)

for A such that P(A) > 0.
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occurs is defined as

© The conditional probability of event B given that event A
P(ANB
P8 | A)= DADE)

P(A)

for A such that P(A) > 0.
@ P(ANB)=P(A)x P(B|A)=P(B) x P(A| B) .
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Probability Calculus

@ The conditional probability of event B given that event A
occurs is defined as

pB| A= TADE) (;‘(Q\)B )

@ P(ANB) = P(A)x P(B|A)=P(B) x P(A| B) .
P(A | B) x P(B)
P(A)

for A such that P(A) > 0.

© Bayes' rule: P(B| A) =

Teemu Roos Information-Theoretic Modeling
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Probability Calculus

@ The conditional probability of event B given that event A
occurs is defined as

P(B [ A) = P(;\(Q\)B) for A such that P(A) > 0.
@ P(ANB)=P(A) x P(B|A)=P(B)x P(A| B) .
© Bayes' rule: P(B| A) = P(A] If()Aj P(B)
@ Chain rule:
N
I 1E HP ﬂ’ 1E

i=1
P El) (E2 | El) X P(E3 ‘ Ein E2)
XP(EN‘Elﬂ...ﬂEN_l) .

Teemu Roos Information-Theoretic Modeling



Technically, a random variable is a (measurable) function
X : Q — R from the sample space to the reals.
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Technically, a random variable is a (measurable) function
X : Q — R from the sample space to the reals.

Px(A) =Pr[X € A]= P{w : X(w) € A}) ,
where A C R.

«0)>» «Fr «=)» « =) = Q>

The probability measure P on Q determines the distribution of X
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Random Variables

Technically, a random variable is a (measurable) function
X : ©Q — R from the sample space to the reals.

The probability measure P on Q determines the distribution of X:
Px(A) =Pr[X € Al = P{w : X(w) € A}) ,
where A C R.

It is often more natural to relabel the outcomes and denote them,
for instance, by letters, A, B, C, ..., or words red, black, ...

Teemu Roos Information-Theoretic Modeling
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Random Variables

Technically, a random variable is a (measurable) function
X : ©Q — R from the sample space to the reals.

The probability measure P on Q determines the distribution of X:
Px(A) =Pr[X € Al = P{w : X(w) € A}) ,
where A C R.

It is often more natural to relabel the outcomes and denote them,
for instance, by letters, A, B, C, ..., or words red, black, ...

In practice, we often forget about the underlying probability space
Q, and just speak of random variable X and its distribution Px.

Teemu Roos Information-Theoretic Modeling



The distribution of a random variable can always be represented as
a cumulative distribution function (cdf) Fx(x) = Pr[X < x].
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The distribution of a random variable can always be represented as
a cumulative distribution function (cdf) Fx(x) = Pr[X < x].

In addition:

o A discrete random variable X with countable alphabet X" has
a probability mass function (pmf) px such that

Pr[X = x] = px(x).

Teemu Roos
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Random Variables

The distribution of a random variable can always be represented as
a cumulative distribution function (cdf) Fx(x) = Pr[X < x].

In addition:

o A discrete random variable X with countable alphabet X" has
a probability mass function (pmf) px such that

Pr[X = x] = px(x).
@ A continuous random variable Y has a probability density
function (pdf) fy such that Pr[Y € A] = [, fy(x) dy.

Teemu Roos Information-Theoretic Modeling
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Random Variables

The distribution of a random variable can always be represented as
a cumulative distribution function (cdf) Fx(x) = Pr[X < x].

In addition:

o A discrete random variable X with countable alphabet X" has
a probability mass function (pmf) px such that
Pr[X = x] = px(x).

@ A continuous random variable Y has a probability density
function (pdf) fy such that Pr[Y € A] = [, fy(x) dy.

There are also mixed random variables that are neither discrete nor
continuous. They don't have a pmf or pdf, but they do have a cdf.

Teemu Roos Information-Theoretic Modeling
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Random Variables

The distribution of a random variable can always be represented as
a cumulative distribution function (cdf) Fx(x) = Pr[X < x].
In addition:

o A discrete random variable X with countable alphabet X" has
a probability mass function (pmf) px such that

Pr[X = x] = px(x).
@ A continuous random variable Y has a probability density
function (pdf) fy such that Pr[Y € A] = [, fy(x) dy.

There are also mixed random variables that are neither discrete nor
continuous. They don't have a pmf or pdf, but they do have a cdf.

We often omit the subscripts X, Y, ... and write p(x), f(y), etc.

Teemu Roos Information-Theoretic Modeling



Since random variables are functions, we can define more random

variables as functions of random variables: if f is a function, and X
and Y arer.v.'s, then f(X) : Q > Risarv., X+ Yisaruv,
etc.
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Since random variables are functions, we can define more random
variables as functions of random variables: if f is a function, and X
and Y arer.v.'s, then f(X) : Q > Risarv., X+ Yisaruv,

etc.

Example: Let r.v. X be the outcome of a die.

»

@ The pmf of X is given by px(x) = 1/6 for all

x €{1,2,3,4,5,6}.

Teemu Roos
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Law of Large Numbers

Since random variables are functions, we can define more random
variables as functions of random variables: if f is a function, and X
and Y arer.v.'s, then f(X) : Q > Risarv., X+ Yisaruv,

etc.

Example: Let r.v. X be the outcome of a die.

»

@ The pmf of X is given by px(x) = 1/6 for all

x €{1,2,3,4,5,6}.

@ The pmf of r.v. X2 is given by px2(x) = 1/6 for all

x € {1,4,9,16,25,36}.

Teemu Roos
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Random Variables

Since random variables are functions, we can define more random
variables as functions of random variables: if f is a function, and X
and Y arer.v.'s, then f(X) : Q > Risarv., X+ Yisaruv,
etc.

Example: Let r.v. X be the outcome of a die. @
@ The pmf of X is given by px(x) = 1/6 for all
x €1{1,2,3,4,5,6}.
@ The pmf of r.v. X2 is given by px2(x) = 1/6 for all
x € {1,4,9,16,25,36}.

In particular, a pmf px is a function, and hence, px(X) is
! also a random variable. Further, p%(X),In px(X), etc. are
random variables.

Teemu Roos Information-Theoretic Modeling



The probabilistic behavior of two or more random variables is
described by multivariate distributions.

The joint distribution of r.v.'s X and Y is
Px,y(A,B)=Pr[Xe AN Y € B

=P({w : X(w) €A Y(w) € B}) .
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Law of Large Numbers

The probabilistic behavior of two or more random variables is
described by multivariate distributions.

The joint distribution of r.v.’s X and Y is

Px.y(A,B)=Pr[X e AN Y € B]
=P{w : X(w)€e A, Y(w) € B}) .

For each multivariate distribution Px y, there are unique marginal
distributions Px and Py such that

Px(A) = Px y(A,R),

Teemu Roos

Py(B) = Px y(R,B) ,

Information-Theoretic Modeling



Outline
Calculus
Probability
Inequalities

Multivariate Distributions

Probability Space and Random Variables
Joint and Conditional Distributions
Expectation

Law of Large Numbers

The probabilistic behavior of two or more random variables is
described by multivariate distributions.

The joint distribution of r.v.’s X and Y is

Px.y(A,B)=Pr[X e AN Y € B]
=P{w : X(w)€e A, Y(w) € B}) .

For each multivariate distribution Px y, there are unique marginal
distributions Px and Py such that

Px(A) = Px y(A,R),

Py(B) = Px y(R,B) ,

pmf: py(y) = Z px.y(x,y) pdf fy(y)= /R fx y(x,y)dx .

xeX

Teemu Roos
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probability:

Pyix(B|A) =

Px,y(A, B)
Px(A)

The conditional distribution is defined similar to conditional

for A such that Px(A) > 0.
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probability:

Pyix(B|A) =

The conditional distribution is defined similar to conditional

Px,y(A, B)
Px(A)

for A such that Px(A) > 0.
For discrete/continuous variables we have:
@ discrete r.v.'s:

Px y\X,y
pyix(y | x) = be.y)

px(x)

px(x) >0,

«0)>» «Fr «=)» « =) = Q>
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Multivariate Distributions

The conditional distribution is defined similar to conditional
probability:
Px.y(A, B)

for A such that Px(A .
Py (A) or A such that Px(A) >0

Pyix(B | A) =

For discrete/continuous variables we have:

@ discreter.v.'s:

Px Y(X7y)
X) = —"————- x) >0,
pY|X(.y’ ) PX(X) pX( )
@ continuous r.v.'s:
fx,v(x,y)
fy = = f; .
yix(y [ x) RO x(x) >0

Teemu Roos Information-Theoretic Modeling



Variable X is said to be independent of variable Y (X 1Y) iff

Px.v(A, B) = Px(A) x Py(B) forall A,B CR.
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Variable X is said to be independent of variable Y (X 1Y) iff

Px.y(A, B) = Px(A) x Py(B) forall A,B CR.
This is equivalent to

Pxiy(A| B) = Px(A) for all B such that P(B) > 0,

«0)>» «Fr «=)» « =) = Q>
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Independence

Variable X is said to be independent of variable Y (X 1Y) iff
Px y(A, B) = Px(A) x Py(B) forall A,B CR.
This is equivalent to
Px|y(A| B) = Px(A) for all B such that P(B) > 0,
and
Pyx(B | A) = Py(B) for all A such that P(A) > 0.

In words, knowledge about one variable tells nothing about the
other. Note that independence is symmetric, X LY < Y 1L X.

Teemu Roos Information-Theoretic Modeling



The expectation (or expected value, or mean) of a discrete
random variable is given by

EX] = 3 p(x)x

XEX
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random variable is given by

The expectation (or expected value, or mean) of a discrete

EX] = 3 p(x)x

xeX
The expectation of a continuous random variable is given by

E[X] = /X F(x) x dx
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random variable is given by

The expectation (or expected value, or mean) of a discrete

EX] = 3 p(x)x

xeX
The expectation of a continuous random variable is given by

E[X] = /X F(x) x dx

In both cases, it is possible that E[X] = +o0

«0)>» «Fr «=)» « =) = Q>
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Expectation

The expectation (or expected value, or mean) of a discrete
random variable is given by

EX]=) p(x)x .

XEX
The expectation of a continuous random variable is given by

E[X]:/ f(x)xdx .
X
In both cases, it is possible that E[X] = 0.

E[kX] = kE[X]  E[X + Y] = E[X] + E[Y]

E[XY] = E[X]E[Y] ifXLY

Teemu Roos Information-Theoretic Modeling



Let X1, X2, ... be a sequence of independent outcomes of a
Q die, so that px,(x) =1/6 for all i € N,x € {1,2,3,4,5,6}.

0.3 — ; —
0.25 | g
02| ; g
015 [ -
01} -
0.05 | -
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Let X1, X2, ... be a sequence of independent outcomes of a
Q die, so that px,(x) =1/6 for all i € N,x € {1,2,3,4,5,6}.

0.3 : T — T T
0.25 |- .
0.2 ; N
0.15 F ]
0.1 ]
0.05 |- .

6
121
E[X/] = ng: 5 =35 forallieN.
x=1
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Let S, = Y./ ; X, be the sum of the first n outcomes.
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Let S, = 27:1 X, be the sum of the first n outcomes.
The distribution of S, is given by

Ps,(x)

_ # of ways to get sum x with n dice
= o
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Let S, = Y./ ; X, be the sum of the first n outcomes.

The distribution of S, is given by

_ # of ways to get sum x with n dice
= o

Ps,(x)

distribution of S;
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Let S, = Y./ ; X, be the sum of the first n outcomes.

The distribution of S, is given by

_ # of ways to get sum x with n dice
= o

Ps,(x)

distribution of S,
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02 .
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The distribution of S, is given by

Ps,(x)

Let S, = Y./ ; X, be the sum of the first n outcomes.

_ # of ways to get sum x with n dice

6n
distribution of S;
02 T T T T T T T
0.15
0.1
0.05 -
O 1 1 1
4 6




Let S, = Y./ ; X, be the sum of the first n outcomes.

The distribution of S, is given by

_ # of ways to get sum x with n dice
= o

Ps,(x)

distribution of S,
0.14 T T T T
0.12 | ; .
01} : -
008 | .
0.06 | : :
0.04 | g
0.02 | :
0 1 H 1 1
5 10 15 20
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Let S, = Y./ ; X, be the sum of the first n outcomes.

The distribution of S, is given by

_ # of ways to get sum x with n dice
= o

Ps,(x)

distribution of Ss
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0.08 |- 1
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Let S, = Y./ ; X, be the sum of the first n outcomes.

The distribution of S, is given by
_ # of ways to get sum x with n dice
= o

Ps,(x)

distribution of S

_lIIII||‘|““|““|‘||IIIII-
40

10 20 30 50 60

0.09

o
o
(9]
T T T T T T T
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The distribution of S, is given by

Ps,(x)

6n

Let S, = Y./ ; X, be the sum of the first n outcomes.

_ # of ways to get sum x with n dice

distribution of Sy

40

60 80 100 120
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Outline Probability Space and Random Variables

Calculus Joint and Conditional Distributions
Probability Expectation
Inequalities Law of Large Numbers

Law of Large Numbers

Let S, = >_7 ; X, be the sum of the first n outcomes.

The distribution of S, is given by

# of ways to get sum x with n dice
6!1

Ps,(x) =

distribution of Sjg
0.03 T — T
0.025 T
0.02 - T
0.015 T
0.01 - T
0.005 T

100 200 300 400 500 600
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Outcone

LAW OF LARGE NUMBERS IN AVERAGE OF DIE ROLLS

AVERAGE CONVERGES TO EXPECTED VALUE OF 3.5

T T A " T e
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et - et

e
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PLOT  + + % Outeome  — Average
Source: Wikipedia
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Outline Probability Space and Random Variables

Calculus Joint and Conditional Distributions
Probability Expectation
Inequalities Law of Large Numbers

Law of Large Numbers

Weak Law of Large Numbers
For a sequence of independent and identically distributed (i.i.d.)

random variables with finite mean p, the average %S,, converges in
probability to u:

n—oo

lim PrHi”—u‘<e]:1 for all € > 0.

We will use the LLN to prove a result known as the Asymptotic
Equipartition Property (AEP), which is a central result in
information theory (see next lecture).
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@ Calculus

@ Limits and Convergence
o Convexity

© Probability

@ Probability Space and Random Variables
@ Joint and Conditional Distributions

@ Expectation

@ Law of Large Numbers

© Inequalities

@ Jensen's Inequality
@ Gibbs's Inequality
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Outline

Calculus Jensen’s Inequality
Probability Gibbs's Inequality
Inequalities

Jensen’s inequality

£

1.4l .h

J.LLW.V. Jensen, 1859-1925
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If fis a convex function and X is a random variable, then

E[f(X)] = F(E[X]) -

Moreover, if f is strictly convex, the inequality holds as an equality
if and only if X = E[X] with probability 1.
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If fis a convex function and X is a random variable, then

E[f(X)] = F(E[X]) -

Moreover, if f is strictly convex, the inequality holds as an equality
if and only if X = E[X] with probability 1.
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Outline

Calculus Jensen’s Inequality
Probability Gibbs's Inequality
Inequalities

Inequalities: Jensen

Jensen's inequality

If f is a convex function and X is a random variable, then
E[f(X)] = f(E[X]) .

Moreover, if f is strictly convex, the inequality holds as an equality
if and only if X = E[X] with probability 1.

We give a proof for the first part of the theorem in the special case
where X has a finite domain.

Teemu Roos Information-Theoretic Modeling




Outline

Calculus Jensen’s Inequality
Probability Gibbs's Inequality
Inequalities

Inequalities: Jensen

Jensen's inequality

If f is a convex function and X is a random variable, then
E[f(X)] = f(E[X]) .

Moreover, if f is strictly convex, the inequality holds as an equality
if and only if X = E[X] with probability 1.

We give a proof for the first part of the theorem in the special case
where X has a finite domain.

For two mass points, we have p(x2) =1 — p(x1), and the claim
holds by definition of convexity:

p(x1) f(x1) + p(x2) F(x2) = f(p(x1) x1 + p(x2) x2) -
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Induction: Assume that () the theorem holds for N — 1 mass points.

N
Z p(x:) F(x;) = p(xn) F(xn) + (1 — p(xn) Zp(x, (xi)
> p(xn) fxn) + (1= poxw)) £ (Z P (x) x:) )
N-1
f (P(XN) <+ (1= plw)) D () Xi> (convexity)

. i=1
=f (Z p(x7) x,-) ,

p(xi)
) (XN) . O

where p'(x;) =
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Induction: Assume that () the theorem holds for N — 1 mass points.

N
Z p(xi) f(xi) = p(xn) F(xn) + (1 — p(xn) Z p'(x) f(x)
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Induction: Assume that () the theorem holds for N — 1 mass points.

N
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Induction: Assume that () the theorem holds for N — 1 mass points.

N
Z p(x:) F(xi) = p(xn) F(xn) + (1 — p(xn) Zp(x, (xi)
> p(xn) fxn) + (1= poxw)) £ (Z P (x) x:) )
N-1
f (P(XN) <+ (1= plw)) D () Xi> (convexity)

i} i=1
=f (Z p(x,-)x,-) ,

p(xi)
) (XN) . O
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Outline

Calculus Jensen’s Inequality
Probability Gibbs’s Inequality
Inequalities

Gibbs’ inequality

W. Gibbs, 1839-1903

=] =
Information-Theoretic Modeling
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For any two discrete probability distributions p and g, we have
xeX

> p(x)logy p(x) = D~ p(x)logs q(x)

XEX

with equality if and only if p(x) = q(x) for all x € X.

log, to In.

Proof. Since log, x = o In x, dividing both sides by In2 changes
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xXeX

For any two discrete probability distributions p and g, we have

xXEX

with equality if and only if p(x) = q(x) for all x € X.

S p()Inp(x) = 3 p(x)Ing(x)

log, to In.

Proof. Since log, x = o In x, dividing both sides by In2 changes
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> p(x)Ing(x)

> p(x)Inp(x) = Y p(x)Ing(x)

xeX

> p(x)Inp(x)

S p(x) (Ing(x) — In p(x))
XEX

=> p(x)In

xeX

p(x)

<XEZX p(x) (Q( x)

Yy
9-1)
:Zq(x)—Zp(x):l—l:O. O

xeX XeEX
«40>» «Fr «=)» « =) = Q>
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> p(x)Ing(x)

> p(x)Inp(x) = Y p(x)Ing(x)

xeX

> p(x)Inp(x)

S p(x) (Inq(x) — In p(x))
XEX

—Z x)In

xeX

<XEZX p(x) <Q( )

Yy
9-1)
:Zq(x)—Zp(x):l—l:O. O

xeX XeEX
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> p(x)Ing(x)

> p(x)Inp(x) = Y p(x)Ing(x)

xeX

> p(x)Inp(x)

S p(x) (Inq(x) — In p(x))
XEX

=> p(x)In

xeX

p(x)

<XGZX X)<CI()

y
]
p(x) >
:Zq(x)—Zp(x):l—l:O. O
xeX xeX
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> p(x)Ing(x)

> p(x)Inp(x) = Y p(x)Ing(x)

xeX

> p(x)Inp(x)

S p(x) (Inq(x) — In p(x))
XEX

=> p(x)In

xeX

p(x)

<XEZX p(x) <Q( x)

y
9-1)
=Y qx)= > px)=1-1=0. O
xeX xeX
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For Friday's lecture about entropy and information,

read Chapter 2 of Cover & Thomas (in course folder).
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Next week:

For Friday's lecture about entropy and information,
read Chapter 2 of Cover & Thomas (in course folder).

@ noiseless source coding theorem,
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Next week:

For Friday's lecture about entropy and information,
read Chapter 2 of Cover & Thomas (in course folder).

@ noiseless source coding theorem,

@ practical source coding (to be continued).
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