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losaRno DE L FUETE

Caile B. Demantad. .
BONO

! e U2
Par le réalisatent de u groups

une comédie ronfntigue
roek'n roll g¥tras nervée,

Sur le point de realiser son prermiier filil, Jake Valsh,
cinéaste. new-yorkais, fombe follement amoureux de
Stella; un Jeune mannequin frangais. Pas de chance.
Lamiour rend aveugle et incanscient, et Jake en oublic
vite 52 propre vie. Aprés de mulliphes rebondissements,
I se retrauve sans traval, sans Stella,... el embarqué
dans une tourmée 3 travers les Etafs-Unis avec le
groupe U2, De guoi devenir complétement fou.

Teemu Roos Information-Theoretic Modeling



Q Entropy and Information
@ Entropy

@ Information Inequality

@ Data Processing Inequality




Outline
Entropy and Information
Data Compression

@ Entropy and Information
@ Entropy
@ Information Inequality
@ Data Processing Inequality

© Data Compression
e Asymptotic Equipartition Property (AEP)
@ Typical Sets
@ Noiseless Source Coding Theorem

Teemu Roos Information-Theoretic Modeling



Outline Entropy
Entropy and Information Information Inequality
Data Compression Data Processing Inequality

Entropy

Given a discrete random variable X with pmf px, we can measure
the amount of “surprise” associated with each outcome x € X by

the quantity
1
Ix(x) = log, ——
b ? px(x)

The less likely an outcome is, the more surprised we are to observe
it. (The point in the log-scale will become clear shortly.)
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Entropy

Given a discrete random variable X with pmf px, we can measure
the amount of “surprise” associated with each outcome x € X by

the quantity
1
Ix(x) =log, —— .
b ? px(x)

The less likely an outcome is, the more surprised we are to observe
it. (The point in the log-scale will become clear shortly.)

The entropy of X measures the expected amount of “surprise”:
1

H(X) = E[Ix(X)] = );YPX(X) log, ox ()
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For binary-valued X, with p = px(1) = 1 — px(0), we have

1
H(X) = plog, ra (1 - p)log,
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@ the joint entropy of two (or more) random variables
H(X,Y) =

> pxv(xy) Iog2

1
X,y (x,y)
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H(X,Y) =

@ the joint entropy of two (or more) random variables

xXeEX

> pxy(x:y) o2 )

yey

@ the entropy of a conditional distribution
HX|Y =y

xeX

> pxv(x | ) log,

1
X,y (x,y)

1
x|y (x| y)
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More Entropies

@ the joint entropy of two (or more) random variables:

1
H(X,Y) = px,y(x,y) logy ———~ ,
( ) );( xv(x.y) % px.y(x,y)

yey
@ the entropy of a conditional distribution:

HIX Y =y) =Y pxv(x|y) log,

= pxiy(x|y)

© and the conditional entropy:

HX | Y)=> p)HX|Y =y)
yey
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More Entropies

@ the joint entropy of two (or more) random variables:

1
H(X,Y) = px,y(x,y) logy ———~ ,
( ) );( xv(x.y) % px.y(x,y)

yey
@ the entropy of a conditional distribution:

HIX Y =y) =Y pxv(x|y) log,

= pxiy(x|y)

© and the conditional entropy:

HX | Y)=> p)HX|Y =y)
yey

=Y px.v(xy) log,

xeX
yey

pxiy(x|y)
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More Entropies

@ the joint entropy of two (or more) random variables:

H(X7 Y) = Z pX,Y(va) |0g2
xXeEX
yey

@ the entropy of a conditional distribution:

HIX Y =y) =Y pxv(x|y) log,
xeX

px.y(x,y) ’

pxiy(x1y) '
© and the conditional entropy:

HX | Y)=> p)HX|Y =y)
yey

=Y px,v(x,y) log,

xeX
yey

pxiy(x|y)
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pair (X, Y).

The joint entropy H(X, Y') measures the uncertainty about the
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The joint entropy H(X, Y') measures the uncertainty about the
pair (X, Y).

The entropy of the conditional distribution H(X | Y = y)
measures the uncertainty about X when we know that Y = y.

«0)>» «Fr «=)» « =)
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More Entropies

The joint entropy H(X, Y) measures the uncertainty about the
pair (X, Y).

The entropy of the conditional distribution H(X | Y = y)
measures the uncertainty about X when we know that Y = y.

The conditional entropy H(X | Y) measures the expected
uncertainty about X when the value Y is known.
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Remember the chain rule of probability:

px,v(x,y) = py(y) x pxjy(x | y) -
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Remember the chain rule of probability:

px,y(x,y) = pyv(y) x pxjy(x | ¥) -
For the entropy we have:

H(X,Y) = H(Y)+H(X | Y) . l
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Remember the chain rule of probability:

px,y(x,y) = pyv(y) x pxjy(x | ¥) -
For the entropy we have:

HX,Y)=H(Y)+H(X|Y) . l
Proof.

1
log,

= log
px.v(x,y) 2

1
L eg,—
py(y) 2 pxpy(x | y)

“F [Iogz PX,Y(XaY)] = [Iogz PYL(Y)] T [Iogz PX|Y(X | Y)]
S HX,Y)=H(Y)+HX|Y) .
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Remember the chain rule of probability:

px,y(x,y) = pyv(y) x pxjy(x | ¥) -
For the entropy we have:

H(X,Y) = H(Y)+H(X | Y) .

The rule can be extended to more than two random variables:

n
H(X1, .. Xa) =Y H(X; | Hi, ... Hi-1) .
i=1
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Remember the chain rule of probability:

px,y(x,y) = pyv(y) x pxjy(x | ¥) -
For the entropy we have:

H(X,Y) = H(Y)+H(X | Y) . l

The rule can be extended to more than two random variables:

n
H(X1, .. Xa) =Y H(X; | Hi, ... Hi-1) .
i=1

XLY & HX|Y)=HX) & HX,Y) = HX)+ H(Y).
«O>» «F»r» «Z>» «E>» = 9Dae
~ TeemuRoos Information-Theoretic Modeling
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Chain Rule of Entropy

Remember the chain rule of probability:
px.y(x;¥) = py(y) x PX|Y(X ly) -
For the entropy we have:

Chain Rule of Entropy
HX,Y)=H(Y)+HX|Y) .

The rule can be extended to more than two random variables:
H(X1, .. Xa) =Y H(X; | Hi, ... Hi-1) .
i=1

XLY & HX|Y)=HX) & HX,Y) = H(X)+ H(Y).

Logarithmic scale makes entropy additive.
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The mutual information

I(X; Y)=H(X)—H(X]|Y)
measures the average decrease in uncertainty about X when the
value of Y becomes known.
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Mutual Information

The mutual information
I(X; Y)=H(X)—-H(X|Y)

measures the average decrease in uncertainty about X when the
value of Y becomes known.

Mutual information is symmetric (chain rule):

I(X; Y) = H(X) = H(X | Y) = H(X) = (H(X, Y) = H(Y))
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Mutual Information

The mutual information
I(X; Y)=H(X)—-H(X|Y)

measures the average decrease in uncertainty about X when the
value of Y becomes known.

Mutual information is symmetric (chain rule):

I(X; Y)=H(X) = H(X | Y) = H(X) — H(X, Y) + H(Y)
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Mutual Information

The mutual information
I(X; Y)=H(X)—-H(X|Y)

measures the average decrease in uncertainty about X when the
value of Y becomes known.

Mutual information is symmetric (chain rule):

I(X; Y) = H(X) — H(X | Y) = (H(X) = H(X, Y)) + H(Y)
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Mutual Information

The mutual information
I(X; Y)=H(X)—-H(X|Y)

measures the average decrease in uncertainty about X when the
value of Y becomes known.

Mutual information is symmetric (chain rule):

I(X Y) = H(X) = H(X | Y) = (H(X) = H(X,Y)) + H(Y)
= H(Y)=H(Y | X)=I(Y; X) .
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Mutual Information

The mutual information
I(X; Y)=H(X)—-H(X|Y)

measures the average decrease in uncertainty about X when the
value of Y becomes known.

Mutual information is symmetric (chain rule):

I(X Y) = H(X) = H(X | Y) = (H(X) = H(X,Y)) + H(Y)
= H(Y)=H(Y | X)=I(Y; X) .

On the average, X gives as much information about Y as Y gives
about X.
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The relative entropy or Kullback-Leibler divergence between
(discrete) distributions px and qgx is defined as

D(px | ax) = Y px(x) log

px(x)
xXEX

ax(x)

«O0> «F>» «=)r» «=)» = Q>




The relative entropy or Kullback-Leibler divergence between
(discrete) distributions px and qgx is defined as

D(px | ax) = Y px(x) log

px(x)
xeX

(We consider px(x) log,

ax(x)
px(x)

ax(x)

= 0 whenever px(x) =0.)
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Information Inequality

Kullback-Leibler Divergence

The relative entropy or Kullback-Leibler divergence between
(discrete) distributions px and gx is defined as

px(x)
D(px || gx) px(x) logy, ==~ .
X;C ax(x)

Information Inquality

For any two (discrete) distributions px and gx, we have

D(px || ax) >0

with equality iff px(x) = gx(x) for all x € X.

Teemu Roos Information-Theoretic Modeling
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Information Inequality

Kullback-Leibler Divergence

The relative entropy or Kullback-Leibler divergence between
(discrete) distributions px and gx is defined as

D(px || gx) px(x Iog2 :
X;C X(X )

Information Inquality

For any two (discrete) distributions px and gx, we have
D(px Il gx) =0
with equality iff px(x) = gx(x) for all x € X.

Proof. Gibbs!
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The information inequality implies

I(X;Y)>0.
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The information inequality implies

I(X;Y)>0.
Proof.

I(X; Y)=H(X)=H(X|Y)

= H(X) + H(Y) = H(X,Y)

=Y px.y(xy) log,

px.y (%, y)
xeX
yey

px(x) py(y)

= D(px,v || pxpy) >0 .

«Or «Fr «=H» = = QA
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Kullback-Leibler Divergence

The information inequality implies
I(X;Y)>0.
Proof.

I(X; Y)=H(X)= H(X|Y)
= H(X) + H(Y) = H(X,Y)

- px,v(X,y)

- pX,Y(va) |0g2 (X) ( )
= px(x) py (v
yey

= D(px,y || pxpy) >0 .

In addition, D(px.y || pxpy) = 0 iff px v(x,y) = px(x) py(y) for
all x € X,y € Y. This means that variables X and Y are
independent iff (X ; Y)=0.
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Properties of entropy:
Q HX)>0
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Properties of entropy:
Q HX)>0

Proof. px(x) <1 = log,

<O <@ <= «Er = 9AC

1
p
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Properties of entropy:
Q HX)>0

Proof. px(x) <1 = log,
Q@ H(X) < log, | X

<O <@ <= «Er = 9AC

1
p

()



Properties of entropy:
Q HX)>0
1
Proof. px(x) <1=logy —— >0

px(x) —
@ H(X) <log,|X|

Proof. Let ux(x) = % be the uniform distribution over X.

0= D(px | ) = X px(x)logs 23 ~togs ¥ -HX) .
xeX Uxx

«0)>» «Fr «=)» « =) = Q>



Properties of entropy:
Q HX)>0

1
Proof. x)<1=log,——>0
Px(x) < &2 ox(x) =
@ H(X) < log, ||

A combinatorial approach to the definition of information
(Boltzmann, 1896; Hartley, 1928; Kolmogorov, 1965):

S=kinW .

«0)>» «Fr «=)» « =)
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Ludvig Boltzmann (1844-1906)
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Properties of Entropy

Properties of entropy:
Q@ HX)>0
Proof. px(x) <1 = log,

Q@ H(X) <log, |X]|

A combinatorial approach to the definition of information
(Boltzmann, 1896; Hartley, 1928; Kolmogorov, 1965):

S=kinW .
@ H(X|Y)<H(X)

Teemu Roos Information-Theoretic Modeling
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Properties of Entropy

Properties of entropy:
Q@ HX)>0
Proof. px(x) <1 = log,

Q@ H(X) <log, |X]|
A combinatorial approach to the definition of information
(Boltzmann, 1896; Hartley, 1928; Kolmogorov, 1965):
S=kinW .
Q@ H(X|Y) < H(X)
Proof.
0<I(X;Y)=HX)—H(X]Y) .

Teemu Roos Information-Theoretic Modeling
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Properties of Entropy

Properties of entropy:
Q@ HX)>0
Proof. px(x) <1 = log,

Q@ H(X) <log, |X]|

A combinatorial approach to the definition of information
(Boltzmann, 1896; Hartley, 1928; Kolmogorov, 1965):

S=kinW .
@ H(X|Y)<H(X)

On the average, knowing another r.v. can only reduce uncer-
tainty about X. However, note that H(X | Y = y) may be
greater than H(X) for some y — “contradicting evidence”.

Teemu Roos Information-Theoretic Modeling



Z is defined as

The conditional mutual information of variables X and Y given

I(X:; Y|2Z)=HX|Z)-H(X|Y,2Z) .

«0)>» «Fr «=)» « =) = Q>
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Chain Rule of Mutual Information

The conditional mutual information of variables X and Y given
Z is defined as

I(X:; Y|2Z)=HX|Z)-H(X|Y,2Z) .

Chain Rule of Mutual Information
For random variables Y and Xi,..., X, we have
n
WY 5 X, Xa) =D 1Y 5 X | Xy, X))
i=1

Teemu Roos Information-Theoretic Modeling
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Chain Rule of Mutual Information

The conditional mutual information of variables X and Y given
Z is defined as

I(X:; Y|2Z)=HX|Z)-H(X|Y,2Z) .

Chain Rule of Mutual Information
For random variables Y and Xi,..., X, we have
n
WY 5 X, Xa) =D 1Y 5 X | Xy, X))
i=1

Independence among Xi, ..., X, implies
Y5 Xe,o, Xa) =D (Y5 X0)
i=1

Teemu Roos Information-Theoretic Modeling



Let X, Y, Z be (discrete) random variables. If Z is conditionally
independent of X given Y, i.e., if we have

Pzix,y(z | x,y) = pzy(zy) forall x,y,z,
then X, Y, Z form a Markov chain X — Y — Z.

«0)>» «Fr «=)» « =) = Q>
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Data Processing Inequality

Let X, Y, Z be (discrete) random variables. If Z is conditionally
independent of X given Y, i.e., if we have

Pzix,v(z | x,y) = pziy(z|y) forall x,y,z,

then X, Y, Z form a Markov chain X — Y — Z.

For instance, Y is a “noisy” measurement of X, and Z = f(Y) is
the outcome of deterministic data processing performed on Y,
then we have X — Y — Z.

Teemu Roos Information-Theoretic Modeling
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Data Processing Inequality

Let X, Y, Z be (discrete) random variables. If Z is conditionally
independent of X given Y, i.e., if we have

pzix,y(z | x,y) = pziy(z|y) forall x,y,z,

then X, Y, Z form a Markov chain X — Y — Z.

For instance, Y is a “noisy” measurement of X, and Z = f(Y) is
the outcome of deterministic data processing performed on Y,
then we have X — Y — Z.

This implies that

IX:; Z|Y)=H(Z|Y)=HZ|Y,X)=0 .

When Y is known, Z doesn’t give any extra information about X
(and vice versa).
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Assuming that X — Y — Z is a Markov chain, we get

IX:; Y, Z)=1(X; 2)+1(X; Y|2)

=I(X; Y)+I(X; Z|Y) .

«0)>» «Fr «=)» « =) = Q>



Outline Entropy
Entropy and Information Information Inequality
Data Compression Data Processing Inequality

Data Processing Inequality

Assuming that X — Y — Z is a Markov chain, we get

IX:; Y, Z)=1(X; 2)+1(X; Y|2)
=I(X; Y)+I(X; Z|Y) .

Now, because /(X ; Z|Y)=0,and I(X; Y | Z) >0, we obtain:

Data Processing Inequality

If X — Y — Zis a Markov chain, then we have
I(X; Z)<I(X;Y).

No data-processing can increase the amount of information that
we have about X.

Teemu Roos Information-Theoretic Modeling
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e Entropy

@ Information Inequality
@ Data Processing Inequality

© Data Compression

e Asymptotic Equipartition Property (AEP)
@ Typical Sets

@ Noiseless Source Coding Theorem
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If X1, Xo, .

is a sequence of independent and identically
distributed (i.i.d.) r.v.'s with domain X and pmf px, then

1 1
logy ———,logy ———,...
Zpx(X1) 2 px(Xe)
is also an i.i.d. sequence of r.v.'s.

«0)>» «Fr «=)» « =) = Q>
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AEP

If X1,Xo, ... is a sequence of independent and identically
distributed (i.i.d.) r.v.'s with domain X and pmf px, then

1 1
logy ———,logy ———,...
2 px(X1) 72 px(Xa)
is also an i.i.d. sequence of r.v.'s.

The expected values of the elements of the above sequence are all
equal to the entropy:

1
E [|0g2 ] > px(x) logy —— o — H(X) forallieN.
XEX pPx

Teemu Roos Information-Theoretic Modeling



The i.i.d. assumption is equivalent to

p(x1,- - xn) = [ [ px (%)
i=1
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The i.i.d. assumption is equivalent to

1 oo
p(X1,---,xn)_H

o px(xi)
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The i.i.d. assumption is equivalent to

lo L
&2 o0ty 2 xn)

. 7

= log: H L px(x

=R =, = 9ac



The i.i.d. assumption is equivalent to

[ L -
0 e —
82 p(xt, -

ey Xn) :ZIng

=R =, = 9ac



The i.i.d. assumption is equivalent to
1

n

«0>» «Fr» «E>» «E>» = QA

logy

P(Xl, .

' 7

,-Z og

— % px(xi) Px(X
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AEP

The i.i.d. assumption is equivalent to

1 1 1< 1
—logy ——— =~ logy ——
n 2p(X1a"'7Xn) n; 2pX(Xi)

By the (weak) law of large numbers, the average on the right-hand
side converges in probability to its mean, i.e., the entropy:

n—oo

1 o 1
lim Pr ||— logo, ———~ — H(X)| <e| =1 forall e >0.
n; g2PX(Xi) ( )

Teemu Roos Information-Theoretic Modeling



The i.i.d. assumption is equivalent to

—lo
n 82 p(Xl7 s X

.Z %82 (%) Px(X

i=1
For i.i.d. sequences, we have
) 1
lim Pr [ —
n—oo

lo 1
n %% blxs,
for all € > 0.

—HX) <e| =1
-3 Xn) ()‘ ]

«O0>» «Fr «=» « = = A
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—lo
n g2

p(X]_, :

1

N —H(X)’ <e] ~1

«0>» «Fr» «E>» «E>» Q>

The AEP states that for any € > 0, and large enough n, we have
1
Pr [



—lo
n g2

p(X]_, :

1

-~

1
H(X)—e< . log,

< H(X)+e
p(Xla"'axn) ( )

«0)>» «Fr «=)» « =) Q>

1

N —H(X)’ <e] ~1

/

The AEP states that for any € > 0, and large enough n, we have
1
Pr [



1
— log
|78 p0a, .

3 H(X)’ < e] ~1
n(H(X) —€) < log,

1
P

«40>» «Fr «=)» « =) = Q>

/

oy < (A +0)

The AEP states that for any € > 0, and large enough n, we have
1
Pr [



—lo
n g2

p(X]_, :

1

-~

on(H(X)—€)

«0)>» «Fr «=)» « =) Q>

p(X17 :

N —H(X)’ <e] ~1

/

< on(H(X)+e)
<5 Xn)

The AEP states that for any € > 0, and large enough n, we have
1
Pr [



lo L
n g2

Sy M| <

-~

/

27 "HOOH) < g, ..., xp) < 27 (HX)=9)

«40>» «Fr «=)» « =) Q>

The AEP states that for any € > 0, and large enough n, we have
1
Pr [



lo 1
n g2

Sy M| <

-~

/

27 "HOOH) < g, ..., xp) < 27 (HX)=9)

& Pr [p(xl, e xn) = 2—n(H(X)ﬂ:e)] 1

«0)>» «Fr «=)» « =) Qe

The AEP states that for any € > 0, and large enough n, we have
1
Pr [



—lo
In 82 p(xi, -

The AEP states that for any € > 0, and large enough n, we have
1
Pr [

-~

N —H(X)’ <e] ~1

/

27 "HOOH) < g, ..., xp) < 27 (HX)=9)

& Pr [p(xl, e xn) = 2—n(H(X)ﬂ:e)] 1

“Almost all sequences are almost equally likely.” l
«0)>» «Fr «=)» « =) = Q>
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the property:

The typical set Ag") is the set of sequences (xi,...,xp) € X" with

2-MHX)+O) < plxg, . xg) < 2~ "(HOO=0)

«0)>» «Fr «=)» « =) = Q>




the property:

The typical set Ag") is the set of sequences (xi,...,xp) € X" with

2—n(H(X)+e) < P(Xl, o ,Xn) < 2—n(H(X)—e) )
The AEP states that

lim Pr

n—oo

[X" e Ag")] =1.

In particular, for any € > 0, and large enough n, we have

Pr[X"eAE")] >l—c¢.
«Or «Fr «=ZHr «=H» = 9HAQE
~ TeemuRoos Information-Theoretic Modeling



How many sequences are there in the typical set AE")?
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How many sequences are there in the typical set AE")?

We can use the fact that by definition each sequence has
probability at least 2~ "(H(X)+e),

Since the total probability of all the sequences in AE") is trivially at
most 1, there can’'t be too many of them.
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How many sequences are there in the typical set AE")?

We can use the fact that by definition each sequence has
probability at least 2~ "(H(X)+e),

Since the total probability of all the sequences in Ag") is trivially at
most 1, there can’'t be too many of them.

1> Y bl

(X1s-eesxn) AL
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How many sequences are there in the typical set AE")?

We can use the fact that by definition each sequence has
probability at least 2~ "(H(X)+€),

Since the total probability of all the sequences in AE") is trivially at
most 1, there can’'t be too many of them.

1> Y bl

(X1,...,xn)€A£")
> Z 2—n(H(X)+€)

(X],...,X,,)GAin)
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Typical Sets

How many sequences are there in the typical set Ag")?

We can use the fact that by definition each sequence has
probability at least 2~ "(H(X)+¢),

g

Since the total probability of all the sequences in As™ is trivially at
most 1, there can’'t be too many of them.
1> Y )
(xl,...,x,,)eAE")
> Z 0= (H(X)+e) — p=n(H(X)+¢) | o)

(le---axn)EAgn)
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Typical Sets

How many sequences are there in the typical set Ag")?

We can use the fact that by definition each sequence has
probability at least 2~ "(H(X)+¢),

g

Since the total probability of all the sequences in As™ is trivially at
most 1, there can't be too many of them.
1> Y )
(Xl,...,x,,)EAE")
> Z 0= (H(X)+e) — p=n(H(X)+¢) | o)

(le---axn)EAgn)

o |Am] < o)
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Is it possible that the the typical set AE") is very small?
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Typical Sets

Is it possible that the the typical set A s very small?

This time we can use the fact that by definition each sequence has
probability at most 2~ "(H(X)—¢),

Since for large enough n, the total probability of all the sequences
in A" is (by the AEP) at least 1 — ¢, there can't be too few of
them.
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Is it possible that the the typical set Ag") is very small?

This time we can use the fact that by definition each sequence has
probability at most 2~ "(H(X)—¢),

Since for large enough n, the total probability of all the sequences

in A" is (by the AEP) at least 1 — ¢, there can't be too few of
them.

1—e<Pr [x" € Ag")}
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Typical Sets

Is it possible that the the typical set A s very small?

This time we can use the fact that by definition each sequence has
probability at most 2~ "(H(X)—¢),

Since for large enough n, the total probability of all the sequences
in A" is (by the AEP) at least 1 — ¢, there can't be too few of
them.

1—e<Pr [X" € Agn)}

< Y o9

(XLyeeerxn) EAL)
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Typical Sets

Is it possible that the the typical set A s very small?

This time we can use the fact that by definition each sequence has
probability at most 2~ "(H(X)—¢),

Since for large enough n, the total probability of all the sequences
in A" is (by the AEP) at least 1 — ¢, there can't be too few of
them.

1—e<Pr[Xx"e Al
< Z o—=n(H(X)=¢) _ p—n(H(X)—¢)

(XLyeeerxn) EAL)

Al
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Typical Sets

Is it possible that the the typical set A s very small?

This time we can use the fact that by definition each sequence has
probability at most 2~ "(H(X)—¢),

Since for large enough n, the total probability of all the sequences
in A" is (by the AEP) at least 1 — ¢, there can't be too few of
them.

1—e<Pr[Xx"e Al
< Z o—=n(H(X)=¢) _ p—n(H(X)—¢)

(XLyeeerxn) EAL)

AM| > (1 — e)2nHX)=)

Al

=
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So the AEP guarantees that for small € and large n:
@ The typical set AE") has high probability.
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So the AEP guarantees that for small € and large n:
@ The typical set AE") has high probability.

@ The number of elements in the typical set is about

«40>» «Fr «=)» « =) Q>
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So the AEP guarantees that for small € and large n:

@ The typical set AE") has high probability.

@ The number of elements in the typical set is about 2"H(X)
So what?
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Typical Sets

So the AEP guarantees that for small € and large n:
@ The typical set A™ has high probability.
@ The number of elements in the typical set is about 2"7(X).

The number of all possible sequences (xi,...,x,) € X" of length n
is | X]".

The maximum of entropy is log, | X|. If H(X) = log, |X|, we obtain

’Agn) s 2nH(X) — 2n|og2 | X| — ‘X|n ’

i.e., the typical set can be as large as the whole set X'".
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Typical Sets

So the AEP guarantees that for small € and large n:
@ The typical set A™ has high probability.
@ The number of elements in the typical set is about 2"7(X).

The number of all possible sequences (xi,...,x,) € X" of length n
is | X]".

However, for H(X) < log, |X|, the number of sequences in A s
exponentially smaller than |X|":

onH(X)
_2—n5_)0, |f(5:|og2|X|_H(X)>O

onlog, |X| o n—oo0
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Typical Set

AL 2"X) elements

[m]

=

A (relatively) small set that contains most of the probability mass.
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[m]

=

A (relatively) small set that contains most of the probability mass.
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If the source consists of i.i.d. bits X = {0,1} with
p = px(1) =1 — px(0), then we have

i=1

p(X]_, . ;Xn) = HPX(X,') = pzx"(]_ p)"—EX; ,
where > x; is the number of 1's in x".

«Or «Fr «=)r «=)» = VAR
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Examples

If the source consists of i.i.d. bits X = {0,1} with
p = px(1) =1— px(0), then we have

p(xt,...,xn) = pr(X,') = pZX’(l — p)”_zxf ,
i=1

where > x; is the number of 1's in x".

In this case, the typical set AE") consists of sequences for which
> x; is close to np. For such strings, we have

1 1

| — =
o8 p(X17 v 7Xn) o82 pnp(]_ - p)n(l—p)

1 1
:”<P|ngp+(1—P)|0g21 ) = nH(X) .
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If the source consists of i.i.d. rolls of a die

n

p(x1,...,x,,):H

6
k.
px()=1#"
i=1 Jj=1
where k; is the number of times x; = j in x".

X ={1,2,3,4,5,6} with p; = px(j), j € X, then we have

«Or «Fr «=H» = = QA
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Examples

‘@ If the source consists of i.i.d. rolls of a die
X ={1,2,3,4,5,6} with p; = px(j), j € X, then we have

n 6
k:
p(Xl,---,Xn) - HPX(Xf) — HPJJ )
i=1 j=1
n

where k; is the number of times x; = j in x".

In this case, the typical set AE") consists of sequences for which k;
is close to np; for all j € {1,2,3,4,5,6}. For such strings, we have
1

logy — =~ log, =

p(x1, ..., Xn) Hj:l p;

6
1
=n pjlog — | = nH(X) .
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We now construct a code from source strings (xi,
binary sequences {0,1}* of arbitrary length.

«Or «Fr «=H» = = QA
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We now construct a code from source strings (x1,...,%,) € X" to
binary sequences {0, 1}* of arbitrary length.

Let x” € X" denote the sequence (xi, .

., Xpn), and let ¢(x™)
denote the length (bits) of the codeword assigned to sequence x”.
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We now construct a code from source strings (x1,...,%,) € X" to
binary sequences {0,1}* of arbitrary length.

Let x” € X" denote the sequence (xi,...,x,), and let £(x")
denote the length (bits) of the codeword assigned to sequence x".

The code we will construct has expected per-symbol codeword
length arbitrarily close to the entropy

3 [if(x”)} < H(X)+e

for large enough n.

Teemu Roos Information-Theoretic Modeling
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We now construct a code from source strings (x1,...,%,) € X" to
binary sequences {0,1}* of arbitrary length.

Let x” € X" denote the sequence (xi,...,x,), and let £(x")
denote the length (bits) of the codeword assigned to sequence x".

The code we will construct has expected per-symbol codeword
length arbitrarily close to the entropy

3 [if(x”)} < H(X)+e

for large enough n.

. This is the best achievable rate for uniquely decodable codes.
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We treat separately two kinds of source strings x” € X":
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We treat separately two kinds of source strings x”7 € X"
Q the typical strings x" € A", and
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We treat separately two kinds of source strings x”7 € X"
Q the typical strings x" € A", and

@ the non-typical strings x" € X”\Ag").
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We treat separately two kinds of source strings x” € X"
@ the typical strings x" € AE"), and

@ the non-typical strings x” € A7\ A",

There are at most 2"(H(X)+¢) strings of the first kind. Hence, we
can encode them using binary strings of length n(H(X) +¢€) + 1.
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We treat separately two kinds of source strings x” € X"
@ the typical strings x" € AE"), and

@ the non-typical strings x” € A7\ A",

There are at most 2"(H(X)+¢) strings of the first kind. Hence, we
can encode them using binary strings of length n(H(X) +¢€) + 1.

There are at most |X'|" strings of the second kind. Hence we can
encode them using binary strings of length nlog, | X| + 1.
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The AEP Code

We treat separately two kinds of source strings x” € X"

@ the typical strings x" € AE"), and

@ the non-typical strings x" € X"\ A",
There are at most 2"(H(X)+¢) strings of the first kind. Hence, we
can encode them using binary strings of length n(H(X) +¢€) + 1.

There are at most |X'|" strings of the second kind. Hence we can
encode them using binary strings of length nlog, | X| + 1.

Since the decoder must be able to tell which kind of a string it is
decoding, we prefix the code by a 0 if x" € A™ or by 1 if not.

This adds one more bit in either case.
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Let us calculate the expected per-symbol codeword length:
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Let us calculate the expected per-symbol codeword length:

E[¢(X™)] = E [e(x")

+E [e(x")

X" e Ag">] Pr [x" € Ag")]

X ¢ AP pr|x" ¢ AP



Let us calculate the expected per-symbol codeword length

E[((X™)] = E [e(x")

+E |(X")

X" ¢ AE")] Pr [X" ¢ Ag")]
= (n(H(X) +¢€) +2) Pr [xn c Agn)]

+ (nlogy | X| 4+ 2) Pr [Xn ¢ Agn)]

X" AP Pr X" e AL



Let us calculate the expected per-symbol codeword length

Haxn]:E[axn

+ E (X"

X" ¢ AE")] Pr [X" ¢ Ag")]
= (n(H(X) +¢€) +2) Pr [xn c Agn)]

+ (nlogy | X| 4 2) Pr [Xn ¢ Agn)]

X" e A Pr X" e AL
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Expected Codelength of the AEP Code

Let us calculate the expected per-symbol codeword length:

E[U(X™)] = E [z(X")

X" e A§">] Pr [X" € Ag")}
+E [z(x")

X" ¢ Ag~>] Pr [x" ¢ Ag")}
= (n(H(X) +¢) +2) Pr [x" e Agﬂ

+ (nlogy | X| +2) Pr X" ¢ AL

< n(H(X)+¢€)+ nlog|X|e+2 (AEP)
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Expected Codelength of the AEP Code

Let us calculate the expected per-symbol codeword length:

E[U(X™)] = E [z(X")

X" e A§">] Pr [X" € Ag")}
+E [z(x")

X" ¢ Ag~>] Pr [x" ¢ Ag")}
= (n(H(X) +€) + 2) Pr [X” € Agﬂ

+ (nlogy | X| +2) Pr X" ¢ AL

< n(H(X)+¢€)+ nlog|X|e+2 (AEP)
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Expected Codelength of the AEP Code

Let us calculate the expected per-symbol codeword length:

E[U(X™)] = E [z(X")

X" e A§">] Pr [X" € Ag")}
+E [z(x")

X" ¢ Ag~>] Pr [x" ¢ Ag")}
= (n(H(X) + ¢) +2) Pr [x" e Agﬂ

+ (nlogy |X| + 2) Pr [X" ¢ AE”)}

< n(H(X)+¢€)+ nlog|X|e+2 (AEP)
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Expected Codelength of the AEP Code

Let us calculate the expected per-symbol codeword length:

E[U(X™)] = E [z(X")

X" e Agﬂ Pr [x" € Ag")}
+E [z(x")

Ry
= (n(H(X) +¢) +2)Pr [xn c Agn)}
+ (nlogy | X| 4 2) Pr [X" ¢ Agn)}

< n(H(X)+¢€)+ nlog|X|e+2 (AEP)
=n(H(X)+¢€) ,

where € = € + elog, | X| + 2 can be made arbitrarily small by
choosing € > 0 small enough, and letting n become large enough.
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of the “AEP code”:

Dividing this bound by n gives the expected per-symbol codelength

E [%E(X”)] < H(X) + ¢

for any € > 0 and n large enough.
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Optimality of the AEP Code

Dividing this bound by n gives the expected per-symbol codelength
of the “AEP code”:

E [ie(x")} < H(X) + e

for any € > 0 and n large enough.

Optimality: By AEP, there are about 2"7(X) sequences that have
probability about 27"H(X). We can assign a codeword shorter than
n(H(X) — 6) to only a proportion of less than 27" of these
sequences (by a counting argument), and hence the expected
per-symbol codeword length must be about H(X) or more.
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Noiseless Source Coding Theorem

These two statements give the

9. THE FUNDAMENTAL THEOREM FOR A NOISELESS CHANNEL

We will now justify our interpretation of f{ as the rate of generating information by proving that H deter-
mines the channel capacity required with most efficient coding.

Theorem 9: Let a source have entropy H (bits per symbol) and a channel have a capacity C (bits per
second). Then it is possible to encode the output of the source in such a way as to transmit at the average

rate E — e symbols per second over the channel where € is arbitrarily small. It is not possible to transmit at

an average rate greater than ﬁ

(Shannon, 1948)
In the noiseless setting with binary code alphabet, the channel
capacity is C = log, [{0,1}| = 1.
The theorem says that the achievable rates are given by

n 1
R=li S,
n0 B(xm) " H(X)
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