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Entropy

Given a discrete random variable X with pmf pX , we can measure
the amount of “surprise” associated with each outcome x ∈ X by
the quantity

IX (x) = log2
1

pX (x)
.

The less likely an outcome is, the more surprised we are to observe
it. (The point in the log-scale will become clear shortly.)

The entropy of X measures the expected amount of “surprise”:

H(X ) = E [IX (X )] =
∑
x∈X

pX (x) log2
1

pX (x)
.

Teemu Roos Information-Theoretic Modeling



Outline
Entropy and Information

Data Compression

Entropy
Information Inequality
Data Processing Inequality

Entropy

Given a discrete random variable X with pmf pX , we can measure
the amount of “surprise” associated with each outcome x ∈ X by
the quantity

IX (x) = log2
1

pX (x)
.

The less likely an outcome is, the more surprised we are to observe
it. (The point in the log-scale will become clear shortly.)

The entropy of X measures the expected amount of “surprise”:

H(X ) = E [IX (X )] =
∑
x∈X

pX (x) log2
1

pX (x)
.

Teemu Roos Information-Theoretic Modeling



Outline
Entropy and Information

Data Compression

Entropy
Information Inequality
Data Processing Inequality

Binary Entropy Function

For binary-valued X , with p = pX (1) = 1− pX (0), we have

H(X ) = p log2
1

p
+ (1− p) log2

1

1− p
.
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More Entropies

1 the joint entropy of two (or more) random variables:

H(X ,Y ) =
∑
x∈X
y∈Y

pX ,Y (x , y) log2
1

pX ,Y (x , y)
,

2 the entropy of a conditional distribution:

H(X | Y = y) =
∑
x∈X

pX |Y (x | y) log2
1

pX |Y (x | y)
,

3 and the conditional entropy:

H(X | Y ) =
∑
y∈Y

p(y) H(X | Y = y)

=
∑
x∈X
y∈Y

pX ,Y (x , y) log2
1

pX |Y (x | y)
.
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More Entropies

The joint entropy H(X ,Y ) measures the uncertainty about the
pair (X ,Y ).

The entropy of the conditional distribution H(X | Y = y)
measures the uncertainty about X when we know that Y = y .

The conditional entropy H(X | Y ) measures the expected
uncertainty about X when the value Y is known.
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Chain Rule of Entropy

Remember the chain rule of probability:

pX ,Y (x , y) = pY (y)× pX |Y (x | y) .

For the entropy we have:

Chain Rule of Entropy

H(X ,Y ) = H(Y ) + H(X | Y ) .

The rule can be extended to more than two random variables:

H(X1, . . . ,Xn) =
n∑

i=1

H(Xi | H1, . . . ,Hi−1) .

X � Y ⇔ H(X | Y ) = H(X ) ⇔ H(X ,Y ) = H(X ) + H(Y ).

Logarithmic scale makes entropy additive.
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1
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1
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1

pX |Y (x | y)
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[
log2

1
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]
= E

[
log2

1

pY (y)
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+ E
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1
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Mutual Information

The mutual information

I (X ; Y ) = H(X )− H(X | Y )

measures the average decrease in uncertainty about X when the
value of Y becomes known.

Mutual information is symmetric (chain rule):

I (X ; Y ) = H(X )− H(X | Y ) =

= H(Y )− H(Y | X ) = I (Y ; X ) .

On the average, X gives as much information about Y as Y gives
about X .
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Relationships between Entropies

H(X,Y)

H(X)

H(Y)

H(X | Y) I(X ; Y) H(Y | X)
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Information Inequality

Kullback-Leibler Divergence

The relative entropy or Kullback-Leibler divergence between
(discrete) distributions pX and qX is defined as

D(pX ‖ qX ) =
∑
x∈X

pX (x) log2
pX (x)

qX (x)
.

Information Inquality

For any two (discrete) distributions pX and qX , we have

D(pX ‖ qX ) ≥ 0

with equality iff pX (x) = qX (x) for all x ∈ X .

Proof. Gibbs!
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Kullback-Leibler Divergence

The information inequality implies

I (X ; Y ) ≥ 0 .

Proof.

I (X ; Y ) = H(X )− H(X | Y )

= H(X ) + H(Y )− H(X ,Y )

=
∑
x∈X
y∈Y

pX ,Y (x , y) log2

pX ,Y (x , y)

pX (x) pY (y)

= D(pX ,Y ‖ pXpY ) ≥ 0 .

In addition, D(pX ,Y ‖ pXpY ) = 0 iff pX ,Y (x , y) = pX (x) pY (y) for
all x ∈ X , y ∈ Y. This means that variables X and Y are
independent iff I (X ; Y ) = 0.
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Properties of Entropy

Properties of entropy:

1 H(X ) ≥ 0

Proof. pX (x) ≤ 1 ⇒ log2
1

pX (x)
≥ 0.

2 H(X ) ≤ log2 |X |

A combinatorial approach to the definition of information
(Boltzmann, 1896; Hartley, 1928; Kolmogorov, 1965):

S = k lnW .
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Properties of Entropy

Properties of entropy:

1 H(X ) ≥ 0

Proof. pX (x) ≤ 1 ⇒ log2
1

pX (x)
≥ 0.

2 H(X ) ≤ log2 |X |

Proof. Let uX (x) = 1
|X | be the uniform distribution over X .

0 ≤ D(pX ‖ uX ) =
∑
x∈X

pX (x) log2
pX (x)

uX (x)
= log2 |X |−H(X ) .

A combinatorial approach to the definition of information(Boltzmann, 1896; Hartley, 1928; Kolmogorov, 1965):

S = k lnW .
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Ludvig Boltzmann (1844–1906)
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Properties of entropy:

1 H(X ) ≥ 0

Proof. pX (x) ≤ 1 ⇒ log2
1

pX (x)
≥ 0.

2 H(X ) ≤ log2 |X |
A combinatorial approach to the definition of information
(Boltzmann, 1896; Hartley, 1928; Kolmogorov, 1965):

S = k lnW .

3 H(X | Y ) ≤ H(X )

On the average, knowing another r.v. can only reduce uncer-
tainty about X . However, note that H(X | Y = y) may be
greater than H(X ) for some y — “contradicting evidence”.
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tainty about X . However, note that H(X | Y = y) may be
greater than H(X ) for some y — “contradicting evidence”.
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Chain Rule of Mutual Information

The conditional mutual information of variables X and Y given
Z is defined as

I (X ; Y | Z ) = H(X | Z )− H(X | Y ,Z ) .

Chain Rule of Mutual Information

For random variables Y and X1, . . . ,Xn we have

I (Y ; X1, . . . ,Xn) =
n∑

i=1

I (Y ; Xi | X1, . . . ,Xi−1) .

Independence among X1, . . . ,Xn implies

I (Y ; X1, . . . ,Xn) =
n∑

i=1

I (Y ; Xi ) .
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Data Processing Inequality

Let X ,Y ,Z be (discrete) random variables. If Z is conditionally
independent of X given Y , i.e., if we have

pZ |X ,Y (z | x , y) = pZ |Y (z | y) for all x , y , z ,

then X ,Y ,Z form a Markov chain X → Y → Z .

For instance, Y is a “noisy” measurement of X , and Z = f (Y ) is
the outcome of deterministic data processing performed on Y ,
then we have X → Y → Z .

This implies that

I (X ; Z | Y ) = H(Z | Y )− H(Z | Y ,X ) = 0 .

When Y is known, Z doesn’t give any extra information about X
(and vice versa).
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Data Processing Inequality

Assuming that X → Y → Z is a Markov chain, we get

I (X ; Y ,Z ) = I (X ; Z ) + I (X ; Y | Z )

= I (X ; Y ) + I (X ; Z | Y ) .

Now, because I (X ; Z | Y ) = 0, and I (X ; Y | Z ) ≥ 0, we obtain:

Data Processing Inequality

If X → Y → Z is a Markov chain, then we have

I (X ; Z ) ≤ I (X ; Y ) .

No data-processing can increase the amount of information that
we have about X .
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1 Entropy and Information
Entropy
Information Inequality
Data Processing Inequality

2 Data Compression
Asymptotic Equipartition Property (AEP)
Typical Sets
Noiseless Source Coding Theorem
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AEP

If X1,X2, . . . is a sequence of independent and identically
distributed (i.i.d.) r.v.’s with domain X and pmf pX , then

log2
1

pX (X1)
, log2

1

pX (X2)
, . . .

is also an i.i.d. sequence of r.v.’s.

The expected values of the elements of the above sequence are all
equal to the entropy:

E

[
log2

1

pX (Xi )

]
=

∑
x∈X

pX (x) log2
1

pX (x)
= H(X ) for all i ∈ N.
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AEP

The i.i.d. assumption is equivalent to

p(x1, . . . , xn) =
n∏

i=1

pX (xi ) .

1

n
log2

1

p(x1, . . . , xn)
=

1

n

n∑
i=1

log2
1

pX (xi )
.

Asymptotic Equipartition Property (AEP)

For i.i.d. sequences, we have

lim
n→∞

Pr

[∣∣∣∣1n log2
1

p(x1, . . . , xn)
− H(X )

∣∣∣∣ < ε

]
= 1

for all ε > 0.
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By the (weak) law of large numbers, the average on the right-hand
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AEP

The AEP states that for any ε > 0, and large enough n, we have

Pr

[∣∣∣∣1n log2
1

p(x1, . . . , xn)
− H(X )

∣∣∣∣ < ε

]
≈ 1

⇔ Pr
[
p(x1, . . . , xn) = 2−n(H(X )±ε)

]
≈ 1 .

Asymptotic Equipartition Property (informally)

“Almost all sequences are almost equally likely.”
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[∣∣∣∣1n log2
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H(X )− ε <
1

n
log2

1
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Typical Sets

Typical Set

The typical set A
(n)
ε is the set of sequences (x1, . . . , xn) ∈ X n with

the property:

2−n(H(X )+ε) ≤ p(x1, . . . , xn) ≤ 2−n(H(X )−ε) .

The AEP states that

lim
n→∞

Pr
[
X n ∈ A(n)

ε

]
= 1 .

In particular, for any ε > 0, and large enough n, we have

Pr
[
X n ∈ A(n)

ε

]
> 1− ε .
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Typical Sets

How many sequences are there in the typical set A
(n)
ε ?

We can use the fact that by definition each sequence has
probability at least 2−n(H(X )+ε).

Since the total probability of all the sequences in A
(n)
ε is trivially at

most 1, there can’t be too many of them.

1 ≥
∑

(x1,...,xn)∈A
(n)
ε

p(x1, . . . , xn)

≥
∑

(x1,...,xn)∈A
(n)
ε

2−n(H(X )+ε) = 2−n(H(X )+ε)
∣∣∣A(n)

ε

∣∣∣
⇔

∣∣∣A(n)
ε

∣∣∣ ≤ 2n(H(X )+ε) .
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So the AEP guarantees that for small ε and large n:
1 The typical set A

(n)
ε has high probability.

2 The number of elements in the typical set is about 2nH(X ).

The number of all possible sequences (x1, . . . , xn) ∈ X n of length n
is |X |n.

However, for H(X ) < log2 |X |, the number of sequences in A
(n)
ε is

exponentially smaller than |X |n:

2nH(X )

2n log2 |X |
= 2−nδ −→

n→∞
0 , if δ = log2 |X | − H(X ) > 0.
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Typical Sets

X  : |X| elements
n

A   : 2       elements
ε

(n) nH(X)

Typical Set

n

A (relatively) small set that contains most of the probability mass.
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Examples

If the source consists of i.i.d. bits X = {0, 1} with
p = pX (1) = 1− pX (0), then we have

p(x1, . . . , xn) =
n∏

i=1

pX (xi ) = p
P

xi (1− p)n−
P

xi ,

where
∑

xi is the number of 1’s in xn.

In this case, the typical set A
(n)
ε consists of sequences for which∑

xi is close to np. For such strings, we have

log2
1

p(x1, . . . , xn)
≈ log2

1

pnp(1− p)n(1−p)

= n

(
p log2

1

p
+ (1− p) log2

1

1− p

)
= nH(X ) .
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Examples

If the source consists of i.i.d. rolls of a die
X = {1, 2, 3, 4, 5, 6} with pj = pX (j), j ∈ X , then we have

p(x1, . . . , xn) =
n∏

i=1

pX (xi ) =
6∏

j=1

p
kj

j ,

where kj is the number of times xi = j in xn.

In this case, the typical set A
(n)
ε consists of sequences for which kj

is close to npj for all j ∈ {1, 2, 3, 4, 5, 6}. For such strings, we have

log2
1

p(x1, . . . , xn)
≈ log2

1∏6
j=1 p

npj

j

= n

 6∑
j=1

pj log
1

pj

 = nH(X ) .
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The AEP Code

We now construct a code from source strings (x1, . . . , xn) ∈ X n to
binary sequences {0, 1}∗ of arbitrary length.

Let xn ∈ X n denote the sequence (x1, . . . , xn), and let `(xn)
denote the length (bits) of the codeword assigned to sequence xn.

The code we will construct has expected per-symbol codeword
length arbitrarily close to the entropy

E

[
1

n
`(xn)

]
≤ H(X ) + ε ,

for large enough n.

! This is the best achievable rate for uniquely decodable codes.
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The AEP Code

We treat separately two kinds of source strings xn ∈ X n:

1 the typical strings xn ∈ A
(n)
ε , and

2 the non-typical strings xn ∈ X n \A
(n)
ε .

There are at most 2n(H(X )+ε) strings of the first kind. Hence, we
can encode them using binary strings of length n(H(X ) + ε) + 1.

There are at most |X |n strings of the second kind. Hence we can
encode them using binary strings of length n log2 |X |+ 1.

Since the decoder must be able to tell which kind of a string it is

decoding, we prefix the code by a 0 if xn ∈ A
(n)
ε or by 1 if not.

This adds one more bit in either case.
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Expected Codelength of the AEP Code

Let us calculate the expected per-symbol codeword length:

E [`(X n)] = E
[
`(X n)

∣∣∣ X n ∈ A(n)
ε

]
Pr

[
X n ∈ A(n)

ε

]
+ E

[
`(X n)

∣∣∣ X n /∈ A(n)
ε

]
Pr

[
X n /∈ A(n)

ε

]

= (n(H(X ) + ε) + 2) Pr
[
X n ∈ A(n)

ε

]
+ (n log2 |X |+ 2)Pr

[
X n /∈ A(n)

ε

]
≤ n(H(X ) + ε) + n log |X |ε + 2 (AEP)

= n(H(X ) + ε′) ,

where ε′ = ε + ε log2 |X |+ 2
n can be made arbitrarily small by

choosing ε > 0 small enough, and letting n become large enough.
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ε
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≤ n(H(X ) + ε) + n log |X |ε + 2 (AEP)

= n(H(X ) + ε′) ,

where ε′ = ε + ε log2 |X |+ 2
n can be made arbitrarily small by

choosing ε > 0 small enough, and letting n become large enough.
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Optimality of the AEP Code

Dividing this bound by n gives the expected per-symbol codelength
of the “AEP code”:

E

[
1

n
`(X n)

]
≤ H(X ) + ε

for any ε > 0 and n large enough.

Optimality: By AEP, there are about 2nH(X ) sequences that have
probability about 2−nH(X ). We can assign a codeword shorter than
n(H(X )− δ) to only a proportion of less than 2−nδ of these
sequences (by a counting argument), and hence the expected
per-symbol codeword length must be about H(X ) or more.
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Noiseless Source Coding Theorem

These two statements give the

(Shannon, 1948)

In the noiseless setting with binary code alphabet, the channel
capacity is C = log2 |{0, 1}| = 1.

The theorem says that the achievable rates are given by

R = lim
n→∞

n

`(xn)
<

1

H(X )
.
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