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Motivation
Problem

@ We have observed n data points y” = (y1, ..., y,) from
some unknown, probabilistic source p*, i.e.

y’fLNp*

where y" = (y1,...,yn) € Y™
@ We wish to learn about p* from y™.

@ More precisely, we would like to discover the generating
source p*, or at least a good approximation of it, from
nothing but y™

Daniel F. Schmidt Minimum Message Length



Statistical Models

@ To approximate p* we will restrict ourself to a set of
potential statistical models

@ Informally, a statistical model can be viewed as a
conditional probability distribution over the potential
dataspace Y™

p(y"0), 6 € ©

where 8 = (04, ..., 6y) is a parameter vector that indexes
the particular model

@ Such models satisfy

/ p(y"0)dy" =1
yneyn

for a fixed @
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Statistical Models ...

@ An example would be the univariate normal distribution.

p(y"16) = (2;) ' exp <—21T i(yi - u)2>

=1
where
@ 0 = (u,7) are the parameters
Py yn = R"
@ ®O=Rx R+
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Motivation
Terminology

@ This talk follows the slight abuse of terminology used by
Chris Wallace in calling a member of ©® a model

@ Also referred to as a fully specified model

@ This is because, in the MML framework, there is no real
distinction between structural parameters that specify a
model class and what are traditional termed the parameter
estimates or point estimates
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Codebooks

MML is based on information theory and coding
Consider a countable set of symbols X' (an alphabet)
Wish to label them by strings of binary digits
= Labelling must be decodable
For example, X = {A,C,G, T}

@ Possible coding, A =00,C =01,G=10,T =11

eorA=1,C=01,G=001, T = 0001
@ and soon ...

Desire this labelling to be optimal, in some sense

Problem central to compression and information
transmission
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Codebooks

@ Assume distribution of symbols given by p(z), x € X

@ Let!: X — R, denote the codelength function
= want our code to be short on average, w.r.t. p(-)

@ Restrict ourself to decodable codes ; the solution of

arg mlin { Z p(x)l(m)}

reX

—logy p(x)

@ High probability = short codeword
@ Low probability =- long codeword

@ We use natural log, log; base e digits (nits, or nats)
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MML

Minimum Message Length

@ Developed primarily by Chris Wallace with collaborators
since 1968

@ Connects the notion of compression with statistical
inference and model selection

@ We frame the problem as one of transmitting the data
efficiently from a transmitter to a reciever

o First, a model from the parameter space O is named by the
transmitter (the assertion)
@ Then the data y” is transmitted to the reciever using this
model (the detail)
@ For example, in the normal case, the transmitter would
name particular values of (u, 7) that can then be used to
transmit the data y™
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MML

Minimum Message Length

@ Transmitter and receiver must agree on a common
language

@ In MML, this is a prior 7(-) over ©
= MML is a Bayesian approach

@ The ingredients we need are

@ A model class/family, i.e. linear regression models or neural
networks, etc. parameterised by the vector 8 € ©
@ A prior probability distribution () over ©

@ The reciever only has knowledge of these two things
@ But © is uncountable ...
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MML

Two-part Messages, Part 1

@ Choose a countable subset ©, C ©
= Discretisation of the parameter space

@ May now devise a code for members of O, using = (-)
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MML

Two-part Messages, Part 1

@ Choose a countable subset ©, C ©
= Discretisation of the parameter space

@ May now devise a code for members of O, using = (-)

@ The transmitter communicates the data to the reciever
using a two-part message

@ The first part, or assertion, has length I(8) and names one
model 8 from O,
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MML

Two-part Messages, Part 1

@ Choose a countable subset ©, C ©
= Discretisation of the parameter space
@ May now devise a code for members of O, using = (-)
@ The transmitter communicates the data to the reciever
using a two-part message

@ The first part, or assertion, has length I(8) and names one
model 8 from O,

@ The second part, or detail, has length I(y™|@), and sends
the data y™ using the named model 6
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MML

Two-part Messages, Part 1

@ Choose a countable subset ©, C ©
= Discretisation of the parameter space
@ May now devise a code for members of O, using = (-)
@ The transmitter communicates the data to the reciever
using a two-part message

@ The first part, or assertion, has length I(8) and names one
model 8 from O,

@ The second part, or detail, has length I(y™|@), and sends
the data y™ using the named model 6
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MML

Two-part Messages, Part 2

@ This has total (joint) codelength of
I(y",0) =1(0) + I1(y"|6)

@ (6) measures the ‘complexity’ of the model

@ I(y"|@) measures the fit of the model to the data
= So I(y", @) trades off model fit against model capability

@ Both complexity and fit measured in same units
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MML

Two-part Messages, Part 3

The Minimum Message Length Principle
To perform estimation one minimises the joint codelength

Ovnir (y") = arg min {1(6) +I(y"16)}

@ The parameter space O can be enlarged to include models
of different structure and thus can be used to perform
model selection
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Properties

@ The MML estimates éMML(y”) are invariant under
one-to-one re-parameterisations of the parameter space ©
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Properties

@ The MML estimates éMML(y”) are invariant under
one-to-one re-parameterisations of the parameter space ©

@ Unifies the problem of parameter estimation and model
selection
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Properties

@ The MML estimates éMML(y”) are invariant under
one-to-one re-parameterisations of the parameter space ©

@ Unifies the problem of parameter estimation and model
selection

@ The MML principle always works with fully specified
models, that is, by quantising the parameter space we may
attach probability masses to parameter estimates
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Properties

@ The MML estimates éMML(y”) are invariant under
one-to-one re-parameterisations of the parameter space ©

@ Unifies the problem of parameter estimation and model
selection

@ The MML principle always works with fully specified
models, that is, by quantising the parameter space we may
attach probability masses to parameter estimates

@ May use joint message length I(y", 8) to assess 6 even if
it is not HMML(y”)
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Properties

@ The MML estimates éMML(y”) are invariant under
one-to-one re-parameterisations of the parameter space ©

@ Unifies the problem of parameter estimation and model
selection

@ The MML principle always works with fully specified
models, that is, by quantising the parameter space we may
attach probability masses to parameter estimates

@ May use joint message length I(y", 8) to assess 6 even if
it is not HMML(y”)

@ Difference in message lengths between two models is
approximate negative log-posterior odds
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MML

Constructing the Codes

@ The Strict Minimum Message Length (SMML) (Wallace &
Boulton, 1975) approach constructs a complete two-part
codebook designed to minimise expected codelength given
our priors

@ Unfortunately, is NP-hard and infeasible for all but simplest
of problems

@ Fortunately, we are not interested in the codes as much as
their lengths
@ Under certain assumptions, we can approximate these to a
high degree
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MML87

Wallace-Freeman Approximation (MML87), (1)

@ Choosing ©, amounts to partitioning of ©

@ Idea: rather than construct code for all models in ©,,
restrict to constructing code only for the model of interest
@ Let Qg be a neighbourhood of © near model @ of interest
= Quantisation cell
@ Make several assumptions
© The prior density 7(-) is slowly varying in Qg
@ The negative log-likelihood function is approximately

guadratic in Qg
© The Fisher information |J(8)| > 0 for all & € ©, where
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MML87

Wallace-Freeman Approximation (MML87), (2)

@ Derivationwhen§ € © C R
o Oy = {9 €cO:0-0|< w/2} is @ symmetric interval of
width w centred on 6
@ The codelength for the assertion

Ig7(0) = log/ m(0)df ~ — log wr(0)
Qg

@ Assertion length is inversely proportional to prior mass
(volume of Q)
= The smaller w, the longer Ig7(0)
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MML87

Wallace-Freeman Approximation (MML87), (3)

@ If the named model § was stated exactly, i.e. w = 0, then
the detail would be

I(y"|0) = —logp(y"|0)

@ As w > 0, there is an increase in detail length due to
imprecisely stating 6

@ By Taylor series expansion, codelength for the detail

1 / 1 [ 6%2J(0) -

—_— w(0)log p(y™]0)df =~ —lo py”0+/ do

Ty, TP sply"00+, [
where

d*log p(y"|6)
)=-FE|—~ 7

o
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MML87

Wallace-Freeman Approximation (MML87), (4)

@ Total codelength of the message

w?J(6)
24

Is7(y",0) = —logwm(6) — log p(y"[0) +

@ Minimising w.r.t. w yields

A 12 1/2
o (Jw))
@ MMLB87 codelength for data and model

1 1 1
Is7(y",0) = —logm(0) + 5 log J(0) — 5logl2+ 5 — log p(y"(0)

Assertion Detail
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MML87

Wallace-Freeman Approximation (MML87), (5)

@ In multiple dimensions, MML87 codelength for data and
model

1 1
Isi(y",8) = ~logw(8) + ; log |1(8)] + 5 log sy + I — log p(y"|6)

Assertion Detail

where ky is the normalised mean-squared quantisation

error per parameter of an optimal quantising lattice in
k-dimensions and
o:e]

1 k 1
2(1 + log ki) ~ —5 log 27 + 3 log km + (1)

dlogp(y™|6)
= —E _
J(6) [ 9600’

@ Useful approximation
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MML87

Wallace-Freeman Approximation (MML87), (6)

@ Assertion length Ig7(0) proportional to |J(0)]
= Models with higher Fisher information ‘more complex’

@ To perform inference, solve

Os7(y") = argmin{lsr (y", 0)}

@ Assigns a probability mass to all models 8 € ©
@ Valid even if © includes models from different model
classes (i.e. model selection)
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MML87

Wallace-Freeman Approximation (MML87), (7)

@ For suitable model classes, J(8) = nJ(0)
@ Jy(-) the per sample Fisher information

@ Large sample behaviour, n — oo as k held constant

k
Is7(y™,0) = —logp(y"|0) + 3 logn + O(1)

= MML87 is asymptotically BIC

@ The O(1) term depends on J; (), (-) and k

@ MMLB87 estimator sequence converges to Maximum
Likelihood estimator sequence (under suitable regularity
conditions)

@ If k£ grows with n, behaviour is very different!
= MML estimators often consistent even when ML is not
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MML87

Wallace-Freeman Approximation (MML87), (7)

The MML87 estimator is invariant under differentiable,
one-to-one reparameterisations of the likelihood function

@ Proof: note that the Fisher information transforms as the
square of a density

@ This property not shared by common Bayes estimators
such as posterior mode or posterior mean
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Binomial Distribution (1)

@ Consider experiment with probability 6, of yielding a one
and probability (1 — 6,.) of yielding a zero

@ Observe n realisations of this experiment, y™, and wish to
estimate 6,

@ Negative log likelihood (up to constants)
—logp(y"|0) = —n1logh — (n — n1)log(l —0)

with ny = >~ , y; the number of ones

@ Maximum Likelihood estimate of 0,
m

OaL(y™) = -
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Binomial Distribution (2)

@ Choose a uniform prior, 7(0) o 1
@ Fisher information

= J(#) > ocasf—0andfd — 1
@ MML87 estimator
~ n1—|—1/2
0 M= =
87(3’ ) n+1

@ ‘Regularises’ the ML estimator towards the maximum
entropy model (0 = 1/2)

@ MMLB87 estimator possesses finite Kullback-Leibler risk,
ML estimator does not
= consider case whenn; =00rn; =n
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Example

Binomial Distribution (3)

Fisher information for binomial

0 0.2 0.4 0.6 0.8 1
)

@ Closer 6 is to boundary, more accurately it must be stated
= Models within same class can be different complexity

Daniel F. Schmidt Minimum Message Length



Example

Applications/Extensions/Approximations

@ Of course, many more applications ...

Linear regression models
Decision trees/graphs
Mixture modelling

ARMA models

Neural Networks

Causal Networks

o etc...

@ 6 6 6 & ©

@ Extension of MML87 to hierarchical Bayes models (Makalic
& Schmidt, 2009)
@ And other approximations when MML87 does not work ...

@ Adaptive coding (Wallace & Boulton 1969)
@ MMLD (Dowe, 1999)

o MMC,.,, (Makalic, 2007)

@ MMLO8 (Schmidt, 2008)
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