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Density function:

φµ,σ2(x) =
1√

2πσ2
e
−(x − µ)2

2σ2 .

Mean: µ = E [X ], variance σ2 = E [(X − µ)2]

Maximum likelihood: µ̂ =
1

n

n∑
i=1

xi , σ̂2 =
1

n

n∑
i=1

(xi − µ̂)2.
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How to Encode Continuous Data?

In order to encode data using, say, the Gaussian density we face
the problem of How to encode continuous data?

We already know how to encode using models with continuous
parameters:

two-part with optimal quantization
(
≈ k

2 log2 n
)
,

mixture code,

NML.

Obviously not possible to encode data with infinite precision. Have
to discretize: encode x only up to precision δ.
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Differential Entropy

What is the optimal rate for encoding (compressing) continuous
data (up to precision δ)?

The answer involves again an entropy. However, not the familiar
kind of entropy but instead...

Differential entropy

Let X ∈ R be a continuous random variable with probability
density f : R → R+.

The differential entropy of X is defined as

h(X ) = EX∼f

[
log2

1

f (X )

]
=

∫
f (x) log2

1

f (x)
dx .
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If δ > 0 is small, the probability that X ∈ [(t − 1
2)δ, (t + 1

2)δ] is
well approximated by f (tδ)δ.

Hence, the minimum coding rate of the discretized random
variable X δ is given by

H(X δ) ≈
∑

x=tδ : t∈Z
f (x)δ log2

1

f (x)δ

−→
δ→0

∫ +∞

−∞
f (x) log2

1

f (x)
dx .

Hence, the rate is approximately H(X δ) ≈ h(X )− log2 δ.
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Differential Entropy

The minimum coding rate h(X )− log2 δ is achieved if and only if
the code-word lengths are chosen according to

`(x) = log2
1

f (x)δ
.

In practice, no one will notice if we forget about the δ’s, so let’s
just pretend they don’t exist...
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Back to Gaussians

Recall the Gaussian density function:

φµ,σ2(x1, . . . , xn)
(i .i .d .)

=
(
2πσ2

)−n/2
e
−

∑n
i=1(xi − µ)2

2σ2 .

The code-length is then

n

2
log2(2πσ2)− 1

(2 ln 2)σ2

n∑
i=1

(xi − µ)2.
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Back to Gaussians

Ok, we have our Gaussian code-length formula:

n

2
log2(2πσ2)− 1

(2 ln 2)σ2

n∑
i=1

(xi − µ)2.

Let’s use the two-part code and plug in the maximum likelihood
parameters:

µ̂ =
1

n

n∑
i=1

xi , σ̂2 =
1

n

n∑
i=1

(xi − µ̂)2.
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Ok, we have our Gaussian code-length formula:

n
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Back to Gaussians

We get the total (two-part) code-length formula:

n

2
log2 σ̂2 +

k

2
log2 n + constant.

Since we have two parameters, µ and σ2, we let k = 2.
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Linear Regression

A similar treatment can be given to linear regression models.

The model includes a set of regressor variables x1, . . . , xp ∈ R, and
a set of coefficients β1, . . . , βp.

The dependent variable, Y , is assumed to be Gaussian:

the mean µ is given as a linear combination of the regressors:

µ = β1x1 + · · ·+ βpxp = β′x ,

variance is some parameter σ2.

Teemu Roos Information-Theoretic Modeling
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Linear Regression

For a sample of size n, the matrix notation is convenient:

Y =

Y1
...

Yn

 X =

x11 · · · x1p
...

. . .
...

xn1 · · · xnp

 β =

β1
...

βp

 ε =

ε1
...
εn



Then the model can be written as

Y = Xβ + ε,

where εi ∼ N (0, σ2).
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Linear Regression

The maximum likelihood estimators are now

β̂ = (X ′X )−1X ′Y , σ̂2 =
1

n
‖Y − X β̂‖2

2 =
RSS
n

,

where RSS is the “residual sum of squares”.

Since the errors are assumed Gaussian, our code-length formula
applies:

n

2
log2 +

2
log2 n + constant.

The number of parameters is now p + 1 (p of the βs and σ2), so
we get...
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Often we have a large set of potential regressors, some of which
may be irrelevant.

The MDL principle can be used to select a subset of them by
comparing the total code-lengths:

min
S

[
n

2
log2 RSSS +

|S |+ 1

2
log2 n

]
,

where RSSS is the RSS obtained by using subset S of the
regressors.

⇒ Exercise 5.3
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One particularly useful way to obtain the regressor (design) matrix
is to use wavelets.

Image by Gabriel Peyré
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Main effort in constructing a universal code:

1 combines two-part, mixture, and NML universal codes,

2 bounds on NML normalization region required,

3 important lesson: remember to encode model class.
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Multinomial Models

The multinomial model — the generalization of Bernoulli — is
very simple:

p(xj) = θj , for j ∈ {1, . . . ,m}.

Maximum likelihood:

θ̂j =
#{xi = j}

n
.

Two-part, mixture, and NML models readily defined.
⇒ Exercises 5.1 & 5.2
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Fast NML for Multinomials

The näıve way to compute the normalizing constant in the NML
model

pθ̂(x
n)

Cm
n

, Cm
n =

∑
yn∈X n

pθ̂(y
n),

takes exponential time (Ω(mn)).

The second most näıve way takes “only” polynomial time,
O(nm−1), but is still intractable unless m ≤ 3 (or maybe m ≤ 4).
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Fast NML for Multinomials

There is a way — which is not näıve at all! — to do it in linear
time, O(n + m), using the following recursion:

Cm
n = Cm−1

n +
n

m − 2
Cm−2

n ,

where Cm
n is the normalizing constant for an m-ary multinomial

and sample size n.

The trick is to reduce the general case to C 1
n = 1 and C 2

n , the
latter of which can be computed in linear time (using the second
most näıve approach).

Kontkanen & Myllymäki, “A linear-time algorithm for computing the

multinomial stochastic complexity”, Information Processing Letters 103

(2007), 6, pp. 227–233
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Histogram Density Estimation

For a histogram density, we get again a code-length formula where

log2
1

f (x)
is the only essential term.

Choosing the number and the positions of break-points can be
done by MDL.

The code-length is equivalent (up to additive constants) to the
code-length in a multinomial model.

⇒ Linear time algorithm can be used.
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Clustering

Consider the problem of clustering vectors of (independent)
multinomial variables.

This can be seen as a way to encode (compress) the data:

1 first encode the cluster index of each observation vector,

2 then encode the observations using separate (multinomial)
models.

Again, the problem is reduced to the multinomial case, and the
fast NML algorithm can be applied.
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Clustering

The clustering model can be interpreted as the näıve Bayes
structure:

label = cluster index f1, . . . , fn are features

The structure is very restrictive. Generalization achieved by
Bayesian networks.

MDL criterion for learning Bayesian network structures (Lecture 9)
again based on fast NML for multinomials.
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Next Week

The final week:

Tuesday: further topics in information theory

lossy compression
Kolmogorov complexity
universal prediction
gambling
...

Friday: redundant lecture

looking back: what have we learned
questions and answers
advice for final exam
introduction to project

last exercises
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