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Kolmogorov Complexity

We probably agree that the string

10101010101010101010 . . . 10

is ‘simple’.

Why?

(One) Solution: The string can be described briefly:

“10 repeated k times”.

Remark: ‘Describe’ should be understood as meaning “compute by
an algorithm” (a formal procedure that halts).
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Kolmogorov Complexity

Let U : {0, 1}∗ → {0, 1}∗ ∪ ∅ be a computer that given a (binary)
program p ∈ {0, 1}∗ either produces a finite (binary) output
U(p) ∈ {0, 1}∗ or never halts. In the latter case, the output U(p)
is said to be undefined (∅).

Kolmogorov Complexity

For a finite string x ∈ {0, 1}∗, let p∗(x) be the shortest program
for which

U(p∗(x)) = x .

The Kolmogorov complexity of string x is defined as the length
of p∗(x):

KU(x) = min
p : U(p)=x

|p| .
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Kolmogorov Complexity

We assume that the set of programs that halt forms a prefix-free
set (like symbol codes).

The advantage of prefix-free programs is that we can concatenate
two programs, p and q to form the program pq so that the
computer can separate the two programs.
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Kolmogorov Complexity

Let U and V be two computers. If computer U is sufficiently
‘rich’, it can emulate computer V so that it outputs the same
output as V for any program p.

Universality

A computer U is said to be universal, if for any other computer V
there is a ‘translation’ program q ∈ {0, 1}∗ (which depends on V )
such that for all programs p we have

U(qp) = V (p) ,

i.e., when given the concatenated program qp, computer U
outputs the same string as computer V when given the program p.
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Kolmogorov Complexity

For any universal computer U, and any other computer V , we have

KU(x) ≤ KV (x) + C ,

where C is a constant independent of x .

Proof: Let q be a the translation program which translates
programs of V into programs of U, and let p∗V (x) be the shortest
program for which V (p∗V (x)) = x . Then U(qp∗V (x)) = x so that

KU(x) ≤ |qp∗V (x)| = |p∗V (x)|+ |q| = KV (X ) + |q| .

Based on this property, it can be said that Kolmogorov complexity
is the length of the universally shortest description of x .
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Examples of (virtually) universal ‘computers’:

1 C (compiler + operating system + computer),

2 Java (compiler + operating system + computer),

3 your favorite programming language (compiler/interpreter +
OS + computer),

4 Universal Turing machine,

5 Universal recursive function,

6 Lambda calculus,

7 Arithmetics,

8 Game of Life

9 ...

Each of the above can mimic all the others.
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Invariance Theorem

From now on we restrict the choice of the computer U in KU to
universal computers.

Invariance Theorem

Kolmogorov complexity is invariant (up to an additive constant)
under a change of the universal computer. In other words, for any
two universal computers, U and V , there is a constant C such that

|KU(x)− KV (x)| ≤ C for all x ∈ {0, 1}∗ .

Proof: Since U is universal, we have KU(x) ≤ KV (x) + C1. Since
V is universal, we have KV (x) ≤ KU(x) + C2. The theorem follows
by setting C = max{C1,C2}.
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Kolmogorov Complexity

Upper Bound 1

We have the following upper bound on KU(x):

KU(x) ≤ 2|x |+ C

for some constant C which depends on the computer U but not on
the string x .

Proof: Let q be the program:

print every even bit that follows

until the next odd bit is 0: x1 1 x2 1 . . . xn 0 .

The length of this program is 2|x |+ C . Prefix-free.

Teemu Roos Information-Theoretic Modeling
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Upper Bound 2

We have the following upper bound on KU(x):

KU(x) ≤ |x |+ 2 log2 |x |+ C

for some constant C which depends on the computer U but not on
the string x .

Proof: Let q be the program:

read integer n and print the following n bits:

n1 1n2 1 . . . n|n|0 x1 x2 . . . xn

The length of n = |x | is at most dlog2 |x |e ≤ log2 |x |+ 1, so that
the length of the program is at most C ′ + 2 log2 |x |+ 2 + |x |.
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Kolmogorov Complexity

Conditional Kolmogorov Complexity

The conditional Kolmogorov complexity is defined as the length
of the shortest program to print x when y is given:

KU(x | y) = min
p : U(ȳ p)=x

|p| ,

where ȳ is a ‘self-delimiting’ representation of y .

Upper Bound 3

We have the following upper bound on KU(x | |x |):

KU(x | |x |) ≤ |x |+ C

for some constant C independent x .

Teemu Roos Information-Theoretic Modeling
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Examples

Let n = |x |.

1 KU(0101010101...01 | n) = C .
Program: print n/2 times 01.

2 KU(π1 π2 . . . πn | n) = C .
Program: print the first n bits of π.

3 KU(English text | n) ≈ 1.3× n + C .
Program: Huffman code.
(Entropy of English is about 1.3 bits per symbol.)

4 KU(fractal) = C .
Program: print # of iterations until zn+1 = z2

n + c > T.

Teemu Roos Information-Theoretic Modeling



Outline
Kolmogorov Complexity

Gambling
Lossy Compression

Definition
Basic Properties

Examples

Let n = |x |.
1 KU(0101010101...01 | n) = C .

Program: print n/2 times 01.

2 KU(π1 π2 . . . πn | n) = C .
Program: print the first n bits of π.

3 KU(English text | n) ≈ 1.3× n + C .
Program: Huffman code.
(Entropy of English is about 1.3 bits per symbol.)

4 KU(fractal) = C .
Program: print # of iterations until zn+1 = z2

n + c > T.

Teemu Roos Information-Theoretic Modeling



Outline
Kolmogorov Complexity

Gambling
Lossy Compression

Definition
Basic Properties

Examples

Let n = |x |.
1 KU(0101010101...01 | n) = C .

Program: print n/2 times 01.

2 KU(π1 π2 . . . πn | n) = C .
Program: print the first n bits of π.

3 KU(English text | n) ≈ 1.3× n + C .
Program: Huffman code.
(Entropy of English is about 1.3 bits per symbol.)

4 KU(fractal) = C .
Program: print # of iterations until zn+1 = z2

n + c > T.

Teemu Roos Information-Theoretic Modeling



Outline
Kolmogorov Complexity

Gambling
Lossy Compression

Definition
Basic Properties

Examples

Let n = |x |.
1 KU(0101010101...01 | n) = C .

Program: print n/2 times 01.

2 KU(π1 π2 . . . πn | n) = C .
Program: print the first n bits of π.

3 KU(English text | n) ≈ 1.3× n + C .
Program: Huffman code.
(Entropy of English is about 1.3 bits per symbol.)

4 KU(fractal) = C .
Program: print # of iterations until zn+1 = z2

n + c > T.

Teemu Roos Information-Theoretic Modeling



Outline
Kolmogorov Complexity

Gambling
Lossy Compression

Definition
Basic Properties

Examples

Let n = |x |.
1 KU(0101010101...01 | n) = C .

Program: print n/2 times 01.

2 KU(π1 π2 . . . πn | n) = C .
Program: print the first n bits of π.

3 KU(English text | n) ≈ 1.3× n + C .
Program: Huffman code.
(Entropy of English is about 1.3 bits per symbol.)

4 KU(fractal) = C .
Program: print # of iterations until zn+1 = z2

n + c > T.

Teemu Roos Information-Theoretic Modeling



Outline
Kolmogorov Complexity

Gambling
Lossy Compression

Definition
Basic Properties

Examples

Teemu Roos Information-Theoretic Modeling



Outline
Kolmogorov Complexity

Gambling
Lossy Compression

Definition
Basic Properties

Martin-Löf Randomness

Examples (contd.):

5 KU(x | n) ≈ n, for almost all x ∈ {0, 1}n.

Proof: Upper bound KU(x | n) ≤ n + C . Lower bound by a
counting argument: less than 2−k of strings compressible by
more than k bits (Lecture 1).

Martin-Löf Randomness

String x is said to be Martin-Löf random iff Ku(x | n) ≥ n.

Consequence of point 5 above: An i.i.d. sequence of unbiased coin
flips is with high probability Martin-Löf random.
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Universal Prediction

Since the set of valid (halting) programs is required to be
prefix-free we can consider the probability distribution pn

U :

pn
U(x) =

2−KU(x |n)

C
, where C =

∑
x∈X n

2−KU(x |n).

Universal Probability Distribution

The distribution pn
U is universal in the sense that for any other

computable distribution q, there is a constant C > 0 such that

pn
U(x) ≥ C q(x) for all x ∈ X n.

Proof idea: The universal computer U can imitate the

Shannon-Fano prefix code with codelengths

⌈
log2

1

q(x)

⌉
.
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Universal Prediction

The universal probability distribution pn
U is a good predictor.

This follows from the relationship between codelengths and
probabilities (Kraft!):

KU(x) is small ⇒ pn
U(x) is large

⇒
n∏

i=1

pn
U(xi | x1, . . . , xi−1) is large

⇒ pn
U(xi | x1, . . . , xi−1) is large for most i ∈ {1, . . . , n},

where xi denotes the ith bit in string x .
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Berry Paradox

The smallest integer that cannot be described in ten words?

Whatever this number is, we have just described (?) it in ten
words.

The smallest uninteresting number?

Whatever this number is, it is quite interesting!
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Non-computability

It is impossible to construct a general procedure (algorithm) to
compute KU(x).

Non-Computability

Kolmogorov complexity KU : {0, 1}∗ → N is non-computable.

Proof: Assume, by way of contradiction, that it would be possible
to compute KU(x). Then for any M > 0, the program

print a string x for which KU(x) > M.

would print a string with KU(x) > M. A contradiction follows by
letting M be larger than the Kolmogorov complexity of this
program. Hence, it cannot be possible to compute KU(x).
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Gambling

Bet money bx on horse x . Get money αxbx if x wins (odds).

Expected win E [bxαx ] =
∑

pxαxbx .

Maximized by betting everything on arg max pxαx .
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Gambling

If odds are “fair”, then αx =
1

px
, and hence pxαxbx = bx for all i .

Assume now that we have inside information about the winning
horse.

Insider Noisy Channel Gambler
X X

^ 

In the extreme case, X̂ = X , we know the outcome:

Vn = αxi αx2 · · ·αxnV0

=
(
2G

)n
V0

exponential rate
of growth, G

where Vt is the capital on tth step

, and G =
log

P
αxi

n .
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Gambling

If the channel is noisy, so that qxi = p(xi | x̂i ) < 1, then our final
capital is

Vn = αx1βx1|x̂1
αx2βx2|x̂2

· · ·αxnβxn|x̂n
V0,

where βxi |x̂i
=

bxi

Vi−1
is the proportion of capital on xi given x̂i .

Again, expected wealth maximized by betting everything on
arg max qxi αxi .

Gambler’s Ruin

This strategy is guaranteed to lead to bankruptcy sooner or later!

Conclusion: Maximum expected wealth is not the thing to consider.
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Maximum Growth Rate

What if we maximize the average growth rate of capital instead?

G =
1

n
log

Vn

V0
=

1

n
log

n∏
i=1

αxi βxi |x̂i
.

With fair odds αxi =
1

pxi

, this becomes

Gibbs’ inequality: Maximized by βxi |x̂i
= qxi = pxi |x̂i

.
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Kelly Criterion

Theorem (Kelly, 1956)

Assuming fair odds, αx =
1

px
,

1 the growth rate G is maximized by betting proportion
qx = p(x | x̂) of the capital on x ∈ X ,

2 then the growth rate is given by

G = H(X )− H(X | X̂ ),

i.e., the channel capacity,

3 gambling using any other strategy will eventually yield less
profit.
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Kelly Criterion

The same strategy is optimal even if the odds are not fair in the

sense αx =
1

px
, as long as there is no “track take”, i.e.,

∑
x∈X

1

αx
= 1.

Note that this implies that you should ignore the odds when
betting!

The analysis can be extended to the case where there is a “track
take”, but the results are not quite as neat.
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Rate–Distortion

Relax the requirement that the decoder must be able to recover
the source string exactly.

What level of distortion is tolerated?

Define a distortion function d : (X ,X ) → R+, that measures the
difference, d(x , y), between a source signal x and the decoded
signal y .

The rate–distortion function gives the minimum rate of coding
(compression) such that

D(X ,Y ) = E [d(X ,Y )] < D∗.
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Rate–Distortion

Shannon Lower Bound

Continuous case: For squared distortion d(x , y) = (x − y)2, the
minimum coding rate is bounded by

R(D) ≥ h(X )− h(D),

where h(D) is the differential entropy of N (0,D).

Binary case: For Hamming distortion d(x , y) = |x − y |, the
minimum coding rate is bounded by

R(D) = H(X )− H(D),

where H(·) is the binary entropy function.
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Shannon Lower Bound

Continuous case: For squared distortion d(x , y) = (x − y)2, the
minimum coding rate is bounded by

R(D) ≥ h(X )− h(D),

where h(D) is the differential entropy of N (0,D).

Binary case: For Hamming distortion d(x , y) = |x − y |, the
minimum coding rate is bounded by

R(D) = H(X )− H(D),

where H(·) is the binary entropy function.
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Rate–Distortion

Rate–distortion function for Bernoulli
(

1
2

)
. Source: Cover & Thomas.
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Image Compression

The key in both noiseless and noisy compression is to find a good
model for the source.

For images, the correlation of neighboring pixels is one property to
exploit.

Source: Simoncelli & Olshausen, “Natural Image Statistics and Neural
Representation”, 2001
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Image Compression

The key in both noiseless and noisy compression is to find a good
model for the source.

For images, the correlation of neighboring pixels is one property to
exploit.

Source: Simoncelli & Olshausen, “Natural Image Statistics and Neural
Representation”, 2001
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Image Compression

The key in both noiseless and noisy compression is to find a good
model for the source.

For images, the correlation of neighboring pixels is one property to
exploit.

Source: Simoncelli & Olshausen, “Natural Image Statistics and Neural
Representation”, 2001
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JPEG Artifacts
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JPEG Artifacts
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Wavelet Compression

Approximations with Daubechies (N=4) wavelets

1
(0.01%)

2
(0.01%)

· · ·
164

(1.0%)
327

(2.0%)
819

(5.0%)
1638

(10.0%)
3277

(20.0%)
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Video Compression

Video compression usually
involves:

1 encoding still images
using image compression
techniques,

2 encoding update (“delta”)
frames to describe what
has changed.
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Video Compression

Video compression usually
involves:

1 encoding still images
using image compression
techniques,

2 encoding update (“delta”)
frames to describe what
has changed.
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Video Compression

Video compression usually
involves:

1 encoding still images
using image compression
techniques,

2 encoding update (“delta”)
frames to describe what
has changed.

Teemu Roos Information-Theoretic Modeling



Outline
Kolmogorov Complexity

Gambling
Lossy Compression

Rate–Distortion
Image Compression
Video Compression

Video Compression

Source: dvd-hq.info
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Last Slide

The End.
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