
582650 Information-Theoretic Modeling (Fall 2014)
Homework 1 (due September 11)

1. Without studying compression techniques (unless you already have), come up with a compression
method of your own invention. The method should take as input a sequence of lower case English
letters a–z and spaces ‘ ’, and output a sequence of bits (you can output ASCII symbols 0 and
1 so you don’t need to worry about bit-level operations). It is probably easiest to let each
input symbol be mapped onto a fixed codeword (binary sequence). For example a 7→ 00000,
b 7→ 00001, ... Each symbol should be mapped onto a distinct codeword so that you have a
chance to recover the input from the output. Note that you need not let all the codewords
be of equal length. The codewords are concatenated into a long binary sequence without any
delimiters such as spaces.

Try to come up with an encoding (mapping) such that typical English text is compressed as
much as possible, i.e., that the number of 0s and 1s in the output is as small as possible. Is
your encoding decodable, i.e., could you actually recover the input from the output sequence?
In particular, can you figure out where one codeword ends and another one begins? If not, try
to think about ways to solve the problem without introducing any delimiters.

2. Continuing with the previous exercise: Test your encoding by evaluating the length of the output
on Chapter I of Alice in Wonderland (starting “CHAPTER I.” and ending at “off the cake.”)
which you can download from www.gutenberg.org/ebooks/11.txt.utf-8. Replace uppercase
letters by the corresponding lowercase letters and skip all non-alphabetic symbols except spaces.

3. Find the shortest computer program (or as short as you can) in a programming language of your
choice to output an arbitrary file, random.file, of length 1kB (kilobyte) so that random.file
cannot be compressed significantly by programs such as gzip or WinZip. For example,

> gzip random.file

should create a file random.file.gz whose size is about 1kB.

However, you are not allowed to use pseudo-random number generators (such as python’s random
module) or to implement any of the well-known algorithms for producing pseudo-random num-
bers.



4. Binary lottery. For next week’s exercise session, we will generate a binary sequence x of length
n = 100 at random from a source where each bit takes value 1 with probability 0.1 independently
of the other bits. In other words, we will flip a biased coin 100 times.

Suppose you could buy lottery tickets labelled by each of the 2100 possible binary sequences of
length n = 100 for a fixed price per ticket. If you would like to make sure that you will win
with probability at least 93 %, what is the fewest number of tickets you’d need to buy? Which
tickets?

Hint: You will probably want to use the binomial distribution. In R, for example, dbinom can
be used to evaluate the probability mass function of a binomial distribution.

5. Attend the Distinguished Lecture by Prof Wojciech Szpankowski on Monday, Sep 8 (for more
information, see www.hiit.fi/HelsinkiITLectures). If you can’t attend the lecture, you may
be able to find some information online. However, attending the lecture is a good idea in any
case (and there is a cocktail session after it). Please register — even if it’s after the recommended
registration deadline — by going to the above url and following links there.

(a) Broadly speaking, what are the key open questions in information theory that the Center
for Science of Information (soihub.org) is trying to solve?

(b) What is the basic difference between the information content in a sequence and the infor-
mation content in a structure?

(c) What does the Structural ZIP algorithm do? (You don’t need to explain how it does what
it does, just the task it is meant for.)

2


