582650 Information-Theoretic Modeling (Fall 2014)

Homework 2 (due September 18)

1. Continuing with the Alice in Wonderland exercise (ex. 2) from last week, apply your ideas from last week to design a code for bigrams, i.e., combinations of two subsequent letters. In other words, encode the source (Chapter I) as ' ch ' ' ap ' ' te ' ' ${ }^{r}$ ', ...
Do you achieve better compression than last week?
2. Consider two random variables X and Y with the following joint distribution:

	$Y=0$	$Y=1 Y=2$	
$X=0$	$1 / 5$	$1 / 5$	$1 / 5$
$X=1$	0	$1 / 5$	$1 / 5$.

In other words, the case $X=1, Y=0$ never occurs, but the other combinations are all equally probable.
Calculate the values of
(a) $H(X)$ and $H(Y)$
(b) $H(X \mid Y)$ and $H(Y \mid X)$
(c) $H(X, Y)$
(d) $H(Y)-H(Y \mid X)$
(e) $I(X ; Y)$.

Optionally, you may wish to draw a graphical representation to illustrate these quantities (as on page 13 of Lecture 3).
3. (Exercise 2.14 in Cover ξ Thomas) Let X and Y be random variables that take on values x_{1}, \ldots, x_{r} and y_{1}, \ldots, y_{s}, respectively. Let $Z=X+Y$.
(a) Show that $H(Z \mid X)=H(Y \mid X)$. Argue that if X, Y are independent, then $H(Y) \leq H(Z)$ and $H(X) \leq H(Z)$. Thus, the addition of independent random variables adds uncertainty.
(b) Give an example of (dependent) random variables in which $H(X)>H(Z)$ and $H(Y)>$ $H(Z)$.
(c) Under what conditions does $H(Z)=H(X)+H(Y)$?
4. Consider the simple Bernoulli model that generates independent random bits with $\operatorname{Pr}\left[X_{i}=1\right]=$ p for some fixed $0 \leq p \leq 1$.
For sequence length n, and some $\epsilon>0$, the typical set A_{ϵ}^{n} is defined as the set of sequences x_{1}, \ldots, x_{n} such that

$$
2^{-n(H(X)+\epsilon)} \leq p\left(x_{1}, \ldots, x_{n}\right) \leq 2^{-n(H(X)-\epsilon)}
$$

(a) What are the sequences in the typical set $A_{0.1}^{100}$ under the Bernoulli model when $p=0.1$?
(b) What is the the probability of the typical set?
(c) Compare this to the optimal lottery strategy from last week's exercises.
5. Let X and Y be two discrete random variables about which we only know that $H(X)=3$ and $H(Y)=4$. Under this assumption, what are the minimum and maximum values of the mutual information $I(X ; Y)$? Justify your claims, and show by example that your upper and lower bounds can actually be achieved.

