582650 Information-Theoretic Modeling (Autumn 2012) Homework 4 (due 2 October)

Please see the instructions for exercises at
www.cs.helsinki.fi/group/cosco/Teaching/Information/2014/ex/exercise_instructions.pdf.

1. (2 points) Consider alphabet $\mathcal{X}=\{a, b, c,!\}$ with probabilities $p(a)=0.05, p(b)=0.5, p(c)=$ 0.35 and $p(!)=0.1$.

Recall that arithmetic coding can be seen as the application of Shannon-Fano-Elias coding to blocks of b source symbols (where b need not even be given in advance). Hence, the interval $I(x) \subset[0,1]$ corresponding to message x (a source string) is given by $[F(x), F(x+1)$), where $x+1$ denotes the length b message following the actual message in alphabetical order. So for example, cab! $+1=c a c a$.
Note that in the above, the cdf $F(x)$ is defined as the sum of the probabilities of length b messages that precede x in the alphabetical order, so $F(c a b!)=p(a a a a)+p(a a a b)+\ldots+$ $p(a a a!)+p(b a a a)+\ldots+p(c a b c)+p(c a b!)$.
(a) Find out the interval $I(c a b!) \subset[0,1]$ that is used for encoding the message $c a b$! in arithmetic coding.
(b) (1 point) Now consider picking a number from $I(c a b!)$ as a codeword for $c a b!$. For ease of calculations, we consider codewords that are decimal numbers, not binary (i.e., the encoding alphabet is $\{0, \ldots, 9\}$ instead of $\{0,1\}$).
i. What is the shortest codeword (decimal number with the least number of decimals) you can find within the interval?
ii. What is the shortest codeword $C=0 . d_{1} \ldots d_{k}$ such that also all its continuations (numbers of the form $0 . d_{1} \ldots d_{k} d_{k+1}^{\prime} \ldots d_{m}^{\prime}$ where $m>k$ and d_{i}^{\prime} can be arbitrary for $i=k+1, \ldots, m)$ are also within the interval? (This is the property we need for a prefix code.)
(c) (1 point) Same as above, but use binary encoding. To make the calculations less cluttered, use the probabilities $p(a)=2 / 32, p(b)=16 / 32, p(c)=11 / 32$ and $p(!)=3 / 32$.
2. Let the model class be given by Bernoulli distributions where each bit in a sequence, $D=$ x_{1}, \ldots, x_{n}, is independent with probability $\operatorname{Pr}\left(x_{i}=1\right)=\theta$ for all $1 \leq i \leq n$. The probability of data D then becomes

$$
p_{\theta}(D)=\theta^{k}(1-\theta)^{n-k}
$$

where k is the number of 1 s in D.
Evaluate the two-part code-length of sequence 0011 when the parameter values are quantized so that $\theta \in \Theta=\{0.25,0.5,0.75\}$, and the parameter is encoded using a code with code-lengths $\ell(0.25)=\ell(0.75)=2$ and $\ell(0.5)=1$.
3. Again consider Bernoulli distributions. Evaluate the mixture code-length of sequence 0011 when all parameter values are allowed, so $\theta \in \Theta=[0,1]$ and the parameter prior (pdf) is uniform, $w(\theta)=1$. Note that for continuous parameter values, the mixture code-length becomes an integral

$$
p^{w}(D)=\int_{\Theta} p_{\theta}(D) w(\theta) d \theta
$$

You will probably find the "beta-binomial" distribution useful; see, e.g., Wikipedia. Note that $\operatorname{Beta}(1,1)$ is the uniform distribution. (Just ignore the combinatorial $\binom{n}{k}$ term which is the only difference between the binomial and Bernoulli distributions for sequences of length n.)
4. Once again Bernoulli. This time it's NML.
(a) Compute the NML normalizing term C under the full Bernoulli model class, i.e., when $\theta \in \Theta=[0,1]$. Note that the sum can be computer either by enumerating all the 2^{4} sequences or by combining like terms which leaves $n+1=5$ distinct terms. For large n this makes a big difference.
(b) Evaluate the NML code-length for the sequence $D=0011$.

