
582650 Information-Theoretic Modeling (Fall 2014)
Homework 5 (due 9 October)

1. Markov chains. A Markov chain of order m is a model for sequences where each symbol in the
sequence, Xi, is conditionally independent of all its other predecessors, Xi−1, Xi−2, . . . except
Xi−1, . . . , Xi−m:

p(xi | xx−i, xi−2, . . .) = P (xi | xi−1, . . . , xi−m) .

For example, an zero-order Markov chain is the familiar independence model where each symbol
is independent of all the others. We assume that the model is also homogeneous, i.e., that the
conditional distributions given by the above expression do not depend on the index i.

Consider once again the binary alphabet, xi ∈ {0, 1}. The zero-order (independence) model is
defined by a single parameter, p, by p(Xi = 1) = p. The first order model is defined by two
parameters, p0 and p1, by p(Xi = 1 | Xi−1 = x) = px. The second order model would be defined
by four parameters, and so on.

You will probably want to implement the following computations by programming rather than
by pencil and paper.

(a) Consider the sequence

11110010011110111111011100111111111111111101101110
10111111111000101011111001111111011110101101111110

of length 100. Compute the code-length of this sequence under the zero-order model using
a mixture code with prior Beta(0.5, 0.5).

(b) Compute the code-length of the same sequence under the first order model. Use a mixture
code where the two parameters are taken to be independent with Beta(0.5, 0.5) priors.
Note that the problem reduces to applying a zero-order model to the symbols that follow a
zero (01011101 . . .) and another, independent zero-order model to the symbols that follow
a one (11100111 . . .). You can let the first symbol, which has no predecessor, be uniformly
distributed, p(X1 = 1) = 0.5.

(c) Apply the same idea to compute the code-length under the second order Markov model
where you will just need to break down the sequence into four subsequences, one for symbols
following 00, another one for symbols following 01, and so on. Again, use independent
zero-order models with Beta(0.5, 0.5) priors to compute the code-lengths of each of these
subsequences and let the code-length of the first two symbols be uniform, i.e., two bits.

Which of the models achieves the shortest code-length? What does this suggest about the
sequence?

2. Continuation of the Exercise 1: Apply the NML universal model to the problem in the previous
exercise. To obtain the normalizing constant C = C(n) for (sub)sequences of lenght n, use the
formula
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rather than summing over all sequences of length n.



3.–4. This problem counts as two because it requires a bit of work (but the actual amount of work is
not as large as you might think based on this lengthy problem description).

You’ll need some tool to fit parametric functions to data. Below the problem is explained
assuming you use gnuplot. Feel free to use any other tools such as Matlab, python, or R1

The data you are asked to analyse is given on the course web page in file data200.txt. It
contains 200 lines, each containing a data point x y. The x values are in [0.01, 2.0], and the y
values are generated as y = f∗(x) + ε where f∗ is some unknown function and ε is noise with a
zero-mean Gaussian distribution with unknown variance σ2 > 0. (In an actual application you
might not know even this much.) You task is to see how well you can recover the unknown f
from this noisy sample using MDL to choose a model class.

We haven’t discussed encoding continuous valued data so far but in practice you don’t really
need to care about it: we will simply evaluate the density value, q(x), and use − log2 q(x) as the
code-length.2

For grading purposes, you can think that Problem 3 is understanding the task, setting yourself
up and getting at least some kind of estimate with MDL. Problem 4 would then be to do more
experiments, explain what you are doing and evaluate the end result. Your answer should contain
an explanation of what you did, a couple of sample plots, and any conclusions you can make.

First, let’s take a look at the data (Figure 1):

gnuplot> plot ’data200.txt’
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Figure 1: scatter plot of data200.txt

Now, let’s fit some functions to the data using gnuplot’s fit (non-linear least-squares) proce-
dure:

gnuplot> f(x) = a + b*x

1Good old gnuplot, which many of you probably have never heard of, is actually very handy for this purpose. I tried
giving instructions in R and python but both turned out to be much more clumsy than gnuplot. For doing basically the
same thing in a number of different environments and languages, see http://www.walkingrandomly.com/?p=5254.

2In theory, this is not a valid code-length as it will not satisfy the Kraft inequality. To make it a valid code-length,
we would need to discretize the observations to finite precision. The used precision would naturally affect the code-
length. For practical purposes, the crucial thing is that as the precision is increased, the term depending on the precision
typically becomes a constant that doesn’t depend on the model class and we don’t have to care about it when comparing
different model classes.
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gnuplot> fit f(x) ’data200.txt’ via a,b
[output omitted]
gnuplot> plot ’data200.txt’, f(x) lt 1 lc 3

(The line type lt and color lc were changed just to make the line show better.)
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Figure 2: A linear function f(x) = a+ bx fitted to the data.

The fit command produces some output, of which we need just one line:

final sum of squares of residuals : 3080.48

This is the residual sum of squares, RSS =
∑n

i=1(y− f̂(x))2, where f̂ is the fitted function. The
RSS values will determine the code-length of the data given the hypothesis (in this case, the
linear fit) under the Gaussian error assumption.

Your task is to try to fit different formulae to the data. You can try not only functions that are
linear in the parameters — note that any polynomial, e.g., a + bx + cx2 + dx3 is linear in the
parameters (coefficients). You do try, for example, the following non-linear model

gnuplot> f(x) = a + b*x + c * sin(d*x)
gnuplot> fit f(x) ’data200.txt’ via a,b,c,d

which produces the following RSS

final sum of squares of residuals : 1368.18

We use the following simple approximation of a two-part code-length:

(a) for the parameters:
k

2
log2 n bits, and

(b) for the data: a negative logarithm of a Gaussian density fitted to the residuals.

In the Gaussian density fitted to the data, the mean is given by the fitted curve and the variance
is given by the residual sum of squares divided by the sample size: σ̂2 = RSS/n. For instance,
in the linear fit above, the variance is given by σ̂2 = 3080.48/200 ≈ 15.4.
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Figure 3: A non-linear function f(x) = a+ bx+ c sin(dx) fitted to the data.

The code-length of the second part becomes then

− log2

 n∏
i=1

1√
2πσ̂2

e
− (f̂(x)− y)2

2σ̂2

 .

Taking care not to get mixed up with the base-2 logarithm and the exponent function logarithm3,
etc, we re-write this as

n

2
log2(2πσ̂

2) + log2(e)

∑n
i=1(f̂(x)− y)2

2σ̂2
=
n

2
log2(2πσ̂

2)− n

2
log2 e =

n

2
log2(2eπσ̂

2) .

In fact, we can leave out the terms that are constant wrt. the model class when comparing
different model classes (but the same data and hence, the same n), and we can simply use the
formula

n

2
log2 RSS

as the second-part code-length.
The total code-length which gives the final MDL criterion is therefore

n

2
log2 RSS +

k

2
log2 n+ constant,

where k is given by the number of fitted parameters in the model including the variance, so in
the linear case, for example, k = 3 (a, b, and σ).
To give an example, in the case of the linear model, the value of the criterion is given by

200

2
log2 3080.48 +

3

2
log2 200 ≈ 1158.89 + 11.47 = 1170.36 (bits).

We can now compare this with the more complex non-linear model with k = 5 that yields the
code-length

200

2
log2 1368.18 +

5

2
log2 200 ≈ 1041.80 + 19.11 = 1060.91 < 1170.36.

Thus, in this case, even though the more complex model had a bigger complexity penalty
(19.11 > 11.47), the better fit (smaller residuals) results in a shorter total code-length.

3It is helpful to note that log2 expx = log2(e)x.
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5. Q & A. We have created a discussion forum on Piazza. You should have received a link to
register from Jussi (if not, please contact him). Register and take a look at the discussions that
are going on there.

(a) Post at least one question on the forum. It should be possible to post anonymously as well.

(b) Respond to at least one question (other than your own). Note that you need not give a
totally correct and complete answer. The whole point is to encourage discussion.

You get one exercise point by doing the above by the exercise session. Be prepared to indicate
which questions and responses are yours if you make them anonymous.
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