
582650 Information-Theoretic Modeling (Fall 2014)
Homework 6 (due 16 October)

1. Multinomial NML (1 point). Implement the multinomial NML formula using the recursion

Cm
n = Cm−1

n +
n

m− 2
Cm−2

n .

Check that for a sequence X1, ..., X262 where outcome 0 appears 115 times, outcome 1 appears
57 times, and outcome 2 appears 90 times, you get code-length about 408.93 bits.

2. Bayesian networks (2 points). There is a data set, survey.txt, that goes with this exercise on
the course web page. Your task is to use NML – or to be more precise, factorized NML – for
learning the structure of a Bayesian network based on the data.
The data consists of a sample of size n = 500 of six discrete variables, labelled A, R, E, O, S,
and T . Variables A and T have three possible values each and the others have two.
Now the fNML criterion is based on a very similar approach as we used in last week’s exercises on
Markov chains. You should encode one variable at a time and sum up the code-lengths. When
encoding a variable X ∈ {A,R,E,O, S, T} whose parents are Pai ⊆ {A,R,E,O, S, T} \ {Xi},
you should split the data from variable Xi into blocks according to the parent variables’ values
(called their configuration). If, for instance, you are encoding node A and it happens to have
as its parents nodes R and E, then you should consider separately the 2× 2 = 4 subsets of the
data where R and E appear in distinct configurations. In each block or subset, you can use the
multinomial NML for encoding the values of variable Xi (in the example, A).
To make your life easy, we provide a nifty program, splitcfg.py, which takes a Bayesian
network structure (parent lists) as command line argument and prints out counters for each
variable’s values broken down by parent configuration.
For example, when variables R and E take their first configuration (which happens to be R =
big, E = high), variable A takes each of its three values 115, 57, and 90 times, respectively.
In the next parent configuration (R = big, E = uni), variable A takes each of its three values
63, 11, and 43 times, and so on.
These counters are all you need to evaluate the fNML criterion, which is defined as

p∑
i=1

qi∑
j=1

`NML(Xi[Pai = j]),

where p is the number of variables, qi is the number of parent configurations for variable i (which
of course depends on the parent set Pai), and Xi[Pai = j] denotes the sequence of observations
of variable Xi for which the parent variables take their jth configuration.

(a) (1 point) Run the command

> python splitcfg.py survey.txt "1 2" "" "" "" "" ""

to produce the counts from the data set survey.txt when the parents of variable A are R
and E, and all other variables have no parents at all. Apply the multinomial NML universal
code to each of the resulting set of counts just like you did for the first set in exercise 1.
This gives you the terms `NML(Xi[Pai = j]) needed in the fNML criterion. Check that you
get total fNML code-length about 2899.86 bits.

(b) (1 point) Implement some kind of a search algorithm for a structure that minimizes the
fNML code-length. Note that there shouldn’t be any cycles in the network (and in par-
ticular, no variable should be a parent of itself!). If it helps, you can limit the number of
parents of each variable to three. Hint: The search becomes significantly easier if you fix a
total ordering ‘≺’ of the variables and only allow the edge Xi → Xj if Xi ≺ Xj .



3. Elementary programming (1 point). Find the shortest program, in a programming language of
your choice, to print the first section, Definitions, of Book I of Euclid’s Elements, following the
on-line version by David E. Joyce available at
aleph0.clarku.edu/~djoyce/java/elements/bookI/bookI.html#defs.

The text begins as follows.

Definitions

Definition 1.
A point is that which has no part.

Definition 2.
A line is breadthless length.

Definition 3.
The ends of a line are points.

Definition 4.
A straight line is a line which lies evenly with the points on itself.

Definition 5.
A surface is that which has length and breadth only.

Definition 6.
The edges of a surface are lines.

The last item to include is Definition 23 (parallel lines).

Include all spacing, punctuation, and other symbols, including capitalization (but not text for-
matting such as fonts or underlining, etc).

Rule #1: You are not allowed use compression libraries to do the job for you. In other words,
it is not allowed to compress the data using, for instance, gzip and then call zlib.decompress
to decompress the compressed data. That wouldn’t be much fun, would it?

Hints:

(a) You can, for instance, define variables as string literals such as d="Definition", i=" is
that which ", s=" surface", and use them as

print d+" 5.\n A"+s+i+"has length and breadth only."

Compared to simply printing the whole text as a single string literal, this would reduce the
number of bytes (characters) spent for Definition 5 from 70 to 54 (ignoring the code for
defining the string literals.)

(b) Even though you are not allowed to use existing compression libraries, you are allowed
to use compression (and decompression) techniques such as Huffman coding to obtain a
concise encoding if you really like. However, we rather recommend that you try to think
about other approaches, such as string literals, etc. To support compression methods, it is
okay to provide a separate data file in addition to the actual source code of your program.
(You can also provide an executable file but that is likely to be bigger than the source
code.) The total size of the data file and the program file are counted as your score.

(c) Some programming languages are more concise than others. We don’t expect you to learn
a new programming language just for this purpose – although it would of course probably
be a good idea in general. The point is to think about language-independent strategies.

2



4. Google distance (1 point). Define the normalized Google distance (NGD) as

NGD(word1, word2) =
max{log f(word1), log(word2)} − log f(word1, word2)

logM −min{log f(word1), log f(word2)}
,

where f(word) denotes the number of pages indexed by Google that include the word word. You
can retrieve this number by typing the word in Google search. The page count appears before the
actual results. For example, typing Kolmogorov in the search field, you should get something like
“About 2,730,000 results (0.32 seconds)”, which gives you f(Kolmogorov) = 2 730 000.
Likewise, you should get something like f(Kolmogorov, complexity) = 625 000 by typing both
words in Google search. The term M is the total number of web documents indexed by Google.
You can use the approximation M ≈ 5 · 1010 (fifty billion).

(a) Evaluate the pairwise distances NGD(word1, word2) for words in the set

{Andrey, Kolmogorov, complexity, stochastic, porridge,
Rissanen, breakfast, omelette, broccoli} .

For the first one, should get a result close to 0.526. Don’t be alarmed if some of the results
appear weird. This is probably due to Google’s distorted way of reporting the page counts.
If you find a better way (using perhaps another API to Google search, or even another
search engine), go for it.

(b) Record the values obtained in the previous item in a 9×9 distance matrix. You can assume
that NGD(word1, word1) = 0 and that the matrix is symmetric.
Visualize the distances using your favourite technique. Good alternatives might include,
for instance, a minimum spanning tree or a heatmap. What do you learn about the words?
The Google distance is supposed to correlate with the (lack of) semantic relatedness of the
words in question. Does this hold? Feel free to try other word pairs to test the claim.

3


