
Sample solutions to Homework 1,
Information-Theoretic Modeling (Fall 2014)

Jussi Määttä

September 12, 2014

Question 1

The simplest option is to use fixed-width codewords. Since there are 27 legal
symbols, it suffices to have dlog2 27e = 5 bits per codeword.

To obtain better compression performance, we need variable-length codewords.
Using a delimiter may seem like a good solution, but it is suboptimal. In fact,
we can quite easily guarantee that our encoded text is uniquely decodable
without resorting to delimiters.

The idea is simple: construct a binary tree with each symbol in its own leaf,
then assign either 0 or 1 to each edge. The codeword for a symbol is given by
the path from the root to the leaf. It is almost obvious that this produces a
decodable encoding. Think about it!

Of course, there are quite a few such trees and some of them will compress
English text better than others. So how do we pick a good tree?

First, we need to have an idea about which symbols are more frequent than
others. We can e.g. take a large enough corpus of English text and compute
the relative frequencies of all letters of the alphabet.

Now, place all symbols as disconnected nodes in an empty graph and pick the
two nodes whose frequencies are the smallest. Add a new node to the graph
whose children are these two nodes and assign to it a probability that is the
sum of the probabilities of its two children.

1



We repeat the above procedure: look at all nodes in your graph that have no
parent. Pick the two that have the lowest probabilities. Combine them to a
new node.

When there is only one parentless node left, we are done. Assign 0 to each
edge going to a left child and 1 to each edge going to a right child.

We have just constructed a Huffman code. In a very meaningful sense, this is
the best we can do! (This will probably be explored in the lectures later on.)

Question 2

The sample solutions include Python code to extract Chapter I of Alice in
Wonderland from the text file (alice.py). We apply the Huffman coding
described above.

Here we can cheat a bit: we learn the symbol frequencies from the text we are
going to compress. In general, we could have perhaps taken all of Wikipedia
or all of Project Gutenberg to learn the frequencies.

The program build_codebook.py produces the Huffman code for a given
training text and outputs it in the portable JSON format.

The programs encode.py and decode.py use the codebook to encode or decode
text.

The file README.txt describes how to use the programs.

The uncompressed (but preprocessed) text consists of 10670 bytes, that
is, 85360 bits. Using the provided implementation, the compressed text
compresses to 43802 bits.

(Of course, to decode the text we also must know the codebook, but its
size is essentially a constant with respect to the length of the text to be
compressed, so we don’t care very much. At the exercise session, we also
discussed solutions that used dictionaries for frequent words to get excellent
compression rates—again, the dictionary has to be known by the decoder.
A key idea, to be considered later on during the course, is that maybe we
should count the size of the decoder program as well!)

2



Question 3

Obviously, there is no single correct answer to this question.

Many people probably had “technical” troubles in outputting raw bytes. For
example, if your program outputs only the ASCII characters 0–9, then a
Huffman coder can significantly compress your file. The sample solution
below shows one “hack” for generating bytes from floating-point numbers; a
better solution would be to use your favorite programming language’s built-in
facilities for writing binary files.

Let us explore one (sort-of) nice solution.

Consider the simple sequence xn+1 = 3.9xn(1 − xn) with the initialization
x1 = 0.3. This is an example of a logistic map, see e.g. http://mathworld.
wolfram.com/LogisticMap.html. It produces very complicated behavior
(some might call it “chaotic”).

The sample solution computes the first 1024 terms of this sequence in the
standard 32-bit floating point format and outputs the lowest byte of each “raw”
floating-point number (the lowest byte corresponds to a portion of the fraction
part of the float). The file ex3.clean.c contains a neat C implementation and
is functionally equivalent to the file ex3.obfuscated.c which is only 72 bytes
long. Using gzip with the parameter -9, the compressed file takes more than
1024 bytes.

The bytes generated by the sample program are also visualized in the figure
below. The figure can be produced by the Matlab program ex3_demo.m (the
output file is assumed to be named ex3.result).

3



100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

lowest byte of x
n

n

Question 4

Note first that since 0’s are more probable than 1’s, we should prefer to buy
lottery tickets with as many 0’s on them as possible.

First of all, we will buy the ticket with all 0’s. Its probability of winning is
0.9100 ≈ 0.000026561. Since this is not enough, we will also buy all tickets
with one 1 in them. There are 100 such tickets and each of them wins with
probability 0.1 · 0.999. With these 101 tickets, we will win the lottery with
probability ≈ 0.00032169.

Continuing in this manner, there are
(
100
2

)
= 4950 tickets that have two 1’s,

and each of them wins with probability 0.12 · 0.998. If we buy all these tickets
as well, our probability of winning is

2∑
k=0

(
100

k

)
0.1k 0.9100−k ≈ 0.0019449.

We seem to be getting somewhere! At this point, we switch to MATLAB (or

4



your favorite tool, e.g. R) and find that

14∑
k=0

(
100

k

)
0.1k 0.9100−k ≈ 0.92742703 and

15∑
k=0

(
100

k

)
0.1k 0.9100−k ≈ 0.96010947.

Recall that we want a winning probability of at least 0.93. Hence, if we buy
all lottery tickets with fifteen or less 1’s in them, the goal is achieved. Since

14∑
k=0

(
100

k

)
≈ 5.2509 · 1016 and

15∑
k=0

(
100

k

)
≈ 3.0585 · 1017,

it suffices to buy 3.06 · 1017, or about 0.3 billion billion tickets. This is about
0.000000000024% of all tickets.

Of course, we can do better than this. We should buy all lottery tickets that
have at most fourteen 1’s, and some lottery tickets with fifteen 1’s. How
many? We want the fifteen-times-1 tickets to have a total winning probability
of about 0.93 − 0.92742703 = 0.00257297. Suppose we buy m such tickets.
Their winning probability is m · 0.115 · 0.985. We may now solve

m · 0.115 · 0.985 = 0.00257297 ⇐⇒ m ≈ 1.9944 · 1016.

Hence, it suffices to buy about 5.2509 · 1016+1.9944 · 1016 ≈ 7.25 · 1016 tickets.
This is the best we can do.

The attached Matlab program ex4.m performs the above calculations.

During the exercise session, we discussed another approach that some people
had used. They though that since the expected number of 1’s is 10, you
should first buy all tickets with ten 1’s; after that, buy tickets with nine or
eleven 1’s, and so on. This is not the optimal solution, as you should always
prefer to buy tickets with the most zeros because they are more likely to win.
However, the end result is “not too bad”, because there are so few tickets
with very few 1’s—they are not typical. Recall the asymptotic equipartition
property (AEP) discussed at the lectures; in a way, we’re “just an epsilon off”
the optimal solution. If the tickets had, say, a million binary digits, then this
approach would be even closer to the optimum.

5



Question 5

(a)

The Center for Science of Information has divided its research plan into three
subdomains:

1. Communication. Traditionally Shannon’s information theory has con-
sidered communication through a (noisy) channel. In practice, however,
noise is not the only problem we have: for instance, information may
arrive late and this may reduce its value. Or information may be trans-
ferred within a network instead of just a single channel—what difference
does this make? And is there a way to quantify the effects of these
variations; is there something analogous to the concepts of entropy and
mutual information?

2. Knowledge management. How can data be shared in a useful form
without disclosing confidential information—is this achievable e.g. by
combining information theory and computational complexity theory?
Can we quantify the risks of sharing such data—how likely is it that
the other end may be able to undo the “anonymization” or “mangling”?
Can information theory help with the so-called curse of dimensionality?
Can information theory fix economics? What is the role of information
theory in learning network structures and making inferences with them?

3. Life sciences. Develop information-theoretic tools to make sense of
biological data.

(b)

Brooks (2003) writes:

“We have no theory, however, that gives us a metric for the
information embodied in structure, especially physical structure.
We know that an automobile is a more complex structure than a
rowboat. We cannot yet say it is x times more complex, where
x is some number. Yet we know that the complexity is related to

6



the Shannon information that would be required to specify the
structures of the car and the boat.”1

(c)

The Structural Zip (SZIP) algorithm compresses a labeled undirected graph
into a codeword that can be decoded to obtain a labeled undirected graph
that is isomorphic to the original graph.

(Two graphs are isomorphic if there exists an edge-preserving bijection between
their vertex sets. See the example picture below. Two nodes u and v in G
are connected by an edge if and only if f(u) and f(v) are connected in H.)

1Frederick P. Brooks, Jr.: “Three great challenges for half-century-old computer science”,
Journal of the ACM, Volume 50, Issue 1, pp. 25–26, January 2003. http://dx.doi.org/
10.1145/602382.602397

7



8


