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Question 1

If you built your codebook by hand or took it from the web in the previous
exercise, you now faced the challenge of writing your own code to build a
codebook. As there are 27 allowed input characters (a-z and ’ ’), the number
of two-character symbols is 272 = 729.

Moreover, you should consider the case where your input has an odd number
of characters. (The cleaned-up version of Chapter I of Alice has an even
number of characters, so if you only used that input you might’ve missed
this issue.) One solution is to append an end-of-file (EOF) character to
odd-sized inputs. The sample code uses the character ’#’. As a file may
end with 27 different symbols, the total number of possible symbols becomes
272 + 27 = 756.

The attached sample code is based on the same Huffman tree construction
algorithm that we used earlier. Only minor modifications have been made to
account for two-character symbols and the issue of odd-length input files. A
shell script test.sh has been added for easy testing.

Like before, we “cheat” by constructing the codebook using our input. Now
that we are using two-character symbols, not all symbols occur in the input
(e.g. ’xz’). The program build_codebook.py now contains a Boolean flag
build_complete_codebook, which determines whether we construct a codeword
for each possible symbol or for only those that occur in our input.
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How does this new approach affect the compression rate? Recall that last
week, we managed to compress our input down to 43802 bits. Now, us-
ing two-character symbols, the input compresses down to 39064 bits (if
build_complete_codebook = False) or 39065 bits (if build_complete_codebook
= True). The input compresses to fewer bits than before.

Why did we get a better compression rate than last week? Because the
individual letters in Alice in Wonderland are not really independent! For
example, if we see the letter ’a’, then the next letter is more likely to be ’l’
than ’x’.

For completeness, let us roughly look at the sizes of the codebook files
(codebook.json). They are stored quite inefficiently, of course, but let’s just
look at their sizes relative to each other. Last week’s codebook (for single-
character symbols) takes 403 bytes. The incomplete two-character codebook
takes 6490 bytes and the complete codebook takes 106767 bytes. There
is a price to pay for getting a smaller compressed file! We have hundreds
of symbols, and because there are so many of them, we must have longer
codelengths for each of them as well.

Question 2

(a)

First, recall that we can obtain the marginal distributions as follows:

p(X = x) =
∑

y∈{0,1,2}

p(X = x, Y = y),

p(Y = y) =
∑

x∈{0,1}

p(X = x, Y = y).

In particular, p(X = 0) = 1/5 + 1/5 + 1/5 = 3/5, p(X = 1) = 0 + 1/5 +
1/5 = 2/5, p(Y = 0) = 1/5 + 0 = 1/5, p(Y = 1) = 1/5 + 1/5 = 2/5 and
p(Y = 2) = 1/5 + 1/5 = 2/5.
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Now, by definition

H(X) = −
∑

x∈{0,1}

p(X = x) log2 p(X = x)

= −p(X = 0) log2 p(X = 0)− p(X = 1) log2 p(X = 1)

= −3

5
log2

3

5
− 2

5
log2

2

5
≈ 0.9710

and

H(Y ) = −
∑

y∈{0,1,2}

p(Y = y) log2 p(Y = y)

= −1

5
log2

1

5
− 2

5
log2

2

5
− 2

5
log2

2

5
≈ 1.5219.

(b)

Here we also need the conditional probabilities p(X = x | Y = y) and
p(Y = y | X = x). These are easy to read from the table or can be computed
using the identity

p(X = x | Y = y) =
p(X = x, Y = y)

p(Y = y)
, when p(Y = y) > 0.

We have

H(X | Y ) = −
∑

y∈{0,1,2}

∑
x∈{0,1}

p(X = x, Y = y) log2 p(X = x | Y = y)

= −p(X = 0, Y = 0) log2 p(X = 0 | Y = 0)

− p(X = 0, Y = 1) log2 p(X = 0 | Y = 1)

− p(X = 0, Y = 2) log2 p(X = 0 | Y = 2)

− p(X = 1, Y = 0) log2 p(X = 1 | Y = 0)

− p(X = 1, Y = 1) log2 p(X = 1 | Y = 1)

− p(X = 1, Y = 2) log2 p(X = 1 | Y = 2)

= −1

5
log2 1− 1

5
log2

1

2
− 1

5
log2

1

2
− 0 log2 0− 1

5
log2

1

2
− 1

5
log2

1

2
= 0.8.
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(Side note: It may seem confusing that the above calculation included the term
p(X = 1, Y = 0) log p(X = 1 | Y = 0) even though the “number” 0 log 0 is
not really defined. However, this is a small technicality and we may just write
0 log 0 = 0. Why? We may resort to a limit argument, limx→0+ x log x = 0.
Or, strictly speaking, the double sum should be over the support of the
random variable (X, Y ), that is, the set {(x, y) ∈ {0, 1} × {0, 1, 2} : p(X =
x, Y = y) > 0}.)

Similarly,

H(Y | X) = −
∑

x∈{0,1}

∑
y∈{0,1,2}

p(X = x, Y = y) log2 p(Y = y | X = x)

= −p(X = 0, Y = 0) log2 p(Y = 0 | X = 0)

− p(X = 0, Y = 1) log2 p(Y = 1 | X = 0)

− p(X = 0, Y = 2) log2 p(Y = 2 | X = 0)

− p(X = 1, Y = 0) log2 p(Y = 0 | X = 1)

− p(X = 1, Y = 1) log2 p(Y = 1 | X = 1)

− p(X = 1, Y = 2) log2 p(Y = 2 | X = 1)

= −1

5
log2

1

3
− 1

5
log2

1

3
− 1

5
log2

1

3
− 0 log2 0− 1

5
log2

1

2
− 1

5
log2

1

2
≈ 1.3510.

Note that H(X | Y ) 6= H(Y | X).

(c)

Here we can simply use the identity H(X, Y ) = H(Y ) + H(X | Y ) ≈
1.5219 + 0.8 ≈ 2.32. Or equivalently, H(X, Y ) = H(X) + H(Y | X) ≈
0.9710 + 1.3510 ≈ 2.32.

(d)

H(Y )−H(Y | X) ≈ 1.5219− 1.3510 ≈ 0.17.

(e)

We know that mutual information is symmetric: I(X;Y ) = I(Y ;X). Now,
by definition, I(Y ;X) = H(Y )−H(Y | X) ≈ 0.17.
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Question 3

(a)

First, denote X = {x1, . . . , xr}, Y = {y1, . . . , ys} and Z = {x+ y : x ∈ X , y ∈
Y}. By definition,

H(Z | X) = −
∑
x∈X

∑
z∈Z

p(X = x, Z = z) log2 p(Z = z | X = x)

= −
r∑

i=1

∑
z∈Z

p(X = xi, Z = z) log2 p(Z = z | X = xi).

In the terms p(X = xi, Z = z) log p(Z = z | X = xi), we always have some
fixed value xi for the random variable X. Therefore, the random variable Z
must take one of the values xi + yj , j = 1, . . . , s. Hence, we may continue the
above by writing

H(Z | X) = −
r∑

i=1

s∑
j=1

p(X = xi, Z = xi + yj) log2 p(Z = xi + yj | X = xi)

= −
r∑

i=1

s∑
j=1

p(X = xi, X + Y = xi + yj) log2 p(X + Y = xi + yj | X = xi).

Now, notice that

1. p(X = xi, X + Y = xi + yj) = p(X = xi, Y = yj), since for the two
events to occur simultaneously, we must have X = xi and thus the event
X + Y = xi + yj simplifies to Y = yj.

2. log2 p(X + Y = xi + yj | X = xi) = log2 p(Y = yj | X = xi). Why? In
general, for two events A and B with p(B) > 0, one can easily show
that p(A,B | B) = p(A | B). Then we can apply similar reasoning as
above.
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Thus, we have

H(Z | X) = −
r∑

i=1

s∑
j=1

p(X = xi, Y = yj) log2 p(Y = yj | X = xi)

= −
∑
x∈X

∑
y∈Y

p(X = x, Y = y) log2 p(Y = y | X = x)

= H(Y | X).

Using the above result, we also have the following:

X and Y are independent
⇐⇒ I(Y ;X) = 0

⇐⇒ H(Y )−H(Y | X) = 0

⇐⇒ H(Y ) = H(Z | X)

=⇒ H(Y ) ≤ H(Z),

and H(X) ≤ H(Z) follows by symmetry. Here we used the fact that H(A |
B) ≤ H(A) for all random variables A and B.

(b)

Let p(X = 0) = p(X = 1) = 1/2, that is, the random variable X represents a
throw of an unbiased coin. Let Y = −X. Clearly X and Y are dependent:
if we know the outcome of X, we can deduce the outcome of Y , and vice
versa. A simple calculation shows that H(X) = H(Y ) = 1. On the other
hand, Z = X + Y = X + (−X) = 0, that is, Z is a constant: p(Z = 0) = 1.
Hence, Z offers us “zero surprise”, H(Z) = 0.

(c)

Assume that X and Y are independent. Furthermore, assume that given
the value of Z, we can recover the values of X and Y . In other words, the
mapping f : X × Y → Z, f(x, y) = x + y, is a bijection. We will show that
these two assumptions imply H(Z) = H(X) + H(Y ), and that if either of
them is violated, then equality is not guaranteed.

(Note: As discussed during and after the exercise session, if X and Y take a
finite number of values, then the bijectivity of f is equivalent to |X |+ |Y| =
|Z|.)
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First, we prove a helpful inequality. Let A be a random variable and let g be
a function so that g(A) is also a random variable. Then, by the nonnegativity
of entropy and the definition of joint entropy, we have

H(g(A)) ≤ H(g(A)) + H(A | g(A))

= H(A, g(A))

= H(A) + H(g(A) | A)

= H(A)

since H(g(A) | A) = 0 (if we know A, we can compute g(A) so there is no
surprise; g(A) can only take one value once we know the value of A).

Apply then the above inequality to (X, Y ):

H(Z) = H(f(X, Y ))

≤ H(X, Y )

= H(X) + X(Y | X)

= H(X) + H(Y )

where we used the independence of X and Y .

Now, since we assumed that f is bijective, there exist functions g and h such
that X = g(Z) and Y = h(Z). We can again apply the above inequality to
the function Z 7→ (g(Z), h(Z)) to obtain

H(X, Y ) = H(g(Z), h(Z))

≤ H(Z).

We have shown that under our assumptions, H(Z) ≤ H(X) +H(Y ) ≤ H(Z),
which means that H(Z) = H(X) + H(Y ).

To show that the independence of X and Y is required, let X be the flip of an
unbiased coin and let Y = X. Given Z, we can always find out the values of
X and Y , but X and Y are clearly dependent. We have H(X) = H(Y ) = 1
and H(Z) = H(X + Y ) = H(2X) = H(X), so H(Z) < H(X) + H(Y ).

Finally, consider two random variables X and Y that represent independent
flips of unbiased coins (with outcomes 0 or 1). Then Z = X + Y may
take one of three values: 0, 1 or 2. The probabilities are p(Z = 0) = 1/4,
p(Z = 1) = 1/2, and p(Z = 2) = 1/4. If Z = 1, then we don’t know whether
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it was X or Y that came up heads. Our bijectivity assumption does not hold.
Now, we already know that H(X) = H(Y ) = 1, and

H(Z) = −1

4
log2

1

4
− 1

2
log2

1

2
− 1

4
log2

1

4
=

3

2

so H(Z) 6= H(X) + H(Y ).

Question 4

(a)

First, H(X) = H(Xi) = −0.1 log2 0.1− 0.9 log2 0.9 ≈ 0.4690.

Consider a sequence x̄ = (x1, . . . , x100). Let k be the number of 1’s in the
sequence, that is, k =

∑100
i=1 xi. We have p(x̄) = 0.1k 0.9100−k and therefore

log2 p(x̄) = k log2 0.1 + (100− k) log2 0.9.

Let n = 100 and ε = 0.1. The sequence x̄ is in the typical set An
ε = A100

0.1 if
and only if

2−n(H(X)+ε) ≤ p(x̄) ≤ 2−n(H(X)−ε)

⇐⇒ − n(H(X) + ε) ≤ log2 p(x̄) ≤ −n(H(X)− ε).

We can solve these inequalities for k:

−n(H(X) + ε) ≤ log2 p(x̄)

−100(−0.1 log2 0.1− 0.9 log2 0.9 + 0.1) ≤ k log2 0.1 + (100− k) log2 0.9

10(log2 0.1− log2 0.9− 1) ≤ k (log2 0.1− log2 0.9)︸ ︷︷ ︸
<0

10(log2 0.1− log2 0.9− 1)

log2 0.1− log2 0.9︸ ︷︷ ︸
≈13.2

≥ k

8



so we must have k ≤ 13, and

log2 p(x̄) ≤ −n(H(X)− ε)

k log2 0.1 + (100− k) log2 0.9 ≤ −100(−0.1 log2 0.1− 0.9 log2 0.9− 0.1)

k (log2 0.1− log2 0.9)︸ ︷︷ ︸
<0

≤ 10(log2 0.1− log2 0.9 + 1)

k ≥ 10(log2 0.1− log2 0.9 + 1)

log2 0.1− log2 0.9︸ ︷︷ ︸
≈6.8

so we require k ≥ 7.

Hence, the sequences in the typical set A100
0.1 are those that have 7 ≤ k ≤ 13

1’s.

(b)

The probability of the typical set A100
0.1 is

p(A100
0.1 ) =

13∑
k=7

(
100

k

)
0.1k 0.9100−k ≈ 0.7590.

(At the exercise session, we discussed also the relative size of An
ε compared

to the number of all possible lottery tickets 2n. As it was pointed out, the
ratio |An

ε |/2n becomes smaller and smaller as n increases. This can be seen
by using the inequality |An

ε | ≤ 2n(H(X)+ε). We have

|An
ε |

2n
≤ 2n(H(X)+ε)−n = 2n(H(X)−1+ε).

Since coin flips are biased, we have H(X) < 1. Choose any ε < 1 −H(X).
Then H(X)− 1 + ε < 0 so the ratio tends to zero as n→∞.)

(c)

Here, we used
∑13

k=7

(
100
k

)
≈ 8.32 ·1015 tickets to achieve a winning probability

of about 0.76. If we had simply bought all tickets with at most twelve 1’s, we
would have obtain the winning probability

12∑
k=0

(
100

k

)
0.1k 0.9100−k ≈ 0.80
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using
∑12

k=0

(
100
k

)
≈ 1.21 ·1015 tickets—a better winning probability with fewer

tickets.

The point here is that the strategy of buying the typical set becomes closer
and closer to the optimum as n increases. For large enough n, the set An

0.1 has
a probability of at least 1− 0.1 = 0.9, and the number of sequences in An

0.1

is about 2nH(X). For large n, the probability becomes concentrated on the
typical set and the “fringes” become less significant. (Consider, for example,
the best ticket, i.e. the one with all zeros. Its probability of winning, 0.9n,
gets smaller as n increases.) Remember the informal version of the AEP from
the lecture notes: “almost all sequences are almost equally likely”.

Question 5

We know that for any two discrete random variables X and Y , we have
I(X;Y ) ≥ 0 and equality holds if and only if X and Y are independent.

Let X be the roll of an eight-sided die where each of the outcomes 1, 2, . . . , 8
has the same probability. Then

H(X) = −
8∑

k=1

1

8
log2

1

8
= − log2

1

8
= 3.

Similarly, let Y represent the roll of a 16-sided die; thenH(Y ) = − log2(1/16) =
4. The random variables X and Y have the desired entropies, and their inde-
pendence implies I(X;Y ) = 0.

On the other hand, we must have I(X;Y ) ≤ min{H(X), H(Y )}. Why?
Assume without loss of generality that H(X) ≤ H(Y ). Then I(X;Y ) =
H(X)−H(X | Y ) ≤ H(X) since H(X | Y ) ≥ 0.

Let X be the same random variable as before (a roll of an eight-sided die).
Define the random variable Y = (−1)ZX where Z is a random bit with
P (Z = 0) = P (Z = 1) = 0.5. Now, Y has 16 different outcomes, each with
probability 1/16, so H(Y ) = 4. Moreover, X = |Y |, so H(X | Y ) = H(|Y | |
Y ) = 0. Hence, I(X;Y ) = H(X)−H(X | Y ) = H(X) = 3.
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