Sample solutions to Homework 3, Information-Theoretic Modeling (Fall 2014)

Jussi Määttä

September 25, 2014

Question 1

(a)

Let
SET1 = the set of prefix(-free) codes,
SET2 = the set of decodable codes,
SET3 $=$ the set of codes that satisfy the Kraft inequality,
SET4 $=$ the set of all possible symbol codes.
Then $\mathrm{SET} 1 \subseteq \mathrm{SET} 2 \subseteq \mathrm{SET} 3 \subseteq$ SET4.
(b)

- A code with codewords $\{0,01\}$ is not a prefix(-free) code, but it is decodable.
- A code with codewords $\{0,00\}$ is not decodable, but is satisfies the Kraft inequality: $2^{-1}+2^{-2}=0.75$.
- A code with codewords $\{0,1,01\}$ is a symbol code, but it does not satisfy the Kraft inequality: $2^{-1}+2^{-1}+2^{-2}=1.25$.

Question 2

1. Sort the symbols:

i	1	2	3	4	5	6
x_{i}	A	C	B	E	F	D
p_{i}	0.9	0.04	0.02	0.015	0.015	0.01

2. Split into $\left\{\left(x_{1}\right),\left(x_{2}, \ldots, x_{6}\right)\right\}$:

A	0
C	1
B	1
E	1
F	1
D	1

The code for the symbol A is now ready.
3. Split $\left(x_{2}, \ldots, x_{6}\right)$ into $\left\{\left(x_{2}\right),\left(x_{3}, \ldots, x_{6}\right)\right\}$. (Note that the split $\left\{\left(x_{2}, x_{3}\right),\left(x_{4}, x_{5}, x_{6}\right)\right\}$ would be equally good.)

A	0
C	10
B	11
E	11
F	11
D	11

The codes for the symbols A and C are now ready.
4. Split $\left(x_{3}, x_{4}, x_{5}, x_{6}\right)$ into $\left\{\left(x_{3}, x_{4}\right),\left(x_{5}, x_{6}\right)\right\}$.

A	0
C	10
B	110
E	110
F	111
D	111

5. The pairs $\left(x_{3}, x_{4}\right)$ and $\left(x_{5}, x_{6}\right)$ are can be split in only one way. The end result is the following:

A	0
C	10
B	1100
E	1101
F	1110
D	1111

(Note: had we chosen the split $\left\{\left(x_{2}, x_{3}\right),\left(x_{4}, x_{5}, x_{6}\right)\right\}$ in step 3 , the resulting codewords would be $A=0, C=100, B=101, E=110, F=1110$, $D=1111$.)

The expected code-length for this particular code Shannon-Fano code is

$$
\begin{aligned}
\sum_{i=1}^{6} \ell_{i} p_{i} & =1 \cdot 0.9+2 \cdot 0.04+4 \cdot(0.02+0.015+0.015+0.01) \\
& =1.22
\end{aligned}
$$

The entropy of the source is

$$
H(X)=-\sum_{i=1}^{6} p_{i} \log _{2} p_{i} \approx 0.6836
$$

and the expected code-length of the Shannon code for this source is

$$
E\left[\ell_{\text {Shannon }}(X)\right]=\sum_{i=1}^{6} p_{i}\left\lceil\log _{2} \frac{1}{p_{i}}\right\rceil=1.5
$$

This is consistent with the known inequality

$$
E\left[\ell_{\text {Shannon }}(X)\right] \leq H(X)+1
$$

Question 3

The attached Python 3 program shannon_fano.py reads data from standard input and computes the desired quantities.

If we give it as input its own source code, we get the following:

$$
\begin{aligned}
\text { entropy } & \approx 4.58, \\
\text { code-length } & \approx 4.60, \\
E[\text { code-length of the Shannon code }] & \approx 5.11
\end{aligned}
$$

The code-length is almost the same as the entropy, so this is a very good result. The Shannon code would not, in expectation, work as well.

Question 4

(a)

The binary tree given by the Huffman code is shown in Figure 1. We have always assigned the digit 0 to the left branch and the digit 1 to the right branch. One can read the codewords from the tree; for instance, $B=1100$.
(b)

Consider a source X with the two-symbol alphabet $\{a, b\}$, with $\operatorname{Pr}[X=a]=$ 2^{-k} for some positive integer k. Then

$$
\left\lceil\log _{2} \frac{1}{2^{-k}}\right\rceil=k
$$

but the Huffman codewords for the symbols have length 1.

(c)

Consider the case where there are five symbols (a, b, c, d, e). If e has 2 occurrences, then after combining (a, b) with c, the Huffman code will combine d with e. But if e has 3 occurrences, then the algorithm faces a tie between combining (a, b, c) with d, and d with e; if we choose the former, we again get a maximally unbalanced Huffman tree.

What if there are six symbols? Then f must have at least 5 occurrences. For seven symbols, the number is 8 . For eight symbols, it is 13 .

Figure 1: The binary tree given by the Huffman code for the source in Exercise 2.

Let us denote the counts by $c_{1}=c_{2}=c_{3}=1, c_{4}=2, c_{5}=3, c_{6}=5$ and so on. We may assume that $c_{n} \leq c_{n+1}$ for all n, because the Huffman code sorts the symbols by frequency.

The key here is that the n 'th symbol must have an occurrence count that is at least the sum of the counts of symbols $1,2, \ldots, n-2$. Why? Because that sum, $S_{n-2}=\sum_{i=1}^{n-2} c_{i}$, is compared to the values c_{n-1} and c_{n}, and to get a maximally unbalanced tree we must have $c_{n} \geq S_{n-2}$ (otherwise, if $c_{n}<S_{n-2}$, then the n 'th and ($n-1)^{\prime}$ 'th nodes are combined with each other).
As we want to find the minimal values of c_{n}, the solution to our question is the following:

$$
\begin{aligned}
c_{1}=c_{2}=c_{3} & =1, \\
c_{n} & =\sum_{i=1}^{n-2} c_{i} \quad \text { for } n \geq 4 .
\end{aligned}
$$

We now prove by induction that in fact $c_{n}=c_{n-1}+c_{n-2}$ for $n \geq 4$, that is, we have essentially the Fibonacci sequence! (Except for c_{1}.) First, note that this is satisfied for $n=4$. Now,

$$
c_{n+1}=\sum_{i=1}^{n-1} c_{i}=\sum_{i=1}^{n-2} c_{i}+c_{n-1}=c_{n}+c_{n-1}
$$

so the claim is proven.
Suppose we have m distinct source symbols with the above counts c_{1}, \ldots, c_{m}. The symbol a occurs once and there are a total of $\sum_{i=1}^{m} c_{i}=c_{m+2}$ occurrences, so the probability of a is $1 / c_{m+2}$.

When there are m symbols with these counts, the depth of the Huffman tree (equivalently, the codeword length for the symbol a) is $m-1$. To see why, consider that when we start from the root of the tree, we must separately "decide" against every other symbol before we reach a. A rigorous argument can again be made by induction: the claim holds for $m=4$, and adding a new node with weight c_{m+1} must increase the depth of the tree by one.

The Shannon codeword length is

$$
\left\lceil\log _{2} \frac{1}{p(a)}\right\rceil=\left\lceil\log _{2} c_{m+2}\right\rceil
$$

Since one can show that the Fibonacci numbers have the closed form ${ }^{1}$

$$
c_{n}=\frac{\varphi^{n-1}-(-\varphi)^{-(n-1)}}{\sqrt{5}}, \quad \varphi=\frac{1+\sqrt{5}}{2} \approx 1.62
$$

we have that $c_{n} \approx \varphi^{n-1} / \sqrt{5}$ for large n and hence

$$
\left\lceil\log _{2} c_{m+2}\right\rceil \leq 1+\log _{2} c_{m+2} \approx 1+(m+1) \log _{2} \varphi-\log _{2} \sqrt{5} \leq 0.7 m+0.6
$$

for large m. This is asymptotically smaller than $m-1$, so the Shannon codeword length of a becomes smaller than the Huffman codeword length. (In fact, one may calculate numerically that the codelengths of a are the same for $m=2,3,4,5$ and the Shannon codeword length is strictly smaller for $m \geq 6$.)

[^0]
Question 5

First, if $\operatorname{Pr}[X=0]=p=0.5$, then it obviously suffices to always use exactly one fair coin flip, and the expected number of flips required is 1 .
Suppose then that $p \neq 0.5$. Consider the following procedure:

Procedure 1:

1. Set $p_{0} \leftarrow p$ and $p_{1} \leftarrow 1-p$.
2. Flip a fair coin. If it comes out heads, then
(a) if $p_{0} \geq p_{1}$, return 0 ,
(b) if $p_{0}<p_{1}$, return 1 .
3. If $p_{0} \geq p_{1}$, set $p_{0} \leftarrow p_{0}-0.5$.

Otherwise, set $p_{1} \leftarrow p_{1}-0.5$.
4. Normalize p_{0} and p_{1} so that $p_{0}+p_{1}=1$.
5. Go to step 2.

What does this procedure do? For example, consider the case $p_{0}=0.3$. Let's see what happens when we first enter step 2. Take a look at Figure 2 to get an idea of what's going on.

Figure 2: The situation at the first iteration of Procedure 1
We flip a fair coin. If it comes out heads, then we return 1. Otherwise, the situation is inconclusive: we have "consumed" 0.5 worth of probability mass
from the event $X=1$ but it still has 0.2 probability mass left. Technically speaking, we are decomposing the probability of the event $X=1$ as

$$
\begin{aligned}
\operatorname{Pr}[X=1] & =\operatorname{Pr}[X=1 \mid \text { heads }] \operatorname{Pr}[\text { heads }]+\operatorname{Pr}[X=1 \mid \text { tails }] \operatorname{Pr}[\text { tails }] \\
& =1 \cdot \frac{1}{2}+\operatorname{Pr}[X=1 \mid \text { tails }] \cdot \frac{1}{2} \\
& =\frac{1}{2}+\frac{1}{2} \operatorname{Pr}[X=1 \mid \text { tails }] .
\end{aligned}
$$

So if the fair coin comes up heads (probability 0.5), we are done; if it comes up tails, we continue. The continuation goes on as shown in Figure 3
This was the intuition behind the procedure. To analyze it mathematically, we first simplify it a little. We don't really need to keep track of both p_{0} and p_{1}, since $p_{1}=1-p_{0}$. In step 2 , we return 0 if $p_{0} \geq 0.5$ and 1 otherwise. In step 4 , the normalization constant is always

$$
\frac{1}{p_{0}+p_{1}-0.5}=\frac{1}{p_{0}+\left(1-p_{0}\right)-0.5}=\frac{1}{0.5}=2 .
$$

Having made these observations, we can rewrite the procedure as follows:

Procedure 2:

1. Flip a fair coin. If it comes out heads, then
(a) if $p \geq 0.5$, return 0 ,
(b) if $p<0.5$, return 1 .
2. If $p \geq 0.5$, set $p \leftarrow 2(p-0.5)=2 p-1$.

Otherwise, set $p \leftarrow 2 p$.
3. Go to step 1.

This looks much simpler! Let us make yet another observation. Recall that

$$
\sum_{i=1}^{\infty} 2^{-i}=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\cdots=1
$$

Therefore, since $0<p<1$, we can write

$$
p=\sum_{i=1}^{\infty} b_{i} 2^{-i}, \quad b_{i} \in\{0,1\}
$$

Figure 3: Continuation from Figure 2: the situation at the second iteration of Procedure 1
that is, the bits b_{i} give a binary representation of p. It holds that $p \geq 0.5 \Longleftrightarrow$ $b_{1}=1$. And

$$
2 p=\sum_{i=1}^{\infty} b_{i} 2^{-i+1}= \begin{cases}\sum_{i=2}^{\infty} b_{i} 2^{-i+1} & \text { if } b_{1}=0 \\ 1+\sum_{i=2}^{\infty} b_{i} 2^{-i+1} & \text { if } b_{1}=1\end{cases}
$$

from which we see that step 2 above simply means that we discard the first bit of p (i.e., we do a one-step bit shift). The steps $1-3$ go through the bit representation of p !
The outcome of our procedure is denoted by X. Let T_{i} be the event that
the procedure terminates at the i 'th coin flip. Then $\operatorname{Pr}\left[X=0 \mid T_{i}\right]=1$ if and only if, after i iterations, $p \geq 0.5$ or equivalently $b_{i}=1$. By the above observations, we have

$$
\begin{aligned}
\operatorname{Pr}[X=0] & =\sum_{i=1}^{\infty} \operatorname{Pr}\left[X=0 \mid T_{i}\right] \operatorname{Pr}\left[T_{i}\right] \\
& =\sum_{i=1}^{\infty} b_{i} 2^{-i} \\
& =p
\end{aligned}
$$

so the procedure indeed produces the desired probability.
The expected number of fair coin flips that are required is

$$
\begin{aligned}
E[\text { n:o of flips needed }] & =\sum_{k=1}^{\infty} k \operatorname{Pr}[k \text { flips needed }] \\
& =\sum_{k=1}^{\infty} k 2^{-k}
\end{aligned}
$$

To see that this equals 2, consider the partial sums

$$
\begin{aligned}
S_{n}=\sum_{k=1}^{n} \frac{k}{2^{k}} & =\sum_{k=1}^{n} \frac{1+(k-1)}{2^{k}} \\
& =\sum_{k=1}^{n} 2^{-k}+\sum_{k=1}^{n} \frac{k-1}{2^{k}} \\
& =\sum_{k=1}^{n} 2^{-k}+\frac{1}{2} \sum_{k=1}^{n} \frac{k}{2^{k}} \\
& =\sum_{k=1}^{n} 2^{-k}+\frac{1}{2} S_{n} .
\end{aligned}
$$

From the above, we may solve $S_{n}=2 \sum_{k=1}^{n} 2^{-k}$ which tends to 2 as $n \rightarrow \infty$. (Another way to compute the expectation would be to notice that we're dealing with what's called the geometric distribution and use its well-known (to some) properties.)

[^0]: ${ }^{1}$ See e.g. http://mathworld.wolfram.com/BinetsFibonacciNumberFormula.html.

