
Sample solutions to Homework 3,
Information-Theoretic Modeling (Fall 2014)

Jussi Määttä

September 25, 2014

Question 1

(a)

Let

SET1 = the set of prefix(-free) codes,
SET2 = the set of decodable codes,
SET3 = the set of codes that satisfy the Kraft inequality,
SET4 = the set of all possible symbol codes.

Then SET1 ⊆ SET2 ⊆ SET3 ⊆ SET4.

(b)

• A code with codewords {0, 01} is not a prefix(-free) code, but it is
decodable.

• A code with codewords {0, 00} is not decodable, but is satisfies the
Kraft inequality: 2−1 + 2−2 = 0.75.

• A code with codewords {0, 1, 01} is a symbol code, but it does not
satisfy the Kraft inequality: 2−1 + 2−1 + 2−2 = 1.25.

1



Question 2

1. Sort the symbols:
i 1 2 3 4 5 6
xi A C B E F D
pi 0.9 0.04 0.02 0.015 0.015 0.01

2. Split into {(x1), (x2, . . . , x6)}:
A 0
C 1
B 1
E 1
F 1
D 1

The code for the symbol A is now ready.

3. Split (x2, . . . , x6) into {(x2), (x3, . . . , x6)}. (Note that the split {(x2, x3), (x4, x5, x6)}
would be equally good.)
A 0
C 10
B 11
E 11
F 11
D 11

The codes for the symbols A and C are now ready.

4. Split (x3, x4, x5, x6) into {(x3, x4), (x5, x6)}.
A 0
C 10
B 110
E 110
F 111
D 111

2



5. The pairs (x3, x4) and (x5, x6) are can be split in only one way. The
end result is the following:
A 0
C 10
B 1100
E 1101
F 1110
D 1111

(Note: had we chosen the split {(x2, x3), (x4, x5, x6)} in step 3, the resulting
codewords would be A = 0, C = 100, B = 101, E = 110, F = 1110,
D = 1111.)

The expected code-length for this particular code Shannon–Fano code is

6∑
i=1

`i pi = 1 · 0.9 + 2 · 0.04 + 4 · (0.02 + 0.015 + 0.015 + 0.01)

= 1.22.

The entropy of the source is

H(X) = −
6∑

i=1

pi log2 pi ≈ 0.6836

and the expected code-length of the Shannon code for this source is

E[`Shannon(X)] =
6∑

i=1

pi

⌈
log2

1

pi

⌉
= 1.5.

This is consistent with the known inequality

E[`Shannon(X)] ≤ H(X) + 1.

3



Question 3

The attached Python 3 program shannon_fano.py reads data from standard
input and computes the desired quantities.

If we give it as input its own source code, we get the following:

entropy ≈ 4.58,
code-length ≈ 4.60,

E[code-length of the Shannon code] ≈ 5.11.

The code-length is almost the same as the entropy, so this is a very good
result. The Shannon code would not, in expectation, work as well.

Question 4

(a)

The binary tree given by the Huffman code is shown in Figure 1. We have
always assigned the digit 0 to the left branch and the digit 1 to the right
branch. One can read the codewords from the tree; for instance, B = 1100.

(b)

Consider a source X with the two-symbol alphabet {a, b}, with Pr[X = a] =
2−k for some positive integer k. Then⌈

log2
1

2−k

⌉
= k

but the Huffman codewords for the symbols have length 1.

(c)

Consider the case where there are five symbols (a, b, c, d, e). If e has 2
occurrences, then after combining (a, b) with c, the Huffman code will combine
d with e. But if e has 3 occurrences, then the algorithm faces a tie between
combining (a, b, c) with d, and d with e; if we choose the former, we again get
a maximally unbalanced Huffman tree.

What if there are six symbols? Then f must have at least 5 occurrences. For
seven symbols, the number is 8. For eight symbols, it is 13.

4



A
0.9

ACBEFD
1.0

0

C
0.04

CBEFD
0.1

0

B
0.02

BE
0.035

0

E
0.015

1

F
0.015

FD
0.025

0

D
0.01

1

BEFD
0.06

0

1

1

1

Figure 1: The binary tree given by the Huffman code for the source in
Exercise 2.

Let us denote the counts by c1 = c2 = c3 = 1, c4 = 2, c5 = 3, c6 = 5 and so
on. We may assume that cn ≤ cn+1 for all n, because the Huffman code sorts
the symbols by frequency.

The key here is that the n’th symbol must have an occurrence count that is
at least the sum of the counts of symbols 1, 2, . . . , n− 2. Why? Because that
sum, Sn−2 =

∑n−2
i=1 ci, is compared to the values cn−1 and cn, and to get a

maximally unbalanced tree we must have cn ≥ Sn−2 (otherwise, if cn < Sn−2,
then the n’th and (n− 1)’th nodes are combined with each other).

As we want to find the minimal values of cn, the solution to our question is
the following:

c1 = c2 = c3 = 1,

cn =
n−2∑
i=1

ci for n ≥ 4.

5



We now prove by induction that in fact cn = cn−1 + cn−2 for n ≥ 4, that is,
we have essentially the Fibonacci sequence! (Except for c1.) First, note that
this is satisfied for n = 4. Now,

cn+1 =
n−1∑
i=1

ci =
n−2∑
i=1

ci + cn−1 = cn + cn−1

so the claim is proven.

Suppose we have m distinct source symbols with the above counts c1, . . . , cm.
The symbol a occurs once and there are a total of

∑m
i=1 ci = cm+2 occurrences,

so the probability of a is 1/cm+2.

When there are m symbols with these counts, the depth of the Huffman tree
(equivalently, the codeword length for the symbol a) is m− 1. To see why,
consider that when we start from the root of the tree, we must separately
“decide” against every other symbol before we reach a. A rigorous argument
can again be made by induction: the claim holds for m = 4, and adding a
new node with weight cm+1 must increase the depth of the tree by one.

The Shannon codeword length is⌈
log2

1

p(a)

⌉
= dlog2 cm+2e .

Since one can show that the Fibonacci numbers have the closed form1

cn =
ϕn−1 − (−ϕ)−(n−1)√

5
, ϕ =

1 +
√
5

2
≈ 1.62,

we have that cn ≈ ϕn−1/
√
5 for large n and hence

dlog2 cm+2e ≤ 1 + log2 cm+2 ≈ 1 + (m+ 1) log2 ϕ− log2
√
5 ≤ 0.7m+ 0.6

for large m. This is asymptotically smaller than m − 1, so the Shannon
codeword length of a becomes smaller than the Huffman codeword length. (In
fact, one may calculate numerically that the codelengths of a are the same for
m = 2, 3, 4, 5 and the Shannon codeword length is strictly smaller for m ≥ 6.)

1See e.g. http://mathworld.wolfram.com/BinetsFibonacciNumberFormula.html.

6



Question 5

First, if Pr[X = 0] = p = 0.5, then it obviously suffices to always use exactly
one fair coin flip, and the expected number of flips required is 1.

Suppose then that p 6= 0.5. Consider the following procedure:

Procedure 1:

1. Set p0 ← p and p1 ← 1− p.

2. Flip a fair coin. If it comes out heads, then

(a) if p0 ≥ p1, return 0,

(b) if p0 < p1, return 1.

3. If p0 ≥ p1, set p0 ← p0 − 0.5.
Otherwise, set p1 ← p1 − 0.5.

4. Normalize p0 and p1 so that p0 + p1 = 1.

5. Go to step 2.

What does this procedure do? For example, consider the case p0 = 0.3. Let’s
see what happens when we first enter step 2. Take a look at Figure 2 to get
an idea of what’s going on.

0 10.3 0.5

X=0 X=1

headstails

Figure 2: The situation at the first iteration of Procedure 1

We flip a fair coin. If it comes out heads, then we return 1. Otherwise, the
situation is inconclusive: we have “consumed” 0.5 worth of probability mass

7



from the event X = 1 but it still has 0.2 probability mass left. Technically
speaking, we are decomposing the probability of the event X = 1 as

Pr[X = 1] = Pr[X = 1 | heads] Pr[heads] + Pr[X = 1 | tails] Pr[tails]

= 1 · 1
2
+ Pr[X = 1 | tails] · 1

2

=
1

2
+

1

2
Pr[X = 1 | tails].

So if the fair coin comes up heads (probability 0.5), we are done; if it comes
up tails, we continue. The continuation goes on as shown in Figure 3

This was the intuition behind the procedure. To analyze it mathematically,
we first simplify it a little. We don’t really need to keep track of both p0 and
p1, since p1 = 1− p0. In step 2, we return 0 if p0 ≥ 0.5 and 1 otherwise. In
step 4, the normalization constant is always

1

p0 + p1 − 0.5
=

1

p0 + (1− p0)− 0.5
=

1

0.5
= 2.

Having made these observations, we can rewrite the procedure as follows:

Procedure 2:

1. Flip a fair coin. If it comes out heads, then

(a) if p ≥ 0.5, return 0,
(b) if p < 0.5, return 1.

2. If p ≥ 0.5, set p← 2(p− 0.5) = 2p− 1.
Otherwise, set p← 2p.

3. Go to step 1.

This looks much simpler! Let us make yet another observation. Recall that
∞∑
i=1

2−i =
1

2
+

1

4
+

1

8
+

1

16
+ · · · = 1.

Therefore, since 0 < p < 1, we can write

p =
∞∑
i=1

bi 2
−i, bi ∈ {0, 1},

8



0 10.3 0.5

X=0 X=1

headstails

0.3 0.50

0 0.5 0.6

normalize

tails heads

X=0 X=1

1

return X=1

Figure 3: Continuation from Figure 2: the situation at the second iteration
of Procedure 1

that is, the bits bi give a binary representation of p. It holds that p ≥ 0.5 ⇐⇒
b1 = 1. And

2p =
∞∑
i=1

bi 2
−i+1 =

{∑∞
i=2 bi 2

−i+1 if b1 = 0,
1 +

∑∞
i=2 bi 2

−i+1 if b1 = 1,

from which we see that step 2 above simply means that we discard the first
bit of p (i.e., we do a one-step bit shift). The steps 1–3 go through the bit
representation of p!

The outcome of our procedure is denoted by X. Let Ti be the event that

9



the procedure terminates at the i’th coin flip. Then Pr[X = 0 | Ti] = 1 if
and only if, after i iterations, p ≥ 0.5 or equivalently bi = 1. By the above
observations, we have

Pr[X = 0] =
∞∑
i=1

Pr[X = 0 | Ti] Pr[Ti]

=
∞∑
i=1

bi 2
−i

= p

so the procedure indeed produces the desired probability.

The expected number of fair coin flips that are required is

E[n:o of flips needed] =
∞∑
k=1

k Pr[k flips needed]

=
∞∑
k=1

k 2−k.

To see that this equals 2, consider the partial sums

Sn =
n∑

k=1

k

2k
=

n∑
k=1

1 + (k − 1)

2k

=
n∑

k=1

2−k +
n∑

k=1

k − 1

2k

=
n∑

k=1

2−k +
1

2

n∑
k=1

k

2k

=
n∑

k=1

2−k +
1

2
Sn.

From the above, we may solve Sn = 2
∑n

k=1 2
−k which tends to 2 as n→∞.

(Another way to compute the expectation would be to notice that we’re
dealing with what’s called the geometric distribution and use its well-known
(to some) properties.)

10


