Sample solutions to Homework 3, Information-Theoretic Modeling (Fall 2014)

Jussi Määttä

September 25, 2014

Question 1

(a)

Let

SET1 = the set of prefix(-free) codes,
SET2 = the set of decodable codes,
SET3 = the set of codes that satisfy the Kraft inequality,
SET4 = the set of all possible symbol codes.

Then SET1 \subseteq SET2 \subseteq SET3 \subseteq SET4.

(b)

- A code with codewords {0,01} is not a prefix(-free) code, but it is decodable.
- A code with codewords $\{0,00\}$ is not decodable, but is satisfies the Kraft inequality: $2^{-1} + 2^{-2} = 0.75$.
- A code with codewords $\{0, 1, 01\}$ is a symbol code, but it does not satisfy the Kraft inequality: $2^{-1} + 2^{-1} + 2^{-2} = 1.25$.

Question 2

1. Sort the symbols:

i	1	2	3	4	5	6
x_i	A	C	В	E	F	D
p_i	0.9	0.04	0.02	0.015	0.015	0.01

2. Split into $\{(x_1), (x_2, \ldots, x_6)\}$:

A	0
C	1
B	1
E	1
F	1
D	1
$\overline{\mathbf{T}}$	0.01

The code for the symbol A is now ready.

3. Split (x_2, \ldots, x_6) into $\{(x_2), (x_3, \ldots, x_6)\}$. (Note that the split $\{(x_2, x_3), (x_4, x_5, x_6)\}$ would be equally good.)

A	0
C	10
B	11
E	11
F	11
D	11
<u></u>	1

The codes for the symbols A and C are now ready.

4. Split (x_3, x_4, x_5, x_6) into $\{(x_3, x_4), (x_5, x_6)\}$.

A	0
C	10
B	110
E	110
F	111
D	111

5. The pairs (x_3, x_4) and (x_5, x_6) are can be split in only one way. The end result is the following:

A	0	
C	10	
B	1100	
E	1101	
F	1110	
D	1111	

(Note: had we chosen the split $\{(x_2, x_3), (x_4, x_5, x_6)\}$ in step 3, the resulting codewords would be A = 0, C = 100, B = 101, E = 110, F = 1110, D = 1111.)

The expected code-length for this particular code Shannon–Fano code is

$$\sum_{i=1}^{6} \ell_i p_i = 1 \cdot 0.9 + 2 \cdot 0.04 + 4 \cdot (0.02 + 0.015 + 0.015 + 0.01)$$

= 1.22.

The entropy of the source is

$$H(X) = -\sum_{i=1}^{6} p_i \, \log_2 p_i \approx 0.6836$$

and the expected code-length of the Shannon code for this source is

$$E[\ell_{\text{Shannon}}(X)] = \sum_{i=1}^{6} p_i \left[\log_2 \frac{1}{p_i} \right] = 1.5.$$

This is consistent with the known inequality

$$E[\ell_{\text{Shannon}}(X)] \le H(X) + 1.$$

Question 3

The attached Python 3 program *shannon_fano.py* reads data from standard input and computes the desired quantities.

If we give it as input its own source code, we get the following:

entropy ≈ 4.58 , code-length ≈ 4.60 , E[code-length of the Shannon code] ≈ 5.11 .

The code-length is almost the same as the entropy, so this is a very good result. The Shannon code would not, in expectation, work as well.

Question 4

(a)

The binary tree given by the Huffman code is shown in Figure 1. We have always assigned the digit 0 to the left branch and the digit 1 to the right branch. One can read the codewords from the tree; for instance, B = 1100.

(b)

Consider a source X with the two-symbol alphabet $\{a, b\}$, with $\Pr[X = a] = 2^{-k}$ for some positive integer k. Then

$$\left\lceil \log_2 \frac{1}{2^{-k}} \right\rceil = k$$

but the Huffman codewords for the symbols have length 1.

(c)

Consider the case where there are five symbols (a, b, c, d, e). If e has 2 occurrences, then after combining (a, b) with c, the Huffman code will combine d with e. But if e has 3 occurrences, then the algorithm faces a tie between combining (a, b, c) with d, and d with e; if we choose the former, we again get a maximally unbalanced Huffman tree.

What if there are six symbols? Then f must have at least 5 occurrences. For seven symbols, the number is 8. For eight symbols, it is 13.

Figure 1: The binary tree given by the Huffman code for the source in Exercise 2.

Let us denote the counts by $c_1 = c_2 = c_3 = 1$, $c_4 = 2$, $c_5 = 3$, $c_6 = 5$ and so on. We may assume that $c_n \leq c_{n+1}$ for all n, because the Huffman code sorts the symbols by frequency.

The key here is that the *n*'th symbol must have an occurrence count that is at least the sum of the counts of symbols $1, 2, \ldots, n-2$. Why? Because that sum, $S_{n-2} = \sum_{i=1}^{n-2} c_i$, is compared to the values c_{n-1} and c_n , and to get a maximally unbalanced tree we must have $c_n \geq S_{n-2}$ (otherwise, if $c_n < S_{n-2}$, then the *n*'th and (n-1)'th nodes are combined with each other).

As we want to find the minimal values of c_n , the solution to our question is the following:

$$c_1 = c_2 = c_3 = 1,$$

 $c_n = \sum_{i=1}^{n-2} c_i \quad \text{for } n \ge 4.$

We now prove by induction that in fact $c_n = c_{n-1} + c_{n-2}$ for $n \ge 4$, that is, we have essentially the Fibonacci sequence! (Except for c_1 .) First, note that this is satisfied for n = 4. Now,

$$c_{n+1} = \sum_{i=1}^{n-1} c_i = \sum_{i=1}^{n-2} c_i + c_{n-1} = c_n + c_{n-1}$$

so the claim is proven.

Suppose we have *m* distinct source symbols with the above counts c_1, \ldots, c_m . The symbol *a* occurs once and there are a total of $\sum_{i=1}^{m} c_i = c_{m+2}$ occurrences, so the probability of *a* is $1/c_{m+2}$.

When there are m symbols with these counts, the depth of the Huffman tree (equivalently, the codeword length for the symbol a) is m - 1. To see why, consider that when we start from the root of the tree, we must separately "decide" against every other symbol before we reach a. A rigorous argument can again be made by induction: the claim holds for m = 4, and adding a new node with weight c_{m+1} must increase the depth of the tree by one.

The Shannon codeword length is

$$\left\lceil \log_2 \frac{1}{p(a)} \right\rceil = \left\lceil \log_2 c_{m+2} \right\rceil.$$

Since one can show that the Fibonacci numbers have the closed form¹

$$c_n = \frac{\varphi^{n-1} - (-\varphi)^{-(n-1)}}{\sqrt{5}}, \qquad \varphi = \frac{1+\sqrt{5}}{2} \approx 1.62,$$

we have that $c_n \approx \varphi^{n-1}/\sqrt{5}$ for large n and hence

$$\lceil \log_2 c_{m+2} \rceil \le 1 + \log_2 c_{m+2} \approx 1 + (m+1) \log_2 \varphi - \log_2 \sqrt{5} \le 0.7m + 0.6$$

for large m. This is asymptotically smaller than m-1, so the Shannon codeword length of a becomes smaller than the Huffman codeword length. (In fact, one may calculate numerically that the codelengths of a are the same for m = 2, 3, 4, 5 and the Shannon codeword length is strictly smaller for $m \ge 6$.)

¹See e.g. http://mathworld.wolfram.com/BinetsFibonacciNumberFormula.html.

Question 5

First, if Pr[X = 0] = p = 0.5, then it obviously suffices to always use exactly one fair coin flip, and the expected number of flips required is 1.

Suppose then that $p \neq 0.5$. Consider the following procedure:

Procedure 1:

- 1. Set $p_0 \leftarrow p$ and $p_1 \leftarrow 1 p$.
- 2. Flip a fair coin. If it comes out heads, then
 - (a) if $p_0 \ge p_1$, return 0,
 - (b) if $p_0 < p_1$, return 1.
- 3. If $p_0 \ge p_1$, set $p_0 \leftarrow p_0 0.5$. Otherwise, set $p_1 \leftarrow p_1 - 0.5$.
- 4. Normalize p_0 and p_1 so that $p_0 + p_1 = 1$.
- 5. Go to step 2.

What does this procedure do? For example, consider the case $p_0 = 0.3$. Let's see what happens when we first enter step 2. Take a look at Figure 2 to get an idea of what's going on.

Figure 2: The situation at the first iteration of Procedure 1

We flip a fair coin. If it comes out heads, then we return 1. Otherwise, the situation is inconclusive: we have "consumed" 0.5 worth of probability mass

from the event X = 1 but it still has 0.2 probability mass left. Technically speaking, we are decomposing the probability of the event X = 1 as

$$Pr[X = 1] = Pr[X = 1 | heads] Pr[heads] + Pr[X = 1 | tails] Pr[tails]$$
$$= 1 \cdot \frac{1}{2} + Pr[X = 1 | tails] \cdot \frac{1}{2}$$
$$= \frac{1}{2} + \frac{1}{2} Pr[X = 1 | tails].$$

So if the fair coin comes up heads (probability 0.5), we are done; if it comes up tails, we continue. The continuation goes on as shown in Figure 3

This was the intuition behind the procedure. To analyze it mathematically, we first simplify it a little. We don't really need to keep track of both p_0 and p_1 , since $p_1 = 1 - p_0$. In step 2, we return 0 if $p_0 \ge 0.5$ and 1 otherwise. In step 4, the normalization constant is always

$$\frac{1}{p_0 + p_1 - 0.5} = \frac{1}{p_0 + (1 - p_0) - 0.5} = \frac{1}{0.5} = 2.$$

Having made these observations, we can rewrite the procedure as follows:

Procedure 2:

- 1. Flip a fair coin. If it comes out heads, then
 - (a) if p ≥ 0.5, return 0,
 (b) if p < 0.5, return 1.
- 2. If $p \ge 0.5$, set $p \leftarrow 2(p 0.5) = 2p 1$. Otherwise, set $p \leftarrow 2p$.
- 3. Go to step 1.

This looks much simpler! Let us make yet another observation. Recall that

$$\sum_{i=1}^{\infty} 2^{-i} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots = 1.$$

Therefore, since 0 , we can write

$$p = \sum_{i=1}^{\infty} b_i 2^{-i}, \qquad b_i \in \{0, 1\},$$

Figure 3: Continuation from Figure 2: the situation at the second iteration of Procedure 1

that is, the bits b_i give a binary representation of p. It holds that $p \ge 0.5 \iff b_1 = 1$. And

$$2p = \sum_{i=1}^{\infty} b_i \, 2^{-i+1} = \begin{cases} \sum_{i=2}^{\infty} b_i \, 2^{-i+1} & \text{if } b_1 = 0, \\ 1 + \sum_{i=2}^{\infty} b_i \, 2^{-i+1} & \text{if } b_1 = 1, \end{cases}$$

from which we see that step 2 above simply means that we discard the first bit of p (i.e., we do a one-step bit shift). The steps 1–3 go through the bit representation of p!

The outcome of our procedure is denoted by X. Let T_i be the event that

the procedure terminates at the *i*'th coin flip. Then $\Pr[X = 0 \mid T_i] = 1$ if and only if, after *i* iterations, $p \ge 0.5$ or equivalently $b_i = 1$. By the above observations, we have

$$\Pr[X=0] = \sum_{i=1}^{\infty} \Pr[X=0 \mid T_i] \Pr[T_i]$$
$$= \sum_{i=1}^{\infty} b_i 2^{-i}$$
$$= p$$

so the procedure indeed produces the desired probability.

The expected number of fair coin flips that are required is

$$E[\text{n:o of flips needed}] = \sum_{k=1}^{\infty} k \operatorname{Pr}[k \text{ flips needed}]$$
$$= \sum_{k=1}^{\infty} k 2^{-k}.$$

To see that this equals 2, consider the partial sums

$$S_n = \sum_{k=1}^n \frac{k}{2^k} = \sum_{k=1}^n \frac{1 + (k-1)}{2^k}$$
$$= \sum_{k=1}^n 2^{-k} + \sum_{k=1}^n \frac{k-1}{2^k}$$
$$= \sum_{k=1}^n 2^{-k} + \frac{1}{2} \sum_{k=1}^n \frac{k}{2^k}$$
$$= \sum_{k=1}^n 2^{-k} + \frac{1}{2} S_n.$$

From the above, we may solve $S_n = 2 \sum_{k=1}^n 2^{-k}$ which tends to 2 as $n \to \infty$. (Another way to compute the expectation would be to notice that we're dealing with what's called the *geometric distribution* and use its well-known (to some) properties.)