
Sample solutions to Homework 4,
Information-Theoretic Modeling (Fall 2014)

Jussi Määttä

October 2, 2014

Question 1

[First, note that we use the symbol ! as an end-of-message symbol. When we
see it, we know that the message has ended. This is not mentioned in the
lecture slides.]

(a)

The cumulative function F (x) =
∑

y≤x p(y) takes the values F (a) = 0.05,
F (b) = 0.55, F (c) = 0.9 and F (!) = 1.

For simplicity, denote Fl(·) = (0, 0.05, 0.55, 0.9) and Fr(·) = (0.05, 0.55, 0.9, 1).
For instance, Fl(c) = 0.55 and Fr(c) = 0.9.

In general, if we have the interval [a, b) ⊂ [0, 1] and we see a symbol x, the
new interval will be[

a+ (b− a)Fl(x), a+ (b− a)Fr(x)
)

which is a subinterval of [a, b). This is nothing different from what is shown
e.g. in the lecture slides; it’s just the idea of recursive partitioning of intervals
put into a formula.

Initially, for the “empty message”, we have the interval [0, 1). The interval
after the first symbol c is [Fl(c), Fr(c)) = [0.55, 0.9).

1



After the second symbol a, the interval becomes

I(ca) = [0.55 + (0.9− 0.55)Fl(a), 0.55 + (0.9− 0.55)Fr(a))

= [0.55, 0.5675).

After the third symbol b, the interval becomes

I(cab) = [0.55 + (0.5675− 0.55)Fl(b), 0.55 + (0.5675− 0.55)Fr(b))

= [0.550875, 0.559625).

Finally, we get

I(cab!) = [0.55875, 0.559625).

(b)

(i) The shortest codeword within the interval is 0.559. It is the only codeword
within I(cab!) that has less than four decimals.

(ii) We cannot use C = 0.559, because 0.5597 /∈ I(cab!). But C = 0.5595
suffices. For any number D that is a continuation of C, we have

0.5595 = C ≤ D ≤ 0.5595999 . . . = 0.5596.

In fact, any C ∈ {0.5590, 0.5591, . . . , 0.5595} will do.

(c)

The probabilities have changed, so let us first find the new interval. We have
Fl(·) = (0, 2/32, 18/32, 29/32) and Fr(·) = (2/32, 18/32, 29/32, 1). Hence,

I(c) = [18/32, 29/32),
I(ca) = [18/32, 299/512),
I(cab) = [4619/8192, 4707/8192),
I(cab!) = [18795/32768, 4707/8192).

In binary, we have

I(cab!) = [0.100100101101011, 0.1001001100011).

2



Let’s take a closer look at these numbers:
(0.) 1 0 0 1 0 0 1 0 1 1 0 1 0 1 1
(0.) 1 0 0 1 0 0 1 1 0 0 0 1 1

The shortest codeword within I(cab!) is 0.10010011. The (unique) shortest
codeword whose all continuations are in I(cab!) is 0.10010010111.

We got a prefix codeword of 11 bits. This agrees with the result mentioned
in the lecture slides that⌈

log2
1

p(c) p(a) p(b) p(!)

⌉
+ 1 = 11

bits is sufficient.

What would happen if we instead considered a Shannon symbol code? The
codelength for cab! would belog2

1

p(c)︸ ︷︷ ︸
≈1.54

+

log2
1

p(a)︸ ︷︷ ︸
=4

+

log2
1

p(b)︸ ︷︷ ︸
=1

+

log2
1

p(!)︸ ︷︷ ︸
≈3.42

 = 11.

The Huffman code for single-letter symbols would give a code-length of 9 bits.
So arithmetic coding does not always beat other codes (you should not be
surprised by this).

Note 1. Consider the message ccc!. It seems reasonable to expect that arith-
metic coding will fare better with this message: log2(1/p(c)) and log2(1/p(!))
are not integers and hence arithmetic coding should benefit. And indeed, the
Shannon code gives code-length 10, Huffman gives 9 and arithmetic coding
can encode the message into (0.)110111000, i.e. 9 bits. To better see the
advantage of arithmetic coding, we would have to consider longer messages.

Note 2. If you got different answers and used a computer, you may have
had problems with the accuracy of floating-point numbers. It’s safest to
do this with pen and paper, or use e.g. wxMaxima1. Of course, proper
algorithmic implementations of arithmetic coding work around these issues;
see for instance the paper by Witten, Neal & Cleary (link at the course
webpage) for a C implementation.

1https://andrejv.github.io/wxmaxima/

3



Question 2

For θ ∈ {0.25, 0.75}, the probability of the data is 0.252 0.752 = 9/256 ≈ 0.035.
For θ = 0.5, the probability is 0.54 = 1/16 ≈ 0.063.

Hence, with this quantization, using the maximum likelihood parameter gives
the total code-length

`(0.5) + log2
1

1/16
= 1 + 4 = 5.

(Had we used θ = 0.25 or θ = 0.75, the code-length would be 2+log2(256/9) ≈
6.83.)

Question 3

Consider first the more general setting where the parameter θ is distributed
according to the beta distribution, θ ∼ Beta(α, β), α > 0, β > 0. The
so-called beta-binomial distribution corresponds to a generalization of the
binomial distribution where before each trial, the success probability p is
drawn from the beta distribution. The probability mass function of the
beta-binomial distribution can be written in the form2

f(k) =

(
n

k

)
B(k + α, n− k + β)

B(α, β)

where n is the number of trials, k is the number of successes and B(x, y) is
the beta function3.

In our case, the parameter θ has the uniform distribution, or equivalently
2http://mathworld.wolfram.com/BetaBinomialDistribution.html
3If x and y are positive integers, then we may simplify

B(x, y) =
(x− 1)! (y − 1)!

(x+ y − 1)!
.

4



θ ∼ Beta(1, 1), so we have

f(k) =

(
n

k

)
B(k + 1, n− k + 1)

B(1, 1)

=

(
n

k

)
k! (n− k)!
(n+ 1)!

=
n!

k! (n− k)!
k! (n− k)!
(n+ 1)!

=
n!

(n+ 1)!

=
1

n+ 1

which we have to divide by
(
n
k

)
because we are using an n-fold Bernoulli

distribution instead of a binomial distribution. So for the sequence 0011, we
have n = 4 and k = 2 and hence its probability is

pw(0011) =
1/(n+ 1)(

n
k

) =
1/5

6
=

1

30
.

Hence, the mixture code-length is log2(1/pw(0011)) = log2 30 ≈ 4.91.

Note 1. This particular case can also be solved directly by integration,
ˆ 1

0

θ2 (1− θ)2 dθ =

ˆ 1

0

(
θ4 − 2θ3 + θ2

)
dθ

=

[
θ5

5
− θ4

2
+
θ3

3

]1
0

=
1

5
− 1

2
+

1

3
=

1

30
,

and then taking the logarithm.

Note 2. (Optional, if you’re interested:) It was pointed out during the
exercise session that there is yet another way to solve this, by doing “updates”
on the beta distribution. The distribution Beta(1, 1) can be interpreted so
that before seeing any data, we assume that we’ve already seen one 0 and
one 1. Then we proceed as follows:

5



Bits seen # of zeros # of ones Pr[0] Pr[1]

1 1 1/2 1/2
0 2 1 2/3 1/3
00 3 1 3/4 1/4
001 3 2 3/5 2/5

So the probability of the sequence 0011 is

1

2
· 2
3
· 1
4
· 2
5
=

1

30
.

However, this approach may not be very illustrative of the point of mixture
codes, so I will not go into details here.

Question 4

(a)

The number of 1’s in a binary sequence of four bits is one of 0 ≤ k ≤ 4. What
is the maximum likelihood parameter θ̂?

For k = 0, the probability is θ0 (1− θ)4 = (1− θ)4, which is maximized when
θ = 0. Similarly, for k = 4 the maximum likelihood parameter is θ = 1.
For k = 1, 2, 3, the maximum likelihood parameter can be found taking the
logarithm and differentiating:

log pθ(x1, . . . , x4) = log θk (1− θ)4−k

= k log θ + (4− k) log(1− θ),
d
dθ

log pθ(x1, . . . , x4) =
k

θ
− 4− k

1− θ
.

The derivative equals zero when θ = k/4. (I leave it to the readers to convince
themselves that this is the global maximum.)

Combining the above, we see that the maximum likelihood parameter for
sequences with k 1’s is θ̂(k) = k/4.

Now, for a given 0 ≤ k ≤ 4, there are
(
n
k

)
four-bit sequences that have k 1’s.

6



Hence, we may compute the NML normalizing constant as follows:

C =
∑

D∈{0,1}4
pθ̂(D)

=
4∑

k=0

(
4

k

)
θ̂k(k) (1− θ̂(k))4−k

=
4∑

k=0

(
4

k

) (
k

4

)k (
4− k
4

)4−k

≈ 3.2188.

(b)

By the above, the NML code-length for D = 0011 is

log2
1

pNML(0011)
= − log2

pθ̂(0011)

C

= − log2
0.54

C
= 4 + log2C

≈ 5.6865.

Note 1. As mentioned in the problem statement, another option for calculat-
ing C would be to simply go through all possible sequences (0000, 0001, 0010, . . . , 1111),
compute their maximum likelihood probabilities and sum them up. Then you
have a sum of 2n terms instead of a sum of n+ 1 terms.

Note 2. As was pointed out by someone at the exercise session, the sum
from k = 0 to 4 can be made computationally easier by realizing that the
terms for k = 0 and k = 4 agree, as do the terms for k = 1 and k = 3.

Note 3. For the sequence 0011, we got the following code-lengths: 5.00 (two-
part code), 4.91 (mixture) and 5.69 (NML). What about the sequence 0000?
The code-lengths will be approximately 3.66 (two-part code), 2.32 (mixture)
and 1.69 (NML).

Note 4. This question was asked at the exercise session. Consider the
code-lengths for 0011 for the two-part code and the mixture code. They both
round up to 5 bits. So is the mixture code really any better than the two-part

7



code? The answer is that indeed it is: Consider, for instance, the problem of
model selection: given some data, we want to pick a model (class) that seems
to describe the data well. Our problem is then not compression but simply
comparing the models classes, and hence there is no need to round up—and
we will end up preferring the mixture model over the two-part code.

Note 5. (Optional, if you’re interested:) Computing the value of C has been
an interesting research problem. There’s a linear-time algorithm for computing
its value for multinomials (of which the Bernoulli is a special case) that was
developed in our department. Take a look at the paper by Kontkanen and
Myllymäki at http://dx.doi.org/10.1016/j.ipl.2007.04.003 (should be
accessible from the university network).

8


