
Sample solutions to Homework 5,
Information-Theoretic Modeling (Fall 2014)

Jussi Määttä

October 9, 2014

Question 1

(a)

First, let’s try to figure out how the math really works here1. (You may skip
to the end of the next page if you’re not interested.)

We have a zero-order Markov chain model with a Beta(α, β) prior. Suppose we
observe a sequence D consisting of n bits, k of which are 0’s. The probability
of D under the mixture model is

p(D) =

ˆ 1

0

pθ(D)w(θ) dθ

where

w(θ) =
θα−1 (1− θ)β−1

B(α, β)

is the probability density function (pdf) of the Beta distribution with pa-
rameters α and β. For the zero-order model, we have pθ(D) = θk (1− θ)n−k,

1Again, there are simpler solutions (see Q3/HW4), but this way is easier to understand
(at least after you’ve understood it).

1



so

p(D) =

ˆ 1

0

θk (1− θ)n−k θ
α−1 (1− θ)β−1

B(α, β)
dθ

=
1

B(α, β)

ˆ 1

0

θ(k+α)−1 (1− θ)(n−k+β)−1 dθ

=
B(k + α, n− k + β)

B(α, β)

ˆ 1

0

θ(k+α)−1 (1− θ)(n−k+β)−1

B(k + α, n− k + β)
dθ︸ ︷︷ ︸

=1

=
B(k + α, n− k + β)

B(α, β)

(the integral of a pdf is always 1).

Suppose then, for example, that we observe the sequence 0011. The above
may be expanded as

p(0011) =
B(2 + α, 2 + β)

B(α, β)

=
B(1 + α, β)

B(α, β)
· B(2 + α, β)

B(1 + α, β)
· B(2 + α, 1 + β)

B(2 + α, β)
· B(2 + α, 2 + β)

B(2 + α, 1 + β)
.

Since the beta function has the nice properties

B(x+ 1, y)

B(x, y)
=

x

x+ y
,

B(x, y + 1)

B(x, y)
=

y

x+ y
,

we may further write the above as

p(0011) =
α

α + β
· α + 1

α + β + 1
· β

α + β + 2
· β + 1

α + β + 3
.

This corresponds to the predictive distribution

p(xn+1 = 0 | x1, x2, . . . , xn, α, β) =
α + k

α + β + n
,

p(xn+1 = 1 | x1, x2, . . . , xn, α, β) = 1− α + k

α + β + n
=
β + (n− k)
α + β + n

which was given in the lecture notes2.
2Note that here k is the number of 0’s in the first n digits of the sequence.

2



Note that we do not need to know the final length of the sequence beforehand.
This is different from NML (see Question 2 below).

Now, for the 100-digit sequence given in the problem statement, we may
execute the following algorithm:

1. Let `← 0, n← 0, k ← 0, α← 0.5, β ← 0.5.

2. If there are bits left, let x ∈ {0, 1} be the next one; otherwise, stop.

3. If x = 0, let p← (α + k)/(α + β + n) and let k ← k + 1.
If x = 1, let p← (β + n− k)/(α + β + n).

4. Let `← `+ log2(1/p) and n← n+ 1.

5. Goto 2.

In the end, ` will contain the final code-length. For our particular case, the
attached Matlab program q1_demo.m computes ` ≈ 83.16.

(b)

Now things are getting interesting—we will try a first-order Markov chain.
There are two parameters and we take them to be independent with Beta(0.5, 0.5)
priors. Moreover, we let the first symbol be uniformly distributed, so encoding
it will take a single bit.

As suggested in the problem statement, the problem reduces to two “parallel”
zero-order Markov chains. Why? Suppose that we’ve seen i− 1 bits of the
sequence. If the last bit we’ve seen is Xi−1 = 0, then our prediction for the
i’th bit will depend only on the parameter p0 = p(Xi = 1 | Xi−1 = 0)—and
similarly for Xi−1 = 1. So when predicting the i’th bit, we are always using
one of two zero-order models.

What we end up doing is essentially the same that we did in (a), but now we
have to maintain the values n and k for two different zero-order models. The
following algorithm does the trick:

1. Let `← 1, n0 ← 0, k0 ← 0, n1 ← 0, k1 ← 0, α← 0.5, β ← 0.5.

2. Let xprev be the first input bit.

3. If there are bits left, let x ∈ {0, 1} be the next one; otherwise, stop.

3



4. If x = 0, let p← (α + kxprev)/(α + β + nxprev) and let k ← k + 1.
If x = 1, let p← (β + nxprev − kxprev)/(α + β + nxprev).

5. Let `← `+ log2(1/p) and nxprev ← nxprev + 1.

6. Let xprev ← x.

7. Goto 3.

The attached Matlab program q1_demo.m computes ` ≈ 86.13.

Using the result we derived above, we could also computed

` = − log2

(
1

2
· B(6 + 0.5, 23− 6 + 0.5)

B(0.5, 0.5)
· B(18 + 0.5, 76− 18 + 0.5)

B(0.5, 0.5)

)
which gives the same answer (6 out of 23 digits following a zero are zeros, 18
out of 76 digits following a one are zeros).

(c)

The solution is similar to the previous part except that we now update four
different zero-order models. It is straightforward to adapt the above algorithm.
The codelength, as computed by q1_demo.m, is ` ≈ 89.90.

Let’s recap: `(a) ≈ 83.16, `(b) ≈ 86.13 and `(c) ≈ 89.90. The zero-order Markov
chain model achieves the shortest code-length when we use the mixture code
for the parameters of the Markov chains. This suggests that of the three
models, the zero-order model is the best description of the data.

(But of course, we cannot be certain; the program q1_demo.m also generates
a random sequence from a second order Markov chain and computes the
code-lengths for the sequence. Most of the time the second order model gets
the shortest code-length, but not always. In this case, the longer sequence
we generate, the more likely it is that the correct model has the shortest
code-length.)

Note carefully that our results above do not imply that the data really comes
from any zero-order Markov chain—merely that it seems to be a better
explanation than the other two we’ve tried.

4



Question 2

Since the given 100-digits sequence has 24 zeros, the ML parameter for
the zero-order model is θ̂ = 24/100. The NML normalizing constant is
C(100) ≈ 13.2. Hence, applying the NML universal code to the zero-order
Markov chain gives the code-length

` = − log2

(
pθ̂(D)

C

)
= − log2

(
θ̂24 (1− θ̂)100−24

)
+ log2C

= −24 log2 θ̂ − (100− 24) log2(1− θ̂) + log2C

≈ 83.23.

What about the first order model? As we counted above, there are 23 digits
that follow a zero, 6 of which are zeros; and there are 76 digits that follow a
one, 18 of which are zeros. Hence, the ML parameters are θ̂(0) = 6/23 and
θ̂(1) = 18/76, and we get the code-length

` = − log2

(
1

2
· (6/23)

6 (1− 6/23)23−6

C(23)
· (18/76)

18 (1− 18/76)76−18

C(76)

)
≈ 86.35.

For the second order model, we need to count the number of zeros following 00,
the number of zeros following 01, and so on. All in all, we get the code-length

` = − log2

(
1

4
·
(
1
6

)1 (
1− 1

6

)6−1

C(6)
·
(

5
17

)5 (
1− 5

17

)17−5

C(17)
·
(

5
17

)5 (
1− 5

17

)17−5

C(17)

·
(
13
58

)13 (
1− 13

58

)58−13

C(58)

)
≈ 90.51.

All these numbers are calculated with the attached Matlab program q2_demo.m.

5



Figure 1: f1(x) = a+ bx+ cx2

Questions 3–4

Looking at Figure 2 in the assignment, we see that the linear function
f0(x) = a+ bx is a good start. Recall that this function gives an MDL score
of about 1170 bits.

The obvious next step is to try a quadratic function: f1(x) = a+ bx+ cx2.
The fit is shown in Figure 1. Gnuplot gives RSS = 1367.67, so

MDL =
200

2
log2 1367.67 +

4

2
log2 200 ≈ 1057.

An improvement of more than 100 bits!

A quick test then shows that using a cubic polynomial wouldn’t help—the fit
looks almost the same as that for the quadratic polynomial.

However, it seems that there is some sort of oscillation in the data that our
quadratic polynomial cannot handle. Roughly speaking, our curve is above

6



Figure 2: f2(x) = a+ bx+ cx2 + α sin(βx+ γ)

the data points at x ∈ [0.2, 0.4], below the data points at x ∈ [0.4, 0.8], above
the data at x ≈ 1.2 and below again at x ≈ 1.5.

The obvious way to model oscillation is to use trigonometric functions. Let’s
work on the assumption that the data comes from the sum of a quadratic
function and some sort of trigonometric function. We’ll try the function
f2(x) = a+ bx+ cx2 + α sin(βx+ γ).

The result is shown in Figure 2. This looks a bit disappointing! The change
from the quadratic function isn’t that big—neither visually nor in terms of
the residues: we have RSS = 1324.61 and hence MDL ≈ 1064.

But let’s not give up so easily! We’re trying to fit a nonlinear function
of six parameters to our data. We should help the algorithm by giving
sensible initial guesses. Let’s look at the residues that arise from using the
quadratic function—that is, we take the data points (x, y) and convert them
to (x, y− f1(x)) where f1 is the quadratic polynomial with the fit parameters
given by Gnuplot (a = 2.19824, b = −1.39479, c = 9.81619). The resulting

7



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−8

−6

−4

−2

0

2

4

6

8

Figure 3: Scatter plot of the points (x, y− f1(x)), where f1(·) is the quadratic
polynomial that gives smallest RSS for the points (x, y).

scatter plot is shown in Figure 3.

By looking at Figure 3, we may estimate the parameters for the term α sin(βx+
γ). The values y − f1(x) seem to lie mostly within the interval [−3, 3], so
let’s guess α = 3. And it seems that the x distance between upper (or lower)
peaks seems to be about 0.6, so we set β = 2π/0.6 ≈ 10.5 to indicate that we
would like the term α sin(βx+γ) to give the same value for all x = 0.6+2πm,
m ∈ Z. Finally, since it seems that the residue is about zero at around x ≈ 1,
we set γ = −10.5 so that at x = 1, α sin(βx+ γ) = 4 sin(0) = 0.

We can give this guesses to Gnuplot as follows:

gnuplot> alpha = 3
gnuplot> beta = 10.5
gnuplot> gamma = -10.5

Then we can try the fitting again:

8



Figure 4: f2(x) = a+ bx+ cx2 + α sin(βx+ γ), after helping Gnuplot with
our guessed values for α, β and γ

gnuplot> f(x) = a + b*x + c*x*x + alpha*sin(beta*x+gamma)
gnuplot> fit f(x) ’data200.txt’ via a,b,c,alpha,beta,gamma

Now we got RSS = 824.858. A huge improvement! With this, the MDL score
becomes about 996 bits. The result is shown in Figure 4.

At this point, we decide that further complications to our function would be
unlikely to bring much improvement. We could, of course, look at the new
residues, but let’s not be that ambitious.

Instead, let’s look at the values of our six parameters. They are: a = 1.76219,
b = 0.341124, c = 8.76778, α = 2.3906, β = 10.0323 and γ = −10.9062. Do
we really need them all?

The constant term a seems necessary, as does the coefficient for the quadratic
term. But the value of b seems quite insignificant. Could we do without it?
Let’s try!

9



gnuplot> f(x) = a + c*x*x + alpha*sin(beta*x+gamma)
gnuplot> fit f(x) ’data200.txt’ via a,c,alpha,beta,gamma

This gives RSS = 825.278, which is slightly bigger than before (as it must
be). But we lost one parameter. This gives MDL ≈ 992. A new record!
Apparently it was worth it to throw away the bx term.

The new parameter values are a = 1.89584, c = 8.92553, α = 2.38134,
β = 10.0186 and γ = −10.8867. Now, recall that sin(x + 2π) = sinx and
sin(x+π/2) = cosx for all real numbers x. And γ+2π+2π−π/2 ≈ 0.09, which
is pretty close to zero. So let’s try the function f3(x) = a+ cx2 + α cos βx.

Gnuplot gives RSS = 826.807, again a bit higher than before. But we’ve lost
yet another parameter. The MDL score is about 988 bits, which is better
than before.

Our answer, then, is that the function f3(x) = a+ cx2 + α cos βx is a good
match to the data, because it gives the smallest MDL score we can find. (We
might, of course, have other ideas for a function to try, but this result is nice
enough.) The parameters given by Gnuplot are a = 1.86379, c = 8.93988,
α = 2.37209 and β = 10.1006. The end result is shown in Figure 5.

Is it not impressive how MDL guided us in finding this description of the
data? (Sure, we had to use some imagination and help the non-linear least
squares fitting algorithm, but still!)

If you find a function that gives a smaller MDL score for this data, please
send an email to the lecturer and the teaching assistant!

Note 1. One interesting thing to look at is approximation by trigonometric
functions solely. Let

f(x) =
n∑
i=1

ai sin(bix+ ci) (1)

for, say, n = 4. Again the nonlinear least squares fitting algorithm may have
trouble finding good values, but I was able to use Matlab’s interactive fitting
tool to find quite nice solutions. (Not as good as the f3(x) above, though.)

Note 2. Another thing to note is that, of course, high-order polynomials can
do well. Recall that we may, for instance, use the infinite series representation

cosx = 1− x2

2!
+
x4

4!
− x6

6!
+ · · ·

10



Figure 5: f3(x) = a + cx2 + α cos βx (see the text for the values of the
parameters)

11



so it’s no wonder that if you take a polynomial of order (say) 32, things may
start to look rather nice. (But MDL penalizes the large number of parameters,
of course.)

Note 3. We haven’t said anything about whether we’d like to predict what
happens if x /∈ [0, 2]. In real life, this would be a crucial question as well
(unless you have reason to expect that x never goes outside that range). One
way to try to cope with this is to do cross-validation (probably covered e.g.
on the course Introduction to Machine Learning).

Note 4. We haven’t really specified what sort of functions we’d like to
consider for f(x). It was implicitly assumed at least that no numerical
constants are allowed (they are treated as parameters to be optimized). Had
we been more strict, we could have e.g. specified that we are looking for a
function that is built using elementary functions (polynomials, trigonometric
functions, ex, possibly power functions and hyperbolic functions. . . ), has no
numerical constants in its definition and fits on a A4 sheet with font size 12.
Or, in a more realistic setting, we might e.g. consider all polynomials or all
functions of the form (1) above.

12


