
Sample solutions to Homework 6,
Information-Theoretic Modeling (Fall 2014)

Jussi Määttä

October 16, 2014

Question 1

For any n, we have C1
n = 1 (imagine we have a coin with two identical sides;

there’s only one possible outcome).

The case C2
n corresponds to the binomial model which we’ve already seen:

C2
n =

n∑
k=0

(
n

k

)(
k

n

)k (
1− k

n

)n−k
.

When m ≥ 3, we can compute Cm
n using the recursion

Cm
n = Cm−1

n +

(
n

m− 2

)
Cm−2
n .

The attached Matlab function nml_constant.m takes as parameters the
numbers n and m and returns Cm

n computed using the formulae above.

Consider a sequence of 262 observations from a multinomial model with
m = 3. Let the counts of the three possible outcomes be 115, 57 and 90.

1

Then multinomial NML gives us the code-length

` = − log2
pθ̂(D)(D)

Cm
n

= − log2
(115/262)115 (57/262)57 (90/262)90

C3
262

= log2C
3
262 −

[
115 log2

115

262
+ 57 log2

57

262
+ 90 log2

90

262

]
≈ 8.1445 + 400.7840 ≈ 408.93.

The attached Matlab program q1.m computes this code-length using the
function nml_constant.m discussed above.

Question 2

(a)

The given command produces the output

115 57 90
63 11 43
47 34 22
11 2 5
379 121
365 135
483 17
201 299
290 85 125

so the total codelength is

` = − log2

(
115
262

)115 (57
262

)57 (90
262

)90
C3

262

− . . .− log2

(
483
500

)483 (17
500

)17
C2

500

− . . .− log2

(
290
495

)290 (85
495

)85 (125
495

)125
C3

495

≈ 2899.86.

2

O

E

A

RS T

Figure 1: A Bayesian network with the variables A, R, E, O, S, and T .

Why is this the correct answer? For each variable, we have a separate
multinomial distribution for each of the possible configuration its parents
can take. We need to encode them all, so the final answer is the sum of the
code-lengths of all these possibilities.1

The attached Matlab program q2_a.m computes the above code-length. It
calls the Python program splitcfg.py that was provided with the homework
problems and also uses the function nml_constant.m that was discussed in
the above solution to Question 1.

(b)

The following solution is based on the hint (fix a total ordering of the variables)
and the method described in a paper by Teyssier & Koller (2005)2.

As suggested by the hint, it is useful to consider total orderings of the
variables. Bayesian networks are directed acyclic graphs (DAG’s), and any
given DAG has a topological ordering. This means that we can arrange the
variables in some order so that any given variable has all its parents on its
left. For instance, the graph shown in Figure 1 has a topological ordering
O, S,E,A,R, T (there are others as well).

Suppose now that we have fixed some ordering of the variables X1, X2, . . . , Xn.
Then:

1. X1 cannot have any parents.
1There are some implicit independence assumptions here that are beyond the scope of

this course. See the course Probabilistic Models.
2Marc Teyssier and Daphne Koller: Ordering-Based Search: A Simple and Effective

Algorithm for Learning Bayesian Networks, Proc. 21st Conference on Uncertainty in
Artificial Intelligence (UAI2005), 2005. URL: http://arxiv.org/abs/1207.1429

3

2. X2 can have either no parents or a single parent (X1).

3. X3 can have any of the following parent sets: ∅, {X1}, {X2} or {X1, X2}.

4. Xn can have any parent set Pan ⊆ {X1, . . . , Xn−1}.

Therefore, for a given ordering, there are 20 · 21 · 22 · . . . · 2n−1 = 2n(n−1)/2

possible of parent sets. For n = 6, this equals 215 = 32768, which isn’t that
much. So we can simply try out all possibilities: compute the fNML score for
each of them and pick the best one. (Note that this is a bit of a brute-force
approach and is not usually possible in real life where you have more variables.
In practice, we could e.g. limit the sizes of the parent sets to a maximum of
three variables so that there would be less possibilities to consider.)

Now, of course, if we pick one particular ordering, it may not allow the best
possible network structure in terms of the fNML score. So we should try
many orderings. Since we have six variables, there are 6! = 720 possible
permutations. Now, if we were to do the above, we would have 6!·215 ≈ 24·106
computations, which would be a bit much (though actually still easily within
the limits of what can be computed on a modern desktop computer). So let
us do something more sophisticated. We start with a random ordering, say
X1, X2, . . . , Xn, and try out all n−1 orderings obtainable from it by swapping
to adjacent variables. For each of these n− 1 orderings, we find the optimal
parent sets of each variable in terms of the fNML score. Then we choose the
best of these and start again. To keep the algorithm exploring the space of
orderings, we also keep a “tabu list” of orderings that we’ve already tried and
that we’re not allowed to enter again. This algorithm can be summarized as
follows:

1. Select a random ordering π. Add it to the tabu list.

2. For each ordering π′ obtainable from π by swapping two adjacent
variables:

(a) If π′ is not in the tabu list, find the parent sets for each variable
that are compatible with π′ and that maximize the fNML score.

3. Replace π by the best π′ discovered. Add the new π to the tabu list.

4. Goto 2.

4

Actually the algorithm above has no way to stop. We make two additions.
First, we decide that if the score of π is not improved for, say, ten successive
iterations, then we set π to a new random ordering. Second, we decide that
after ten of these “random restarts”, we stop the execution of the algorithm
and return the best collection of parent sets found so far.

The attached Matlab program q2b.m does all this. It is not very fast (because
trying all 32768 parent set collections isn’t that simple, and because the code
has not been optimized and would benefit from caching intermediate results),
but it suffices for this problem. (The only thing the code caches is the NML
normalization constants.)

The best result I found with the program is in fact displayed in Figure 1. It
gives a code-length of 2875.96 bits.

Note 1. In fact, this is not the network from which the data was generated.
We have only 500 data points and the number of possible network structures
is much higher, so this is nothing to be surprised of. Had we more data, the
chances of finding the “true” network would be better. The true network
appears to be the one behind this link:
http://www.bnlearn.com/bnrepository/#survey

Note 2. If you’re interested in Bayesian networks, do take the course
Probabilistic Models lectured in the 3rd period!

Note 3. When working with Bayesian networks, we’re actually interested
in equivalence classes of networks. Two networks are said to be equivalent
if they define the same probability distributions. For instance, the networks
A→ B → C and A← B ← C are equivalent: in this framework, it makes no
difference which one of them we use. However, A→ B ← C is in a different
equivalence class. Now, the fNML score is actually not score equivalent,
that is, it may give a different score for two networks that are in the same
equivalence class; but in practice, this isn’t likely to make a big difference at
least when we have enough data.

Question 3

The text was extracted from the web page so that the text of each definition
is placed on a single (long) line. This gives a text file of 68 lines. Also note

5

that the numbers of the definitions are followed by a dot, except for the last
definition.

I converted the text into a sequence of symbols. The set of symbols contains
(i) all words appearing in the text (in lowercase), (ii) a symbol that marks
the beginning of a new definition, and (iii) symbols for all punctuation marks
appearing in the text (dot, colon and semicolon).

I sorted the word symbols in decreasing order of frequency and placed them
in a Python list. If we further denote by −1 the beginning of a new definition
and by −2,−3,−4 the punctuation marks, then we can use the numbers,
−4,−3,−2,−1, 0, 1, 2, 3, . . . to encode the whole text. This is what I did.

The decoder does the obvious: it increments the definition counter, adds
whitespace as appropriate and capitalizes the first words of all sentences. It
also takes care of the missing dot for Definition 23.

Since the words were sorted by decreasing frequency, more common words got
a shorter encoding (single-digit numbers vs three-digit numbers). However,
this did not result in a particularly good compression rate. I managed to
remove lots of bytes from the program by converting the encoding of the text
into a character string. By adding 36 to all indices, I got many printable
ASCII characters.

In the end, the attached Python 2 program q3.py got squeezed down to
2150 bytes. It writes to standard output exactly the contents of the file
definitions.txt whose size is 3247 bytes.

Here are some ideas on how one might achieve further compression (without
using Huffman coding etc.):

• Store the individual words in a trie data structure.

• Build a directed graph where each word has its own vertex and there is
an edge from one word to another if and only if these words appear in
succession somewhere in the text. Try to store this graph in a small
number of bytes. Then compress the actual text so that you always
specify which of the edges one should traverse next.

• Use a separate file in which to store raw binary data.

Note 1. Take the project course if you thought this was fun!

6

Question 4

The hit counts that Google gave me produce the distances shown in Table 1.

Note that although NGD is supposed to be “normalized”, it gives
NGD(Andrey, breakfast) = 1.1557 > 1. Possible reasons for this are that
(i) the value M ≈ 5 · 1010 may be incorrect, or (ii) the hit counts given by
Google may be incorrect. If all the assumptions used in deriving the NGD
are satisfied, the distances should lie within the unit interval.

Figure 2 shows a minimum spanning tree visualization of the distance matrix.
We see that the words breakfast, porridge and omelette seem to be close
to each other; they are connected to the other words via the edge porridge—
stochastic, which has NGD ≈ 0.37. The rest of the words (except for
broccoli, which seems out of place and is closest to Andrey) seem “sort-of”
sensibly organized, except that the word Andrey behaves unexpectedly (it is
most similar to the words stochastic and complexity, not Kolmogorov).

Another way to visualize the distance matrix is to use multidimensional
scaling (MDS). I gave the distance matrix as an input to Matlab’s built-in
function mdscale, which implements a kind of non-classical MDS. The result is
shown in Figure 3. The algorithm appears to perform somewhat satisfactorily
(although not perfectly) in placing the words in a plane so that the relative
distances are approximately preserved.

Looking at these visualizations and the matrix itself, it seems that the
distances that involve the words Andrey and broccoli are not very convincing.
It might be interesting to redo the visualizations without these words; this is
left as an exercise for the reader.

Table 1 and Figure 2 were produced with the attached Python program
q4.m which requires the packages py-matplotlib and networkx. Fig-
ure 3 is produced by the Matlab program q4_mds.m which uses the file
q4_distance_matrix.csv generated by the Python program.

Note 1. See e.g. the paper by Cilibrasi and Vitanyi (2007) if you want to
know where the formula for NGD came from. The paper is available online
at http://arxiv.org/abs/cs.CL/0412098

Note 2. The answers you got may or may not depend on things such as
whether you’ve logged on to your Google account or which localization of
Google you’re using.

7

An
dr

ey
Ko

lm
og

or
ov

co
mp

le
xi

ty
st

oc
ha

st
ic

po
rr

id
ge

Ri
ss

an
en

br
ea

kf
as

t
om

el
et

te
br

oc
co

li
An

dr
ey

0
0.
69
04

0.
23
72

0.
25
36

0.
52
02

0.
37
94

1.
15
57

0.
44
33

0.
35
99

Ko
lm

og
or

ov
0.
69
04

0
0.
49
32

0.
30
88

0.
53
91

0.
17
35

0.
86
73

0.
71
49

0.
68
92

co
mp

le
xi

ty
0.
23
72

0.
49
32

0
0.
21
46

0.
40
58

0.
56
16

0.
54
70

0.
43
27

0.
86
62

st
oc

ha
st

ic
0.
25
36

0.
30
88

0.
21
46

0
0.
37
14

0.
47
38

0.
69
55

0.
50
24

0.
44
59

po
rr

id
ge

0.
52
02

0.
53
91

0.
40
58

0.
37
14

0
0.
48
83

0.
46
83

0.
28
40

0.
48
27

Ri
ss

an
en

0.
37
94

0.
17
35

0.
56
16

0.
47
38

0.
48
83

0
0.
75
19

0.
66
05

0.
46
52

br
ea

kf
as

t
1.
15
57

0.
86
73

0.
54
70

0.
69
55

0.
46
83

0.
75
19

0
0.
48
26

0.
52
66

om
el

et
te

0.
44
33

0.
71
49

0.
43
27

0.
50
24

0.
28
40

0.
66
05

0.
48
26

0
0.
50
10

br
oc

co
li

0.
35
99

0.
68
92

0.
86
62

0.
44
59

0.
48
27

0.
46
52

0.
52
66

0.
50
10

0

Ta
bl
e
1:

So
m
e
no

rm
al
iz
ed

G
oo

gl
e
di
st
an

ce
s.

8

porridge

omelette

Andrey

Kolmogorov
complexity

Rissanen

stochastic

breakfast

broccoli

Figure 2: Minimum spanning tree for the distance matrix.

9

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Andrey

Kolmogorov

complexity

stochastic
porridge

Rissanen

breakfast

omelette

broccoli

Figure 3: The distance matrix visualized by a non-metric multidimensional
scaling (MDS) algorithm built-in to Matlab.

10

