Information-Theoretic Modeling
 Lecture 2: Mathematical Preliminaries

Teemu Roos
Department of Computer Science, University of Helsinki

Fall 2014

Lecture 2: Mathematical Preliminaries

"I think you should be more explicit here in step two."
(1) Calculus

- Limits and Convergence
- Convexity
(2) Probability
- Probability Space and Random Variables
- Joint and Conditional Distributions
- Expectation
- Law of Large Numbers
(3) Inequalities
- Jensen's Inequality
- Gibbs's Inequality

Exponent Function

Exponent function $\exp : \mathbb{R} \rightarrow \mathbb{R}^{+}, \exp k=e^{k}=\overbrace{e \times e \times \ldots \times e}$: multiplicative growth (nuclear reaction, "interest on interest", ...)
$\exp x \cdot \exp y=\exp (x+y) \quad$ Derivative $\frac{d \exp x}{d x}=\exp x$.

Outline

Examples: Logarithm

Natural logarithm $\ln : \mathbb{R}^{+} \rightarrow \mathbb{R}, \ln \exp x=x:$
time to grow to x, number of digits $\left(\log _{10}\right)$.
General (base a) logarithm, $\log _{a} a^{x}=x: \quad \log _{a} x=\frac{1}{\ln a} \ln x$

Outline

Logarithm Function

$$
\begin{aligned}
& \ln x y=\ln x+\ln y \quad \ln x^{r}=r \ln x \quad \ln \frac{1}{x}=-\ln x \quad \ln \frac{x}{y}=\ln x-\ln y \\
& \quad \frac{d \ln x}{d x}=\frac{1}{x}
\end{aligned}
$$

Limits and Convergence

- A sequence of values $\left(x_{i}: i \in \mathbb{N}\right)$ converges to limit L, $\lim _{i \rightarrow \infty} x_{i}=L$, iff for any $\epsilon>0$ there exists a number $N \in \mathbb{N}$ such that

$$
\left|x_{i}-L\right|<\epsilon \quad \text { for all } i \geq N .
$$

- $f(x)$ has a limit L as x approaches $c, \lim _{x \rightarrow c} f(x)=L$, (from above $c^{+} /$below c^{-}) iff for any $\epsilon>0$ there exists a number $\delta>0$ such that

$$
|f(x)-L|<\epsilon \quad \text { for all } \begin{cases}c<x<c+\delta & \text { 'above' } \\ c-\delta<x<c & \text { 'below' } \\ 0<|x-c|<\delta & -\end{cases}
$$

Example: Logarithm Again

Even though $x \ln x$ is undefined at $x=0$, we have (by l'Hôpital's rule):

$$
\lim _{x \rightarrow 0^{+}} x \ln x=0
$$

Convexity

Function $f: \mathcal{X} \rightarrow \mathbb{R}$ is said to be convex iff for any $x, y \in \mathcal{X}$ and any $0 \leq t \leq 1$ we have

$$
f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)
$$

Function f is strictly convex iff the above inequality holds strictly ($<$ ' instead of ' \leq ') when $0<t<1$.

Function f is (strictly) concave iff the above holds for $-f$.

Convexity and Derivatives

Theorem

If function f has a second derivative $f^{\prime \prime}$, and $f^{\prime \prime}$ is non-negative (≥ 0) for all x, then f is convex. If $f^{\prime \prime}$ is positive (>0) for all x, then f is strictly convex.

e^{x} is conve ${ }^{x}$!

Example: $f^{\prime}(x)=\frac{d \exp x}{d x}=\exp x \Rightarrow f^{\prime \prime}(x)=\exp x>0$. Hence exp is strictly convex.

Probability

A.N. Kolmogorov, 1903-1987
(1) Calculus

- Limits and Convergence
- Convexity
(2) Probability
- Probability Space and Random Variables
- Joint and Conditional Distributions
- Expectation
- Law of Large Numbers
(3) Inequalities
- Jensen's Inequality
- Gibbs's Inequality

Probability Space

A probability space (Ω, \mathcal{F}, P) is defined by

- the sample space Ω whose elements are called outcomes ω,
- a sigma algebra \mathcal{F} of subsets of Ω, whose elements are called events E, and
- a measure P which determines the probabilities of events, $P: \mathcal{F} \rightarrow[0,1]$.

Measure P has to satisfy the probability axioms: $P(E) \geq 0$ for all $E \in \mathcal{F}, P(\Omega)=1$, and $P\left(E_{1} \cup E_{2} \cup \ldots\right)=\sum_{i} P\left(E_{i}\right)$ if $\left(E_{i}\right)$ is a countable sequence of disjoint events.

These axioms imply the usual rules of probability calculus, e.g., $P(A \cup B)=P(A)+P(B)-P(A \cap B), P(\Omega \backslash E)=1-P(E)$, etc.

Venn Diagrams

Ω

Probability Calculus

(1) The conditional probability of event B given that event A occurs is defined as

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)} \quad \text { for } A \text { such that } P(A)>0
$$

(2) $P(A \cap B)=P(A) \cdot P(B \mid A)=P(B) \cdot P(A \mid B)$.
(3) Bayes' rule: $P(B \mid A)=\frac{P(A \mid B) \cdot P(B)}{P(A)}$.
(9) Chain rule:

$$
\begin{aligned}
P\left(\cap_{i=1}^{N} E_{i}\right)= & \prod_{i=1}^{N} P\left(E_{i} \mid \cap_{j=1}^{i-1} E_{j}\right) \\
= & P\left(E_{1}\right) \cdot P\left(E_{2} \mid E_{1}\right) \cdot P\left(E_{3} \mid E_{1} \cap E_{2}\right) \cdot \ldots \\
& \cdot P\left(E_{N} \mid E_{1} \cap \ldots \cap E_{N-1}\right)
\end{aligned}
$$

Random Variables

Technically, a random variable is a (measurable) function $X: \Omega \rightarrow \mathbb{R}$ from the sample space to the reals.

The probability measure P on Ω determines the distribution of X :

$$
P_{X}(A)=\operatorname{Pr}[X \in A]=P(\{\omega: X(\omega) \in A\})
$$

where $A \subseteq \mathbb{R}$.
It is often more natural to relabel the outcomes and denote them, for instance, by letters, A, B, C, \ldots, or words red, black, \ldots

In practice, we often forget about the underlying probability space Ω, and just speak of random variable X and its distribution P_{X}.

Random Variables

The distribution of a random variable can always be represented as a cumulative distribution function (cdf) $F_{X}(x)=\operatorname{Pr}[X \leq x]$.

In addition:

- A discrete random variable X with countable alphabet \mathcal{X} has a probability mass function (pmf) p_{X} such that $\operatorname{Pr}[X=x]=p_{X}(x)$.
- A continuous random variable Y has a probability density function (pdf) f_{Y} such that $\operatorname{Pr}[Y \in A]=\int_{A} f_{Y}(x) d y$.
There are also mixed random variables that are neither discrete nor continuous. They don't have a pmf or pdf, but they do have a cdf.

We often omit the subscripts X, Y, \ldots and write $p(x), f(y)$, etc.

Random Variables

Since random variables are functions, we can define more random variables as functions of random variables: if f is a function, and X and Y are r.v.'s, then $f(X): \Omega \rightarrow \mathbb{R}$ is a r.v., $X+Y$ is a r.v., etc.

Example: Let r.v. X be the outcome of a die.

- The pmf of X is given by $p_{X}(x)=1 / 6$ for all $x \in\{1,2,3,4,5,6\}$.
- The pmf of r.v. X^{2} is given by $p_{X^{2}}(x)=1 / 6$ for all $x \in\{1,4,9,16,25,36\}$.

In particular, a pmf p_{X} is a function, and hence, $p_{X}(X)$ is also a random variable. Further, $p_{X}^{2}(X), \ln p_{X}(X)$, etc. are random variables.

Multivariate Distributions

The probabilistic behavior of two or more random variables is described by multivariate distributions.

The joint distribution of r.v.'s X and Y is

$$
\begin{aligned}
P_{X, Y}(A, B) & =\operatorname{Pr}[X \in A \wedge Y \in B] \\
& =P(\{\omega: X(\omega) \in A, Y(\omega) \in B\})
\end{aligned}
$$

For each multivariate distribution $P_{X, Y}$, there are unique marginal distributions P_{X} and P_{Y} such that

$$
\begin{gathered}
P_{X}(A)=P_{X, Y}(A, \mathbb{R}), \quad P_{Y}(B)=P_{X, Y}(\mathbb{R}, B) \\
\text { pmf: } p_{Y}(y)=\sum_{x \in \mathcal{X}} p_{X, Y}(x, y) \quad \text { pdf: } f_{Y}(y)=\int_{\mathbb{R}} f_{X, Y}(x, y) d x
\end{gathered}
$$

Multivariate Distributions

The conditional distribution is defined similar to conditional probability:

$$
P_{Y \mid X}(B \mid A)=\frac{P_{X, Y}(A, B)}{P_{X}(A)} \quad \text { for } A \text { such that } P_{X}(A)>0
$$

For discrete/continuous variables we have:

- discrete r.v.'s:

$$
p_{Y \mid X}(y \mid x)=\frac{p_{X, Y}(x, y)}{p_{X}(x)}, \quad p_{X}(x)>0
$$

- continuous r.v.'s:

$$
f_{Y \mid X}(y \mid x)=\frac{f_{X, Y}(x, y)}{f_{X}(x)}, \quad f_{X}(x)>0
$$

Independence

Variable X is said to be independent of variable $Y(X \Perp Y)$ iff

$$
P_{X, Y}(A, B)=P_{X}(A) \cdot P_{Y}(B) \quad \text { for all } A, B \subseteq \mathbb{R}
$$

This is equivalent to

$$
P_{X \mid Y}(A \mid B)=P_{X}(A) \text { for all } B \text { such that } P(B)>0
$$

and

$$
P_{Y \mid X}(B \mid A)=P_{Y}(B) \quad \text { for all } A \text { such that } P(A)>0
$$

In words, knowledge about one variable tells nothing about the other. Note that independence is symmetric, $X \Perp Y \Leftrightarrow Y \Perp X$.

Expectation

The expectation (or expected value, or mean) of a discrete random variable is given by

$$
E[X]=\sum_{x \in \mathcal{X}} p(x) x
$$

The expectation of a continuous random variable is given by

$$
E[X]=\int_{\mathcal{X}} f(x) x d x
$$

In both cases, it is possible that $E[X]= \pm \infty$.

$$
\begin{aligned}
& E[k X]=k E[X] \quad E[X+Y]=E[X]+E[Y] \\
& E[X Y]=E[X] E[Y] \quad \text { if } X \Perp Y
\end{aligned}
$$

Probability Space and Random Variables

Law of Large Numbers

Let X_{1}, X_{2}, \ldots be a sequence of independent outcomes of a die, so that $p_{X_{i}}(x)=1 / 6$ for all $i \in \mathbb{N}, x \in\{1,2,3,4,5,6\}$.

$$
E\left[X_{i}\right]=\sum_{x=1}^{6} \frac{1}{6} x=\frac{21}{6}=3.5 \quad \text { for all } i \in \mathbb{N}
$$

Law of Large Numbers

Let $S_{n}=\sum_{i=1}^{n} X_{n}$ be the sum of the first n outcomes.
The distribution of S_{n} is given by

$$
P_{S_{n}}(x)=\frac{\# \text { of ways to get sum } x \text { with } n \text { dice }}{6^{n}}
$$

distribution of S_{1}

Probability Space and Random Variables

Law of Large Numbers

Let $S_{n}=\sum_{i=1}^{n} X_{n}$ be the sum of the first n outcomes.
The distribution of S_{n} is given by

$$
P_{S_{n}}(x)=\frac{\# \text { of ways to get sum } x \text { with } n \text { dice }}{6^{n}}
$$

distribution of S_{2}

Law of Large Numbers

Let $S_{n}=\sum_{i=1}^{n} X_{n}$ be the sum of the first n outcomes.
The distribution of S_{n} is given by

$$
P_{S_{n}}(x)=\frac{\# \text { of ways to get sum } x \text { with } n \text { dice }}{6^{n}}
$$

distribution of S_{3}

Law of Large Numbers

Let $S_{n}=\sum_{i=1}^{n} X_{n}$ be the sum of the first n outcomes.
The distribution of S_{n} is given by

$$
P_{S_{n}}(x)=\frac{\# \text { of ways to get sum } x \text { with } n \text { dice }}{6^{n}}
$$

distribution of S_{4}

Law of Large Numbers

Let $S_{n}=\sum_{i=1}^{n} X_{n}$ be the sum of the first n outcomes.
The distribution of S_{n} is given by

$$
P_{S_{n}}(x)=\frac{\# \text { of ways to get sum } x \text { with } n \text { dice }}{6^{n}}
$$

distribution of S_{5}

Law of Large Numbers

Let $S_{n}=\sum_{i=1}^{n} X_{n}$ be the sum of the first n outcomes.
The distribution of S_{n} is given by

$$
P_{S_{n}}(x)=\frac{\# \text { of ways to get sum } x \text { with } n \text { dice }}{6^{n}}
$$

Law of Large Numbers

Let $S_{n}=\sum_{i=1}^{n} X_{n}$ be the sum of the first n outcomes.
The distribution of S_{n} is given by

$$
P_{S_{n}}(x)=\frac{\# \text { of ways to get sum } x \text { with } n \text { dice }}{6^{n}}
$$

Law of Large Numbers

Let $S_{n}=\sum_{i=1}^{n} X_{n}$ be the sum of the first n outcomes.
The distribution of S_{n} is given by

$$
P_{S_{n}}(x)=\frac{\# \text { of ways to get sum } x \text { with } n \text { dice }}{6^{n}}
$$

Outline

Probability Space and Random Variables Joint and Conditional Distributions Expectation
Law of Large Numbers

Law of Large Numbers

LAW OF LARGE NUMBERS IN AVERAGE OF DIE ROLLS
 nuerage conuerges to expected unlue of 3.5

Probability Space and Random Variables

Law of Large Numbers

Weak Law of Large Numbers

For a sequence of independent and identically distributed (i.i.d.) random variables with finite mean μ, the average $\frac{1}{n} S_{n}$ converges in probability to μ :

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left[\left|\frac{S_{n}}{n}-\mu\right|<\epsilon\right]=1 \quad \text { for all } \epsilon>0
$$

We will use the LLN to prove a result known as the Asymptotic Equipartition Property (AEP), which is a central result in information theory (we'll return to it soon enough).
(1) Calculus

- Limits and Convergence
- Convexity
(2) Probability
- Probability Space and Random Variables
- Joint and Conditional Distributions
- Expectation
- Law of Large Numbers
(3) Inequalities
- Jensen's Inequality
- Gibbs's Inequality

Outline

Jensen's inequality

J.L.W.V. Jensen, 1859-1925

Inequalities: Jensen

Jensen's inequality
If f is a convex function and X is a random variable, then

$$
E[f(X)] \geq f(E[X]) .
$$

Moreover, if f is strictly convex, the inequality holds as an equality if and only if $X=E[X]$ with probability 1 .

Inequalities: Jensen

Source: Inductio Ex Machina, mark.reid.name/iem/

Inequalities: Jensen

Jensen's inequality

If f is a convex function and X is a random variable, then

$$
E[f(X)] \geq f(E[X])
$$

Moreover, if f is strictly convex, the inequality holds as an equality if and only if $X=E[X]$ with probability 1 .

We give a proof for the first part of the theorem in the special case where X has a finite domain.

For two mass points, we have $p\left(x_{2}\right)=1-p\left(x_{1}\right)$, and the claim holds by definition of convexity:

$$
p\left(x_{1}\right) f\left(x_{1}\right)+p\left(x_{2}\right) f\left(x_{2}\right) \geq f\left(p\left(x_{1}\right) x_{1}+p\left(x_{2}\right) x_{2}\right) .
$$

Inequalities: Jensen

Induction: Assume that $(*)$ the theorem holds for $N-1$ mass points.

$$
\begin{aligned}
& \begin{aligned}
\sum_{i=1}^{N} p\left(x_{i}\right) f\left(x_{i}\right) & =p\left(x_{N}\right) f\left(x_{N}\right)+\left(1-p\left(x_{N}\right)\right) \sum_{i=1}^{N-1} p^{\prime}\left(x_{i}\right) f\left(x_{i}\right) \\
& \geq p\left(x_{N}\right) f\left(x_{N}\right)+\left(1-p\left(x_{N}\right)\right) f\left(\sum_{i=1}^{N-1} p^{\prime}\left(x_{i}\right) x_{i}\right)(*) \\
& \geq f\left(p\left(x_{N}\right) x_{N}+\left(1-p\left(x_{N}\right)\right) \sum_{i=1}^{N-1} p^{\prime}\left(x_{i}\right) x_{i}\right)(\text { convexity) } \\
& =f\left(\sum_{i=1}^{N} p\left(x_{i}\right) x_{i}\right)
\end{aligned} \\
& \text { where } p^{\prime}\left(x_{i}\right)= \\
& \frac{p\left(x_{i}\right)}{1-p\left(x_{N}\right)}
\end{aligned}
$$

Gibbs’ inequality

W. Gibbs, 1839-1903

Inqualities: Gibbs

Gibbs' inequality
For any two discrete probability distributions p and q, we have

$$
\sum_{x \in \mathcal{X}} p(x) \log _{2} p(x) \geq \sum_{x \in \mathcal{X}} p(x) \log _{2} q(x)
$$

with equality if and only if $p(x)=q(x)$ for all $x \in \mathcal{X}$.

Proof (of the inequality part). next slide...

Inequalities: Gibbs

Gibbs' inequality

$$
\sum_{x \in \mathcal{X}} p(x) \log _{2} p(x) \geq \sum_{x \in \mathcal{X}} p(x) \log _{2} q(x)
$$

$\sum_{x \in \mathcal{X}} p(x) \log _{2} q(x)-\sum_{x \in \mathcal{X}} p(x) \log _{2} p(x)=\sum_{x \in \mathcal{X}} p(x)\left(\log _{2} q(x)-\log _{2} p(x)\right)$

$$
=\sum_{x \in \mathcal{X}} p(x) \log _{2} \frac{q(x)}{p(x)} \quad \log _{2} x-\log _{2} y=\log _{2} \frac{x}{y}
$$

$$
=E\left[\log _{2} \frac{q(x)}{p(x)}\right] \leq \log _{2} E\left[\frac{q(x)}{p(x)}\right]
$$

$$
=\log _{2} \sum_{x \in \mathcal{X}} p(x) \frac{q(x)}{p(x)}=\log _{2} \sum_{x \in \mathcal{X}} q(x)=\log _{2} 1=0
$$

What's next...

Basic concepts: entropy, mutual information, ...
Theory and applications:

- source coding theory
- noisy channel coding

