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Huffman Code

Because of the rounding issue, Shannon-Fano code is not the
optimal symbol code. This is where Professor Fano and a student
called David Huffman enter:

"Design with the help of binary code (0 and 1) the
most efficient method to represent characters,
figures and symbols."
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David Huffman (1925-1999)
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Huffman Code: Algorithm

Huffman's algorithm proceeds as follows:
@ Sort all symbols by their probabilities p;.

@ Join the two least probable symbols, i and j, and remove
them from the list. Add a new pseudosymbol whose
probability is p; + p;.

Break ties arbitrarily.

© If there is more than one symbol left, go to Step 1.

@ Use the resulting binary tree to define the codewords.
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Huffman Code: Optimality

The reason why the Huffman code is the optimal symbol code
(shortest expected codelength) is roughly as follows:

It can be shown that there is an optimal code (not necessarily
unique) such that

Q If p(x) > p(y), then £(x) < {(y).

© The longest two codewords have the same length.

© The longest two codewords differ only at the last bit and
correspond to the two least probable symbols.

Note that since Shannon-Fano gives E[¢(X)] < H(X) + 1, and
Huffman is optimal, Huffman must satisfy the same bound.
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Problems with Symbol Codes

Now we have found the optimal symbols code with expected
codelength E[¢(X)] < H(X) + 1. Are we done?
No. (At least) three problems remain:

@ The one extra bit, H(X) + 1.
e Can make all the difference if H(X) is small.

@ Shannon-Fano and Huffman codes require that the
distribution generating the source symbols be known.

e We can of course first estimate the distribution from the data
to be compressed, but how about the decoder?

© Distribution is not i.i.d.: Dependence and changes.
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Two-Part Codes

Solution to problem 2:

@ The Shannon-Fano and Huffman codes require that the
distribution generating the source symbols be known.

e We can of course first estimate the distribution from the data
to be compressed, but how about the decoder?

Two-Part Codes
Write the distribution (or code) in the beginning of the file.

Usually the overhead is minor compared to the total file size.
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Solution to problems 1 & 3:
@ The one extra bit, H(X) + 1.
o Can make all the difference if H(X) is small.

© Distribution is not i.i.d.: Dependence and changes.

Combine successive symbols into blocks and treat blocks as
symbols. = One extra bit per block.

Allows modeling of dependence.
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Block Codes
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Block Codes

Combining solutions to problems 1-3, we get two-part block
codes: Write first the joint distribution of blocks of N symbols,
and then encode using blocks of length N.

The size of the first part (distribution/code) grows with N, but the
performance of the block code get better.

Complexity Tradeoff

Find suitable balance between complexity of the model (increases
with ) and codelength of data given model (decreases with NV).
= MDL Principle
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Adaptive Codes

Alternative Solution to Problems 2 & 3:
Adaptive Codes

For each symbol (or a block of symbols), we can construct a code
based on the probability p(xnew | X1, .-, Xn)-

This may lead to computational problems since the code tree has
to be constantly updated.

Adaptive codes also avoid another problem with block codes: the
first symbol can be read only after the whole block is decoded.

Arithmetic coding avoids “all problems”: adaptive, spreads the
one additional bit over the whole sequence, and can be decoded
instantaneously.
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Shannon-Fano-Elias coding

First we consider Shannon-Fano-Elias coding, based on which the
basic ideas of arithmetic can more easily be understood.

The basic idea is to assign to each symbol x € X an interval

I(x) = [a(x), b(x)) C [0,1). The intervals for different symbols are
disjoint: I(x)NI(y)=0if x #y.

The intervals are disjoint, so we can pick as code word for x any

number from /(x).

If b(x) — a(x) = p(x), then we can always find in /(x) a codeword
than can be represented with [log,(1/p(x))] bits (Shannon code
length).

Actually we'll need [log,(1/p(x))] + 1 bits to make sure we get a
prefix code. The extra bit is insignificant for large blocks.
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R EEE TR o x | p(x) | F(x) | I(x)
1] 1/8 | 1/8 | [0,1/8)
- D 21 12| 5/8 | 11/8,5/8)
5/8 3|1 1/8 | 6/8 | [5/8,6/8)
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Here X = {1,2,3,4} with px = (1/8,1/2,1/8,1/4).

We use the cumulative function F(x) =3 -, p(y) to define the
intervals /(x). -



Lofrmmme e ° x | p(x) | F(x)
6/8 |- o 1] 1/8 | 1/16
,,,,,,,,,,, o s 2| 1/2 | 3/8
5/8 31 1/8 | 11/16
. 4| 1/4 | 7/8
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Here X = {1,2,3,4} with px = (1/8,1/2,1/8,1/4).
We use the modified cumulative function
F(x) =2, ply)+ 2p(x) to define the code words.
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Shannon-Fano-Elias coding

The value of the modified cumulative function F(x) is in the
middle of the interval /(x).

As codeword C(x) we pick F(x) rounded down to {(x) bits where
{(x) = [logy(1/p(x))] + 1. )
In other words, if the binary representation of F(x) is 0.z122z3. . .,
we pick C(x) = 0.z1...zy).-
It remains to show that

@ Given C(x) we can recover x.

@ The code is a prefix code.
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We first show that C(x) € I(x) = [F(x — 1), F(x)).

Because we round down and p(x) > 0, we have
C(x) < F(x) < F(x).

By choice of code length ¢ > log,(1/p(x)) + 1, we have
2t < PP () F(x)— F(x—1).

Because we round to ¢ bits, we have F(x) — C(x) < 274

Combining, we get

C(x) > F(x) =27 > F(x — 1).



Problems with Symbol Codes

Outline Two-Part Codes
Symbol Codes (contd.) Block Codes
Beyond Symbols Codes Shannon-Fano-Elias coding

Arithmetic Coding

Shannon-Fano-Elias: prefix property

Recall that C(x) has ¢(x) bits. Let C*(x) be the number we get if
we increment the last bit by one: C*(x) = C(x) + 274,

Now C(x) is a prefix of a (binary representation of) a real number
z, if and only if C(x) < z < CH(x).

To prove the prefix property, we show that the intervals
[C(x), CT(x)) are disjoint for all x.
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Shannon-Fano-Elias: prefix property

We already saw that C(x) is in the first half of the interval
I(x) = [F(x = 1), F(x)).

Because 274%) < p(x)/2 and p(x) is the length of the interval
I(x), also Ct(x) = C(x) + 274 is within /(x).

So [C(x), CT(x)) is contained in /(x) for all x.

Because intervals /(x) are disjoint for all x, so are the intervals
[C(x), CT(x)), which was the claim.
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Arithmetic coding

Arithmetic coding can be seen as an application of
Shannon-Fano-Elias coding to blocks of length b, that is, an
alphabet X°.

Let X = {a1,...,am }. Shannon-Fano-Elias coding partitions
[0,1) into m intervals /(a1),...,/(am). Denoting the length of
interval | by |/], we have |/(a;)| = p(a;).

Arithmetic coding is applies this partitioning process iteratively.
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Arithmetic coding

Given an interval /(a;), we partition it into m subintervals
I(aja1),...,1(a;iam) keeping the same proportions:

[I(aiaj)| : [1(aiak)| = [1(aj)| : [1(ak)| = p(a;) : p(ax)-

Repeating this b times, we get for all sequences x; ...x, € X?
intervals such that |[/(x1...xp)| = p(x1) ... p(xp).

Notice that we can do this incrementally one symbol at a time.
We don’t even need to know b in advance.

Compare this to Huffman coding, where the code book is
constructed for the whole alphabet (here X'®) at once.

This also generalises to case where we want to change the
distribution dynamically.
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Arithmetic coding

As in Shannon-Fano-Elias coding, the code word for x; ... xp, is one
real number from /(x1...xp).

Notice that the intervals /(x; ...xp) obtained by the iterative
process of arithmetic coding are the same we would get by
applying Shannon-Fano-Elias coding directly to the alphabet X'®
with probabilities p(xi ...xp) = p(x1) ... p(xp).

(For defining the cumulative function F in X®, we use the ordering
where x1...xp < y1 ...y if for some i we have x; < y;, and
xj =yj for j < i.)

Our analysis of Shannon-Fano-Elias coding implies that accuracy

of U(x1...xp) = [logo(1/(p(x1)-..p(xp)))] + 1 bits is sufficient.
The expected code lenght per symbol is at most H(X) + 2/b bits.
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Coming next

@ Universal Coding

@ Minimum Description Length Principle
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