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Huffman Code

Because of the rounding issue, Shannon-Fano code is not the
optimal symbol code. This is where Professor Fano and a student
called David Huffman enter:

"Design with the help of binary code (0 and 1) the

most efficient method to represent characters,

figures and symbols."
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David Huffman (1925–1999)
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Huffman Code: Algorithm

Huffman’s algorithm proceeds as follows:

1 Sort all symbols by their probabilities pi .

2 Join the two least probable symbols, i and j , and remove
them from the list. Add a new pseudosymbol whose
probability is pi + pj .
Break ties arbitrarily.

3 If there is more than one symbol left, go to Step 1.

4 Use the resulting binary tree to define the codewords.
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Huffman Code: Optimality

The reason why the Huffman code is the optimal symbol code
(shortest expected codelength) is roughly as follows:

It can be shown that there is an optimal code (not necessarily
unique) such that

1 If p(x) > p(y), then `(x) ≤ `(y).

2 The longest two codewords have the same length.

3 The longest two codewords differ only at the last bit and
correspond to the two least probable symbols.

Note that since Shannon-Fano gives E [`(X )] ≤ H(X ) + 1, and
Huffman is optimal, Huffman must satisfy the same bound.
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Problems with Symbol Codes

Now we have found the optimal symbols code with expected
codelength E [`(X )] ≤ H(X ) + 1. Are we done?

No. (At least) three problems remain:
1 The one extra bit, H(X ) + 1.

Can make all the difference if H(X ) is small.

2 Shannon-Fano and Huffman codes require that the
distribution generating the source symbols be known.

We can of course first estimate the distribution from the data
to be compressed, but how about the decoder?

3 Distribution is not i.i.d.: Dependence and changes.
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Two-Part Codes

Solution to problem 2:
2 The Shannon-Fano and Huffman codes require that the

distribution generating the source symbols be known.

We can of course first estimate the distribution from the data
to be compressed, but how about the decoder?

Two-Part Codes

Write the distribution (or code) in the beginning of the file.

Usually the overhead is minor compared to the total file size.
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Block Codes

Solution to problems 1 & 3:
1 The one extra bit, H(X ) + 1.

Can make all the difference if H(X ) is small.

3 Distribution is not i.i.d.: Dependence and changes.

Block Codes

Combine successive symbols into blocks and treat blocks as
symbols. ⇒ One extra bit per block.

Allows modeling of dependence.
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Block Codes

Combining solutions to problems 1–3, we get two-part block
codes: Write first the joint distribution of blocks of N symbols,
and then encode using blocks of length N.

The size of the first part (distribution/code) grows with N, but the
performance of the block code get better.

Complexity Tradeoff

Find suitable balance between complexity of the model (increases
with N) and codelength of data given model (decreases with N).
⇒ MDL Principle
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Alternative Solution to Problems 2 & 3:

Adaptive Codes

For each symbol (or a block of symbols), we can construct a code
based on the probability p(xnew | x1, . . . , xn).

This may lead to computational problems since the code tree has
to be constantly updated.

Adaptive codes also avoid another problem with block codes: the
first symbol can be read only after the whole block is decoded.

Arithmetic coding avoids “all problems”: adaptive, spreads the
one additional bit over the whole sequence, and can be decoded
instantaneously.
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Shannon-Fano-Elias coding

First we consider Shannon-Fano-Elias coding, based on which the
basic ideas of arithmetic can more easily be understood.

The basic idea is to assign to each symbol x ∈ X an interval
I (x) = [a(x), b(x)) ⊂ [0, 1). The intervals for different symbols are
disjoint: I (x) ∩ I (y) = ∅ if x 6= y .

The intervals are disjoint, so we can pick as code word for x any
number from I (x).

If b(x)− a(x) = p(x), then we can always find in I (x) a codeword
than can be represented with dlog2(1/p(x))e bits (Shannon code
length).

Actually we’ll need dlog2(1/p(x))e+ 1 bits to make sure we get a
prefix code. The extra bit is insignificant for large blocks.
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Shannon-Fano-Elias: example

F (x)

x

1 2 3 4

1/8

5/8
6/8

1 x p(x) F (x) I (x)

1 1/8 1/8 [0, 1/8)
2 1/2 5/8 [1/8, 5/8)
3 1/8 6/8 [5/8, 6/8)
4 1/4 1 [6/8, 1)

Here X = { 1, 2, 3, 4 } with pX = (1/8, 1/2, 1/8, 1/4).

We use the cumulative function F (x) =
∑

y≤x p(y) to define the
intervals I (x).
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Shannon-Fano-Elias: example

x

1 2 3 4

1/8

5/8
6/8

1

F̃ (x)

x p(x) F̃ (x)

1 1/8 1/16
2 1/2 3/8
3 1/8 11/16
4 1/4 7/8

Here X = { 1, 2, 3, 4 } with pX = (1/8, 1/2, 1/8, 1/4).

We use the modified cumulative function
F̃ (x) =

∑
y<x p(y) + 1

2 p(x) to define the code words.
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Shannon-Fano-Elias coding

The value of the modified cumulative function F̃ (x) is in the
middle of the interval I (x).

As codeword C (x) we pick F̃ (x) rounded down to `(x) bits where
`(x) = dlog2(1/p(x))e+ 1.
In other words, if the binary representation of F̃ (x) is 0.z1z2z3 . . .,
we pick C (x) = 0.z1 . . . z`(x).

It remains to show that

1 Given C (x) we can recover x .

2 The code is a prefix code.
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Shannon-Fano-Elias: decoding

We first show that C (x) ∈ I (x) = [F (x − 1),F (x)).

Because we round down and p(x) > 0, we have
C (x) ≤ F̃ (x) < F (x).

By choice of code length ` ≥ log2(1/p(x)) + 1, we have

2−`(x) ≤ p(x)

2
= F̃ (x)− F (x − 1).

Because we round to ` bits, we have F̃ (x)− C (x) ≤ 2−`(x).

Combining, we get

C (x) ≥ F̃ (x)− 2−`(x) ≥ F (x − 1).
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Shannon-Fano-Elias: prefix property

Recall that C (x) has `(x) bits. Let C +(x) be the number we get if
we increment the last bit by one: C +(x) = C (x) + 2−`(x).

Now C (x) is a prefix of a (binary representation of) a real number
z , if and only if C (x) ≤ z < C +(x).

To prove the prefix property, we show that the intervals
[C (x),C +(x)) are disjoint for all x .
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Shannon-Fano-Elias: prefix property

We already saw that C (x) is in the first half of the interval
I (x) = [F (x − 1),F (x)).

Because 2−`(x) ≤ p(x)/2 and p(x) is the length of the interval
I (x), also C +(x) = C (x) + 2−`(x) is within I (x).

So [C (x),C +(x)) is contained in I (x) for all x .

Because intervals I (x) are disjoint for all x , so are the intervals
[C (x),C +(x)), which was the claim.

Teemu Roos Information-Theoretic Modeling



Outline
Symbol Codes (contd.)
Beyond Symbols Codes

Problems with Symbol Codes
Two-Part Codes
Block Codes
Shannon-Fano-Elias coding
Arithmetic Coding

Arithmetic coding

Arithmetic coding can be seen as an application of
Shannon-Fano-Elias coding to blocks of length b, that is, an
alphabet X b.

Let X = { a1, . . . , am }. Shannon-Fano-Elias coding partitions
[0, 1) into m intervals I (a1), . . . , I (am). Denoting the length of
interval I by |I |, we have |I (ai )| = p(ai ).

Arithmetic coding is applies this partitioning process iteratively.
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Arithmetic coding

Given an interval I (ai ), we partition it into m subintervals
I (aia1), . . . , I (aiam) keeping the same proportions:

|I (aiaj)| : |I (aiak)| = |I (aj)| : |I (ak)| = p(aj) : p(ak).

Repeating this b times, we get for all sequences x1 . . . xb ∈ X b

intervals such that |I (x1 . . . xb)| = p(x1) . . . p(xb).

Notice that we can do this incrementally one symbol at a time.
We don’t even need to know b in advance.

Compare this to Huffman coding, where the code book is
constructed for the whole alphabet (here X b) at once.

This also generalises to case where we want to change the
distribution dynamically.
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Arithmetic coding

As in Shannon-Fano-Elias coding, the code word for x1 . . . xb is one
real number from I (x1 . . . xb).

Notice that the intervals I (x1 . . . xb) obtained by the iterative
process of arithmetic coding are the same we would get by
applying Shannon-Fano-Elias coding directly to the alphabet X b

with probabilities p(x1 . . . xb) = p(x1) . . . p(xb).

(For defining the cumulative function F in X b, we use the ordering
where x1 . . . xb < y1 . . . yb if for some i we have xi < yi , and
xj = yj for j < i .)

Our analysis of Shannon-Fano-Elias coding implies that accuracy
of `(x1 . . . xb) = dlog2(1/(p(x1) . . . p(xb)))e+ 1 bits is sufficient.
The expected code lenght per symbol is at most H(X ) + 2/b bits.
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Coming up

Coming next

Universal Coding

Minimum Description Length Principle
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