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Definitions

Our basic setting is that we have some data D = (x1, . . . , xm)
where the individual data points xi come from some domain X .

We write D for the set of all possible data. A typical situation is
D = X n where n may or may not be known in advance.

A probability distribution p over D is called a model.

A set of models M is called a model class.

Model classes are often parametric: M = { p✓ | ✓ 2 ⇥ } where
p✓ is a model for each ✓ 2 ⇥, and ⇥ ✓ Rk for some k .
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Example: Gaussian model

Let pµ,�2 be the normal distribution over X = R with mean µ and
variance �2.

We have a parametric model class M = { p✓ | ✓ 2 ⇥ } where
⇥ =

�
(µ,�2) 2 R2 | �2 > 0

 
.

We can extend pµ,�2 into a distribution over D = Rn by assuming

independence: p(n)µ,�2(x1, . . . , xn) = pµ,�2(x1) . . . pµ,�2(xn).

We often abuse notation by just writing p✓(x1, . . . , xn) instead of

p(n)✓ (x1, . . . , xn).

However, keep in mind that we may also have models that does
not satisfy the independence assumption.
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MDL Philosophy

It is good to keep in mind that we don’t claim that we can find a
“true” model p that really generates the data D, or even that such
a “true” model exists.

Instead, in the MDL philosophy is founded on the following
informal claim.

Claim

The better a code based on model p can compress data D, the
more regularities that pertain to D it exploits.

For example, think about the digits of ⇡ = x1.x2x3 . . ..
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The model within M that achieves the shortest code-length for
data D is the maximum likelihood (ML) model:

min
✓2⇥

log2
1

p✓(D)
= log2

1

p✓̂(D)
. p✓̂ = p✓̂(D) depends on D!

For model q, the excess code-length or “regret” over the ML
model in M is given by

log2
1

q(D)
� log2

1

p✓̂(D)
.

Game-theoretic setting: Player chooses q first, then Nature
chooses D. Player tries to keep regret small no matter what.
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Universal model

A model (code) whose regret grows slower than n, for all data
sequences, is said to be a universal model (code) relative to
model class M:

lim
n!1

1

n
max
D2D


log2

1

q(D)
� log2

1

p✓̂(D)

�
= 0 . (1)

Another (stochastic) definition of universality is

1

n
D(p✓ k q) ! 0 for all ✓ 2 ⇥. (2)

The second one is weaker since (1) ) (2). Proof.

log2
1

p✓̂(D)
 log2

1

p✓(D)

� log2
1

p✓̂(D)
� � log2

1

p✓(D)

log2
1

q(D)
� log2

1

p✓̂(D)
� log2

1

q(D)
� log2

1

p✓(D)

ED⇠p✓


log2

1

q(D)
� log2

1

p✓̂(D)

�

� ED⇠p✓


log2

1

q(D)
� log2

1

p✓(D)

�

ED⇠p✓


log2

1

q(D)
� log2

1

p✓̂(D)

�

� ED⇠p✓


log2

1

q(D)

�
� ED⇠p✓


log2

1

p✓(D)

�

ED⇠p✓


log2

1

q(D)
� log2

1

p✓̂(D)

�

� ED⇠p✓


log2

1

q(D)

�
�
X

D

p✓(D) log2
1

p✓(D)

ED⇠p✓


log2

1

q(D)
� log2

1

p✓̂(D)

�

� ED⇠p✓


log2

1

q(D)

�
� H(p✓)

ED⇠p✓


log2

1

q(D)
� log2

1

p✓̂(D)

�

� ED⇠p✓


log2

1

q(D)

�
� nH(p(1)✓ )

1

n
ED⇠p✓


log2

1

q(D)
� log2

1

p✓̂(D)

�

� 1

n
ED⇠p✓


log2

1

q(D)

�
� H(p(1)✓ )

lim
n!1

1

n
ED⇠p✓


log2

1

q(D)
� log2

1

p✓̂(D)

�

� lim
n!1

1

n
ED⇠p✓


log2

1

q(D)

�
� H(p(1)✓ )

0 � lim
n!1

1

n
ED⇠p✓


log2

1

q(D)

�
� H(p(1)✓ )

lim
n!1

1

n
ED⇠p✓


log2

1

q(D)

�
 H(p(1)✓ )

lim
n!1

1

n
ED⇠p✓


log2

1

q(D)

�
(Gibbs)
= H(p(1)✓ )

This is equivalent to 1
nD(p✓ k q) ! 0 for all ✓ 2 ⇥.
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A model (code) whose regret grows slower than n, for all data
sequences, is said to be a universal model (code) relative to
model class M:

lim
n!1

1

n
max
D2D


log2

1

q(D)
� log2

1

p✓̂(D)

�
= 0 . (1)

log2
1

p✓̂(D)
 log2

1

p✓(D)

This is equivalent to 1
nD(p✓ k q) ! 0 for all ✓ 2 ⇥.
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Universal model

A model (code) whose regret grows slower than n, for all data
sequences, is said to be a universal model (code) relative to
model class M:

lim
n!1

1

n
max
D2D


log2

1

q(D)
� log2

1

p✓̂(D)

�
= 0 . (1)

� log2
1

p✓̂(D)
� � log2

1

p✓(D)

This is equivalent to 1
nD(p✓ k q) ! 0 for all ✓ 2 ⇥.
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A model (code) whose regret grows slower than n, for all data
sequences, is said to be a universal model (code) relative to
model class M:
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�
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A model (code) whose regret grows slower than n, for all data
sequences, is said to be a universal model (code) relative to
model class M:

lim
n!1

1

n
max
D2D


log2

1

q(D)
� log2

1

p✓̂(D)

�
= 0 . (1)

ED⇠p✓


log2

1

q(D)
� log2

1

p✓̂(D)

�

� ED⇠p✓


log2

1

q(D)
� log2

1

p✓(D)

�

This is equivalent to 1
nD(p✓ k q) ! 0 for all ✓ 2 ⇥.
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A model (code) whose regret grows slower than n, for all data
sequences, is said to be a universal model (code) relative to
model class M:

lim
n!1

1

n
max
D2D


log2

1

q(D)
� log2

1

p✓̂(D)

�
= 0 . (1)

ED⇠p✓


log2

1
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1
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�
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�
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1
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�
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nD(p✓ k q) ! 0 for all ✓ 2 ⇥.
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A model (code) whose regret grows slower than n, for all data
sequences, is said to be a universal model (code) relative to
model class M:

lim
n!1

1

n
max
D2D


log2

1

q(D)
� log2

1

p✓̂(D)

�
= 0 . (1)

ED⇠p✓


log2

1

q(D)
� log2

1

p✓̂(D)

�

� ED⇠p✓


log2

1

q(D)

�
�
X

D

p✓(D) log2
1

p✓(D)

This is equivalent to 1
nD(p✓ k q) ! 0 for all ✓ 2 ⇥.
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A model (code) whose regret grows slower than n, for all data
sequences, is said to be a universal model (code) relative to
model class M:

lim
n!1

1

n
max
D2D


log2

1

q(D)
� log2

1

p✓̂(D)

�
= 0 . (1)

ED⇠p✓


log2

1

q(D)
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1
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�
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log2

1
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�
� H(p✓)

This is equivalent to 1
nD(p✓ k q) ! 0 for all ✓ 2 ⇥.
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A model (code) whose regret grows slower than n, for all data
sequences, is said to be a universal model (code) relative to
model class M:

lim
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�
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A model (code) whose regret grows slower than n, for all data
sequences, is said to be a universal model (code) relative to
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A model (code) whose regret grows slower than n, for all data
sequences, is said to be a universal model (code) relative to
model class M:

lim
n!1

1

n
max
D2D


log2

1

q(D)
� log2

1

p✓̂(D)

�
= 0 . (1)

lim
n!1

1

n
ED⇠p✓


log2

1

q(D)
� log2

1

p✓̂(D)

�

� lim
n!1

1

n
ED⇠p✓


log2

1

q(D)

�
� H(p(1)✓ )

This is equivalent to 1
nD(p✓ k q) ! 0 for all ✓ 2 ⇥.

Teemu Roos Information-Theoretic Modeling



Outline
Universal Source Codes

Two-Part Codes
Advanced Universal Codes

Definitions
Universal Models

Universal models

Universal model
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A model (code) whose regret grows slower than n, for all data
sequences, is said to be a universal model (code) relative to
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A model (code) whose regret grows slower than n, for all data
sequences, is said to be a universal model (code) relative to
model class M:
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�
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The typical situation might be as follows:

1 We know (think) that the source symbols are generated by a
Bernoulli model with parameter ✓ 2 [0, 1].

2 We’d like to encode data at rate H(✓).

3 However, we do not know ✓ in advance.

Again, we don’t need to believe that data are really generated by a
Bernoulli model.

Among i.i.d. models, the rate H(✓) is the best achievable.
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Two-Part Codes

Let M = {p✓ : ✓ 2 ⇥} be a parametric probabilistic model class.

If the parameter space ⇥ is discrete, we can construct a (prefix)
code C1 : ⇥ ! {0, 1}⇤ which maps each parameter value to a
codeword of length `1(✓).

For any distribution p✓, the Shannon code-lengths satisfy

`✓(D) =

⇠
log2

1

p✓(D)

⇡
⇡ log2

1

p✓(D)
.

Using parameter value ✓, the total code-length becomes (⇡)

`1(✓) + log2
1

p✓(D)
.
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Two-Part Codes

Using the maximum likelihood parameter, the total code-length
becomes

`two-part(D) = `1(✓̂) + log2
1

p✓̂(D)
.

Hence, the regret of the two-part code is

`two-part(D)� log2
1

p✓̂(D)
= `1(✓̂) < cn for all c > 0 and large n.

For discrete parameter models the two-part code is universal.
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Universality of Two-Part Codes

Since the two-part code is universal, its regret goes to zero, but
there may be other codes for which regret goes to zero faster.

On the other hand, two-part codes have the advantage of being
reasonably easy to understand.

Often they are also e�ciently computable.
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Continuous Parameters

What if the parameters are continuous (like polynomial
coe�cients)? We can’t encode all continuous values with finite
code-lengths!

Solution: Quantization. Choose a discrete subset of points,
✓(1), ✓(2), . . ., and use only them.

Θ

Information Geometry!

If the points are su�ciently dense (in a code-length sense) then the
code-length for data is still almost as short as min✓2⇥ `✓(D).
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About Quantization

How many points should there be in the subset ✓(1), ✓(2), . . .?

Intuition: Data does not allow us to tell apart ✓1 and ✓2 if

|✓1 � ✓2| < c
1p
n
. ) Don’t care about higher precision.

Theorem (informally)

Optimal quantization accuracy is of order
1p
n
.

) number of points ⇡
p
nk = nk/2, where k = dim(⇥).

The code-length for the quantized parameters becomes

`(✓q) ⇡ log2 n
k/2 =

k

2
log2 n .
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Asymptotics: k
2 log n

With the precision 1p
n
the code-length for data is almost optimal:

min
✓q2{✓(1),✓(2),...}

`✓q(D) ⇡ min
✓2⇥

`✓(D) = log2
1

p✓̂(D)
(+O(1)) .

The total code-length becomes then (⇡)

log2
1

p✓̂(D)
+

k

2
log2 n ,

so that the regret is
k

2
log2 n.

Since log2 n grows slower than n, the two-part code is universal

also for continuous parameter models.
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Mixture Universal Model

There are universal codes that are better than the two-part code.

For instance, given a uniquely decodable code for the parameters,
let w be a p.m.f. over the parameter space ⇥ (quantized if
continuous) defined as

w(✓) =
2�`(✓)

c
, where c =

X

✓2⇥
2�`(✓)  1.

Let pw be a mixture distribution over the data-sets D 2 D,
defined as

pw (D) =
X

✓2⇥
p✓(D)w(✓) ,

i.e., an “average” distribution, where each p✓ is weighted by w(✓).
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Mixture Universal Model

The code-length of the mixture model pw is given by

log2
1P

✓2⇥ p✓(D)w(✓)
 log2

1

p✓̂(D)w(✓̂)
= log2

1

p✓̂(D)
+log2

c

2�`(✓̂)
.

The right-hand side is equal to

log2
1

p✓̂(D)
+ `(✓̂)

| {z }
two-part code

+ log2 c| {z }
0

,

The mixture code is always at least as good as the two-part code.

Teemu Roos Information-Theoretic Modeling



Outline
Universal Source Codes

Two-Part Codes
Advanced Universal Codes

Mixture Codes
Normalized Maximum Likelihood
Universal Prediction

Normalized Maximum Likelihood

Consider again the maximum likelihood model

p✓̂(D) = max
✓2⇥

p✓(D) , `✓̂(D) = log2
1

p✓̂(D)
.

It is the best we can do under model M.

Unfortunately, it is not possible to use the ML model for coding
because is not a (fixed) probability distribution:

C =
X

D2D
p✓̂(D) > 1 ,

X

D2D
2�`✓̂(D) > 1 ,

unless ✓̂ is constant wrt. D. (Recall game-theoretic setting: Player
chooses q before seeing data D.)

Teemu Roos Information-Theoretic Modeling



Outline
Universal Source Codes

Two-Part Codes
Advanced Universal Codes

Mixture Codes
Normalized Maximum Likelihood
Universal Prediction

Normalized Maximum Likelihood

Normalized Maximum Likelihood

The normalized maximum likelihood (NML) model is obtained
by normalizing the ML model:

pnml(D) =
p✓̂(D)

C
, where C =

X

D2D
p✓̂(D) .

The regret of NML is given by

log2
1

pnml(D)
� log2

1

p✓̂(D)
= log2

C

p✓̂(D)
� log2

1

p✓̂(D)
= log2 C ,

which is constant wrt. D.
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Model Complexity

The quantity log2 C , which gives the (constant) regret of NML, is
called the parametric complexity of model class M.

Notice that if D and M are infinite, the sum defining C may
diverge. In this case, we say that the parametric complexity of the
model is infinite.

If the parametric complexity is infinite, then it’s impossible to
achieve constant regret. This is a real issue for some model classes
used in practice.

Various work-arounds exist to extend NML to such model classes.
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NML: Example

Consider the Bernoulli model: p✓(D) = ✓k(1� ✓)n�k , where k is
the number of 1s.

It is easy to see that ✓̂ = k
n and hence,

p✓̂(D) =

✓
k

n

◆k ✓n � k

n

◆n�k

.

We can compute C for fixed n as the sum

C =
nX

k=0

✓
n

k

◆✓
k

n

◆k ✓n � k

n

◆n�k

.

For n = 1, 2, . . . , 100: C = 2, 2.5, 2.89, 3.22, 3.51, 3.78, . . . , 13.21.
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NML: Example
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•: log2 C as a function of n
O: 1

2 log2 n (di↵erence is const. + o(1)).
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Normalized Maximum Likelihood

Let q be any distribution other than pnml. Then

there must a data-set D 0 2 D for which we have

q(D 0) < pnml(D
0)

, log2
1

q(D 0)
� log2

1

p✓̂(D
0)

| {z }
regret of q

> log2
1

pnml(D 0)
� log2

1

p✓̂(D
0)

| {z }
regret of pnml = log2 C

,

For D 0, the regret of q is greater than log2 C .

Thus, the worst-case regret of q is greater than the (worst-case)
regret of NML. ) NML has the least possible worst-case regret.
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Universal Models

For ‘smooth’ parametric models, the regret of NML, log2 C , grows
at rate k

2 log2 n, so NML is also a universal model.

Since the regret of NML is the least possible, NML is the optimal

universal model.

We have seen three kinds of universal codes:

1 two-part,

2 mixture,

3 NML.

There are also universal codes that are not based on any (explicit)
model class: Lempel-Ziv (gzip)!
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Uses of Universal Codes

So what do we do with them?

We can use universal codes for (at least) three purposes:

1 compression,

2 prediction,

3 model selection.
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Universal Prediction

By the connection p(D) = 2�`(D), the following are equivalent:

good compression: `(D) is small,

good probability assignment:

p(D) =
Qn

i=1 P(Di | D1, . . . ,Di�1) is high.

good predictions: p(Di | D1, . . . ,Di�1) is high for all
i 2 {1, . . . , n}.

For instance, the mixture code gives a natural predictor which is
equivalent to Bayesian prediction.

The NML model gives predictions that are good relative to the
best model in the model class, no matter what happens.
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Model (Class) Selection

Since a model class that enables good compression of the data
must be based on exploiting the regular features in the data, the
code-length can be used as a yard-stick for comparing model
classes.
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MDL Principle

MDL Principle

“Old-style”:

Choose the model p✓ 2 M that yields the shortest two-part
code-length

min
✓,M

`1(✓) + log2
1

p✓(D)
.

Modern:

Choose the model class M that yields the shortest universal
code-length

min
M

`M(D).
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Next Week

Next week: Minimum Description Length (MDL) principle
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